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Bloch–Siegert Shift
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Purpose: In this study, a new simple Fourier domain-based analyt-
ical expression for the Bloch–Siegert (BS) shift-based B1 mapping
method is proposed to obtain jBþ1 j more accurately while using
short BS pulse durations and small off-resonance frequencies.
Theory and Methods: A new simple analytical expression for

the BS shift is derived by simplifying the Bloch equations. In
this expression, the phase is calculated in terms of the Fourier
transform of the radiofrequency pulse envelope, and thus
making the off- and on-resonance effects more easily under-
standable. To verify the accuracy of the proposed expression,
Bloch simulations and MR experiments are performed for the
hard, Fermi, and Shinner–Le Roux pulse shapes.
Results: Analyses of the BS phase shift-based B1 mapping
method in terms of radiofrequency pulse shape, pulse dura-
tion, and off-resonance frequency show that jBþ1 j can be
obtained more accurately with the aid of this new expression.
Conclusions: In this study, a new simple frequency domain
analytical expression is proposed for the BS shift. Using this
expression, jBþ1 j values can be predicted from the phase data
using the frequency spectrum of the radiofrequency pulse.
This method works well even for short pulse durations and
small offset frequencies. Magn Reson Med 73:117–125,
2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

The Bloch–Siegert (BS)-based B1 mapping technique was
proposed by Sacolick et al. (1) as a phase-based B1 map-
ping technique. This technique utilizes the fact that
applying an off-resonance radiofrequency (RF) pulse
after an excitation RF pulse adds phase to the excited
spins; for a large off-resonance frequency, the added
phase is directly proportional to the square of the B1

field magnitude (2). This technique is insensitive to the
spin relaxation, repetition time (TR), starting flip angle,

chemical shift, and B0 field inhomogeneities. However,
this technique has some limitations. For example, the
sequence has a long echo time (TE) compared to that of
a standard sequence without BS pulses. Furthermore, the
sequence causes a high specific absorption rate due to
the relatively long off-resonance RF pulse used to create
the BS phase shift.

To improve this technique, there have been several studies
on the optimization of the sequence and the off-resonance RF
pulse shape (3–9). In Refs. 3 and 4, the optimization of the
BS pulse shape was proposed to decrease the TE and specific
absorption rate values. In both studies, better phase sensitiv-
ity was obtained in a shorter time and with lower on-
resonance excitation with designed pulses than the Fermi
pulse. Specifically, an adiabatic RF pulse design was intro-
duced to increase the sensitivity of the jB1j measurement in
Ref. 5. Differently, to improve the sensitivity of the BS-based
B1 mapping method, reducing the off-resonance frequency
was proposed in Ref. 6. In Refs. 7 and 8, a new sequence that
caused a lower specific absorption rate than that of a spin
echo sequence was proposed. In Ref. 9, a faster acquisition of
the B1 information and a minimized signal loss due to T

�

2

effects were achieved. In both Refs. 3 and 6, the authors also
mentioned that crusher gradients were added before and
after a BS pulse to minimize the artifacts due to on-resonance
excitation by the BS pulse. All of these studies improved the
weaknesses of the BS-based B1 mapping technique by modi-
fying the sequence or the RF pulse shape.

In this study, our aim is to describe the parameters that
affect the BS-based B1 mapping method and to investigate
the relationship between the effects of the off-resonance

frequency, the RF pulse shape, and the duration of the RF

pulse. To this end, we propose a general expression based

on theoretical modeling that relates the Fourier transform

of the off-resonance BS RF pulse envelope to the phase

shift. To verify the accuracy of the proposed expression,

we conducted extensive simulations and experiments.

These simulations and experiments show that the pro-

posed frequency domain expression is more accurate than

the time domain expression that was proposed by the

authors of the BS shift-based B1 mapping method (1).

THEORY

In the BS phase shift-based B1 mapping method, an off-
resonance RF pulse is applied after an excitation RF
pulse to add a phase shift to the excited spins. The
amount of phase shift (fBS) depends on the applied RF
field [Bþ1 ðtÞ], the duration of the RF pulse (T), and the
offset frequency between the RF pulse [vRFðtÞ] and the
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resonance frequency (v0) (2,10). In Ref. (1), it was shown
that if vRFðtÞ is much higher than jv1ðtÞj ¼ gjBþ1 ðtÞj,
where g is the gyromagnetic ratio, then in the v0 rotating
frame, the phase shift is directly related to the time inte-
gral of the square of jv1ðtÞj, as given in Eq. [1]:

fBS � fTD ¼
Z T

0

vTDðtÞdt: [1]

where vTDðtÞ ¼ jv1ðtÞj2
2vRFðtÞ and fTD is the phase shift as the

time domain approximation for the BS shift.
Long BS pulse durations cause long TE values, which

result in signal loss due to the T
�

2 and T2 effects; therefore,
the use of a small pulse duration becomes important. How-
ever, as our preliminary results have shown (11) for small
pulse durations, there is a significant difference between
the actual phase shift (fBS), as obtained by the solution of
the complete Bloch equations, and the phase shift given by
Eq. [1]. These results are obtained, when the pulse duration
is changed while keeping the same peak jB1j value for each
pulse duration, even if the condition vRFðtÞ >> jv1ðtÞj is
satisfied. This difference (fres) is defined as:

fres ¼ fBS � fTD: [2]

In fact, fres can also be defined as the phase accumula-
tion in the v0 þ vTDðtÞ rotating frame. Consequently, to
obtain fres, the Bloch equations are solved in this rotat-
ing frame. (Note that this rotating frame is named the BS
time domain (BSTD) rotating frame.) In the BSTD rotat-
ing frame, Bþ1 ðtÞ is defined as:

Bþ1 ðtÞ ¼ Be
1ðtÞexp i

Z t

0

ðvRFðtÞ � vTDðtÞÞdtþ uþ u0

� �� �
;

[3]

where Be
1ðtÞ is the envelope, h is the phase of the applied

BS shift RF pulse, and u0 is the accumulated phase until
the beginning of the BS pulse.

The Bloch equation in matrix form in the BSTD rotat-
ing frame is given as:

d

dt

Mx

My

Mz

0
BB@

1
CCA ¼

0 �vTDðtÞ �v1yðtÞ

vTDðtÞ 0 v1xðtÞ

v1yðtÞ �v1xðtÞ 0

0
BB@

1
CCA

Mx

My

Mz

0
BB@

1
CCA [4]

where v1xðtÞ and v1yðtÞ are the real and imaginary parts,
respectively, of v1ðtÞ as follows:

v1xðtÞ ¼ gBe
1ðtÞcos

Z t

0

ðvRFðtÞ � vTDðtÞÞdtþ uþ u0

� �
; [5]

v1yðtÞ ¼ gBe
1ðtÞsin

Z t

0

ðvRFðtÞ � vTDðtÞÞdtþ uþ u0

� �
: [6]

In the BSTD rotating frame, the magnetization vector
at time zero (the time that BS RF pulse is started) is
Mð0Þ ¼ ðM0 0 0ÞT , where T stands for the vector trans-
pose. Under this condition, the time derivative of Mx is
very small, and it is assumed that Mx remains almost
constant throughout the BS RF pulse. Therefore, the sys-
tem of differential equations is reduced to:

d

dt

My

Mz

 !
¼

0 v1xðtÞ

�v1xðtÞ 0

 !
My

Mz

 !
þ

vTDðtÞ

v1yðtÞ

 !
M0:

[7]

A complex Myz variable is defined as Myz ¼ My þ iMz.
The solution for the MyzðTÞ variable for the pulse dura-
tion T is found to be the following (Appendix A):

MyzðTÞ ¼ M0

Z T

0

ðvTDðtÞ þ iv1yðtÞÞexp �i

Z T

t

v1xðsÞds

� �
dt:

[8]

To simplify the solution, the exponential term is sim-
plified using the fact that vRFðtÞ >> jv1ðtÞj and using the
following argument: v1xðsÞ is the multiplication of a
slowly varying function Be

1ðtÞ and a cosine function with

a much higher frequency that changes slowly between

vRFmin and vRFmax.
R T

t v1xðsÞds becomes bounded by a

maximum value, which is determined by Be
1max times the

integral of the cosine function during a half cycle of the
minimum frequency vRFmin. In other words, this integral

becomes bounded by
2gjBe

1maxj
vRFmin

, which is much smaller than

1 for vRFmin >> jv1maxj, where v1max ¼ gBe
1max. (Note that

for a hard pulse, Be
1max is the magnitude of the RF pulse,

and for Shinner–Le Roux (SLR) and Fermi pulses, Be
1max

corresponds to the peak values.).

exp �i

Z T

t

v1xðsÞds

� �
� 1� i

Z T

t

v1xðsÞds; [9]

With this simplification, the solution can be separated
easily into its real and imaginary parts and the compo-
nents My and Mz can be obtained as:

MyðTÞ � M0

Z T

0

vTDðtÞdt þM0

Z T

0

Z T

t

v1yðtÞv1xðsÞdsdt;

[10]

MzðTÞ � M0

Z T

0

v1yðtÞdt �M0

Z T

0

Z T

t

vTDðtÞv1xðsÞdsdt:

[11]

Because we assume that MxðTÞ ¼ M0 and MyðTÞ are

small, the phase can be found using f ¼ �tan�1 My ðTÞ
M0
� �

My ðTÞ
M0

(note that the minus sign is due to the fact that the

phase is defined in the left-hand direction), and the
expression for fres in the BSTD rotating frame becomes:

fres � �
Z T

0

Z T

t

v1yðtÞv1xðsÞdsdt �
Z T

0

vTDðtÞdt [12]

To find the phase shift defined in the v0 rotating
frame, which is the actual phase shift, we add the term
fTD to fres as given in Eq. [2]. Note that the term u0,
which is the phase accumulated prior to the beginning
of the BS pulse, is also subtracted to obtain the phase
shift in the v0 rotating frame:

fBS � �
Z T

0

Z T

t

v1yðtÞv1xðsÞdsdt � u0 [13]

Because the contribution of u0 is canceled using the
difference of the two acquisitions taken with positive
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and negative offset frequencies, u0 is ignored in the rest
of the equations. Note that v1xðsÞ and v1yðtÞ remain at
the same values as defined in the BSTD frame.

Using the Fourier transform of v1ðtÞ, which is denoted
by V1ðf Þ (i.e., V1ðf Þ ¼

R1
�1 v1ðtÞe�i2pftdt), the final expres-

sion becomes:

fBS � �
Z 1
�1

jV1ðf Þj2

4pf
df [14]

Note that the detailed derivation of this expression is
given in Appendix B.

This expression is simplified using the Hilbert trans-
form. The Hilbert transform of a function is defined as

HfgðtÞg ¼ 1
p

R�1
�1

gðtÞ
t�t

dt. The Hilbert transform is defined

as the Cauchy principal value of the integral in this
equality whenever the value of the integral around the
pole t ¼ t exists. The Cauchy principal value is obtained
by considering a finite range of integration that is sym-
metric about the point of singularity and the region with
the singularity is excluded. While the interval of the
integral approaches 1, the length of the excluded inter-
val approaches zero. The Hilbert transform of g (t) at t ¼
0 can be expressed as HfgðtÞgjt¼0 ¼ � 1

p

R�1
�1

gðtÞ
t

dt. With

this information, the Fourier domain approximation of
the BS shift becomes the following:

fBS � fFD ¼ �
Z 1
�1

jV1ðf Þj2

4pf
df ¼

HfjV1ðf 0Þj2gjf 0¼0

4
[15]

To find the peak of the B1 field from the phase in the
vRFðtÞ >> jv1ðtÞj region, Eq. [15] is changed to the fol-
lowing equation:

B1peak �
1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fFD

HfjVnormðf 0Þj2gjf 0¼0

s
[16]

where V1ðf Þ ¼ gB1peakVnormðf Þ.
As an example, Eq. 15 is analytically solved for a hard

pulse with a pulse duration (T) and constant offset fre-
quency (vRF) in vRFðtÞ >> jv1ðtÞj. The resultant expres-
sion is as follows:

fFD ¼
ðgB1peakÞ2T

2ðvRFÞ
1� sinc

vRF

p
T

� �h i
: [17]

Analysis of this new approximated frequency domain
BS relation (Eq. [15]) for the hard, Fermi, and SLR pulse
shapes and a comparison of the results with (i) the solu-
tion of the time domain approximated relation (Eq. [1]),
(ii) the results of the Bloch simulations, and (iii) the
results of the experiments are given in the Results
section.

METHODS

To investigate the parameters that affect the BS shift-
based B1 mapping method and to verify Eq. [15], which
is described in the theory section, Bloch simulations and
MR experiments are performed for different pulse
shapes. For the BS B1 mapping method, properly choos-
ing the off-resonance RF pulse shape is critical because
this affects the phase value, the minimum offset fre-
quency that can be used, and the minimum undesired
magnetization tilting effect. In (1), the hard, Fermi, adia-
batic hyperbolic secant, and the adiabatic tanh/tan
pulses were compared in terms of their frequency range
that contains 99% of spin excitation and the constant,
KBS, describing the phase shift. As a result, the Fermi
pulse was chosen for the experiments. In our experi-
ments, however, only the hard, Fermi, and SLR pulse
shapes are used. The envelope of the Fermi pulse is
defined by the expression 1

1þeðjðtÞj�t0 Þ=a, where the parame-
ters t0 and a are defined as T ¼ 2t0 þ 13:81a and
t0 ¼ 10a, and T is the pulse duration. The SLR pulse is
designed with a 0.5% passband ripple, 1% reject ripple,
and 0.3 kHz bandwidth using the VESPA-RFPulse tool
(12). In Figure 1, we present the pulse shapes and their
frequency domain patterns. The pulse magnitudes are
normalized in such a way that the same phase values
can be obtained for an 8-ms pulse duration and a 4-kHz
offset frequency.

The experiments were performed in a 3T scanner
(MAGNETOM Trio a Tim System, Siemens Healthcare,
Erlangen, Germany). During the experiments, a FLASH
sequence that was modified by adding an off-resonance

FIG. 1. a: Pulse shapes used in the analysis. b: Fourier transforms of each pulse with a 4-kHz offset frequency and an 8-ms pulse
duration.

Fourier Domain Expression for Bloch–Siegert Shift 119



pulse after the excitation RF was used. The excitation RF
was a sinc pulse with a 1-ms duration. Crusher gradients
with a 1-ms duration in the slice selection direction
were added to the sequence before and after the off-
resonance pulse (6), and the phase encoding gradient
was applied before the off-resonance RF pulse to avoid
encoding the undesired off-slice spins that were excited
by the off-resonance RF pulse. Figure 2 shows the modi-
fied sequence. In each experiment, two phase images
were acquired using a BS pulse with positive and nega-
tive offset frequencies, and the phase shifts were calcu-
lated by taking the difference between these two phase
images. For each experiment, the imaging parameters
were set to 150-ms TR, 5-mm slice thickness, 256� 256
in-plane resolution, and 200-mm field of view. The jBþ1 j
value, which is calculated by Eq. [1] using the phase
shift obtained with a Fermi pulse with an 8-ms pulse
duration and a 4-kHz offset-frequency for a given RF
voltage, is used to establish the calibration factor
between the peak jBþ1 j and the applied RF voltage level.
In the experiments, a cylindrical 1900 mL Siemens phan-
tom with a 10-cm diameter (3.75% NISO4 � 6H2O þ 5%
NaCl) was used and for the RF transmission and recep-
tion, a transmit/receive rectangular coil with 10� 23 cm
dimension and tuned by eight capacitors was used,
unless otherwise indicated. Note that the flip angle is
space dependent due to the usage of the surface coil.
Therefore, for each experiment, the data were collected
from the same region with a maximum and constant Bþ1
field distribution.

For the simulations, the Bloch equations were solved
numerically in MATLAB (Mathworks, Natick, MA) using
rotation matrices in an v0 rotation frame. The Mx, My,
and Mz magnetization components were described by 10
�10 matrices with the elements on the x-y plane, and it
was assumed that the elements of the matrices were
located at a distance of 1:56 mm from each other on the
x-y plane. For initialization, the Mz magnetization com-
ponents were taken as one, and the Mx and My compo-
nents were zero. Crusher gradients were also added to
the simulations.

During the experiments and the simulations, when an
extreme phase value, p or �p, was reached, the 2p dis-
continuity of the extracted phase appeared. To address

this phase wrapping problem in the one-dimensional
case, the “unwrap” function of MATLAB was used by
assuming phase continuity, and in the two-dimensional
case (for MR phase images), Goldstein’s branch cut
method was used (13). To correct for the effect of the B0

offset frequency in the simulations and calculations,
especially for small offset frequencies (i.e., 100 Hz), B0

maps were obtained using two gradient echo images
with different TEs (i.e., DTE ¼ 1 ms), whereas the other
imaging parameters were kept constant (i.e., 100 ms TR,
5 mm slice thickness, 256� 256 in-plane resolution, and
200 mm field of view).

Effect of the Pulse Duration

While using experiments and simulations to investigate
the effect of the pulse duration for the hard and Fermi
pulse shapes, the pulse duration was varied between 150
ms and 2 ms with 50 ms steps, and the SLR pulse shape
duration was varied between 300 ms and 2 ms with 50
ms steps. The TE values are set according to the BS pulse
from 6:5 to 8:5 ms. The experiments were repeated
seven times for each pulse and pulse duration. The pulse
duration versus phase plots were computed with the
mean values, and the standard deviations computed
across the seven repeats. For each experiment, the offset
frequency was set to 2 kHz. To generate a similar range
of phase shifts for the hard, Fermi, and SLR pulse
shapes, the applied RF voltage were adjusted and the
peak jBþ1 j values were estimated to be 12:6 mT for the
hard pulse, 16:2 mT for the Fermi pulse, and 21:1 mT
for the SLR pulse, where ðv1=vRFÞ � 0:5.

To visualize the effect of the pulse duration for a spe-
cific case, a 16-cm diameter cylindrical phantom was
prepared. Four small cylinders with 3.5-mm diameter
were placed inside the cylindrical phantom. The small
cylinders were filled with oil, and the outsides of the
small cylinders were filled with water mixed with 0.2%
CuSO4. During these experiments, a body coil was used
for transmission and a 12-channel Siemens head coil
was used for reception. As a BS pulse, a Fermi pulse
with 0.6-ms pulse duration and 2-kHz offset frequency
was used. The imaging parameters were set to 150-ms
TR, 5-mm slice thickness, 256� 256 in-plane resolution,
and 200-mm field of view, 60

�
flip angle, 7-ms TE.

Effect of the Off-Resonance Frequency

In the BS shift-based B1 mapping technique, the phase
shift is inversely proportional to vRF, as indicated in Eq.
[1]. To obtain a more accurate jBþ1 j estimate, one may
prefer to decrease vRF. The maximum jBþ1 j value that can
be calculated accurately is then limited by the require-
ment vRF >> jv1ðtÞj. To understand the relation between
the phase and the off-resonance frequency and to com-
pare the results of frequency domain approximation (Eq.
[15]) and time domain approximation (Eq. [1]), the
results of the simulations and experiments for different
offset frequencies were investigated. For this analysis,
hard, Fermi, and SLR pulse shapes with 8-ms pulse
durations were used. The TE value was set to 14:5 ms in
these experiments. According to the reference, jBþ1 j value
obtained with a Fermi pulse with an 8-ms pulse duration

FIG. 2. Pulse sequence used in the experiments. Crusher gra-

dients (encircled by a dotted line) are used to reduce the effect of
the on-resonance excitation by the BS pulse.
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and a 4-kHz offset-frequency (note that the imaging
parameters were set to 150-ms TR, 14.5-ms TE, 5-mm
slice thickness, 256� 256 in-plane resolution, and 200-
mm field of view) and using the linear relation between
the induced B1 field and the applied voltage, the magni-
tudes of the B1 fields were acquired and the phase shifts
obtained at the same points on the phase image were
noted for each applied voltage. This experiment was
repeated for offset frequencies of 100 Hz, 1 and 4 kHz.
The experiments were repeated five times for each pulse
and offset frequency. The Bþ1 versus phase plots were
computed with the mean values, and the standard devia-
tions computed across the five repeats.

Before each experiment, the B0 offset frequency was
minimized using manual shimming. Note that the meas-
ured B0 offset frequencies after the shimming were taken
into account for both the simulations and the jBþ1 j value
calculations with Eqs. [1] and [3].

RESULTS

Effect of the Pulse Duration

In Figure 3, we present a comparison of the phase shifts
obtained by simulations, by MR experiments, by apply-
ing Eq. [1], and by applying Eq. [15] for different pulse
durations and for the hard, Fermi, and SLR pulse shapes
with a 2-kHz offset frequency. Note that the peak jBþ1 j
values were estimated to be 12:6 mT for the hard pulse,
16:2 mT for the Fermi pulse, and 21:1 mT for the SLR
pulse, where ðv1=vRFÞ � 0:5. The figure shows that the
results of the experiments follow the results of the Bloch
simulations. Furthermore, the phase shifts obtained by
Eq. [15] and those obtained by the Bloch simulations
exhibit a similar behavior in terms of their dependence
on the pulse duration. However, there is an appreciable
difference between the results of Eq. [1] and the results
of the simulations. This difference is more significant for
the Fermi and SLR pulses than for the hard pulse. To
compare the results quantitatively, the absolute maxi-
mum phase differences of the closed form expressions
(fTD and fFD) relative to the simulation and experimen-
tal results have been calculated. The absolute maximum
phase differences between fFD and the Bloch simula-
tions is less than 1� for all pulse shapes. However, for
the hard, Fermi, and SLR pulse shapes, the absolute
maximum phase differences between fTD and the Bloch
simulations are 2.5�, 4�, and 5� at 0.6-ms pulse duration

corresponding to 20, 24, and 25% errors, respectively.
Note that the absolute maximum phase differences
between fTD and the experiments are approximately 6�

at the 0.6-ms pulse duration for the Fermi and SLR pulse
shapes.

In Figure 4, the jB1j maps obtained for a Fermi pulse
with an 8-ms pulse duration, 4-kHz offset frequency and
0.6-ms pulse duration 2-kHz offset frequency, the B0

map, and the difference between the jB1j maps obtained
with the time domain approximation and frequency
domain approximation are shown. To obtain each jB1j
map, the B0 map given in Figure 4d was taken into
account. Figure 4a was taken as a reference jB1j map
(Note that for a Fermi pulse with an 8-ms pulse duration
and 4-kHz offset frequency, both the time domain
approximation and the frequency domain approximation
gave the same jB1j map). To obtain the jB1j maps given
in Figure 4b and c, a Fermi pulse with a 0.6-ms pulse
duration and 2-kHz offset frequency was used. Figure 4b
was obtained using the time domain approximation and
Figure 4c was obtained using the frequency domain
approximation. It is observed that for the same phase
shift, the calculated jB1j value is much higher than the
expected value when the time domain approximation
was used. Figure 4e and f also show the difference
between the reference jB1j map and the jB1j maps
obtained with the time domain approximation and the
frequency domain approximation, respectively.

Effect of the Off-Resonance Frequency

In Figure 5, we present a comparison of the phase shifts
obtained through Bloch simulations, those observed in the
experiments, those obtained by Eq. [1], and those obtained
by Eq. [15] for different B1 magnitudes and offset frequen-
cies. From the applied voltages, the excitation RF peak jBþ1
j is estimated to be 29 mT. All results match very closely
at 1 and 4 kHz frequencies. However, when the offset fre-
quency is 100 Hz, the results of Eq. [1] start to deviate from
the results of the Bloch equations and from the results of
experiments, whereas Eq. [15] gives closer results. At low
offset frequencies, precise knowledge of the B0 field and
therefore, the B0 frequency offset is critically important. In
these experiments, the B0 offset frequency was measured
to be 25 Hz, and this value was taken into account during
the simulations and the calculations.

With the data shown in Figure 5, the percent errors
(i.e., jfn1 � fn2j=ðfn1Þ � 100) between the results of the

FIG. 3. Phase difference for different pulse durations for (a) Hard, (b) Fermi, and (c) SLR pulses with a 2-kHz offset frequency.
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FIG. 4. jB1j map (in terms of T) of the phantom obtained for 60
�

flip angle (a) with a Fermi pulse (8-ms pulse duration, 4-kHz offset fre-
quency) and using the fTD expression, (b) with a Fermi pulse (0.6-ms pulse duration, 2-kHz offset frequency) and using the fTD expres-
sion, (c) with a Fermi pulse (0.6-ms pulse duration, 2-kHz offset frequency) and using the fFD expression. d: B0 map (in terms of

degree) obtained with two phase images of gradient echo sequences with TE ¼ 5 ms and TE ¼ 6 ms, (e) Difference (in terms of %) of
the jB1j maps obtained in (a) and (b), (f) Difference (in terms of %) of the jB1j maps obtained in (a) and (c).

FIG. 5. Relation of the phase to the magnitude of B1 for (a) Hard, (b) Fermi, and (c) SLR pulses with a 100-Hz offset frequency and 8-

ms pulse duration. Relation of the phase to the magnitude of B1 for (d) Hard, (e) Fermi, and (f) SLR pulses with 1 and 4 kHz offset fre-
quencies and 8-ms pulse duration.
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simulations and the results of Eq. [1] and also between
the simulations and the results of Eq. [15] were calcu-
lated to investigate the accuracy of the equations in rela-
tion to the approximation vRF >> v1. The error for each
pulse shape was calculated to be smaller than 3% at the
4 kHz offset frequency for B1 values up to 29 mT, for
which ðv1=vRFÞ � 0:3 applies. For the hard and Fermi
pulse shapes with a 1-kHz offset frequency, the error
was smaller than 5% when ðv1=vRFÞ � 0:5. For the SLR
pulse shape with a 1-kHz offset frequency, the error
between the results of the simulations and the results of
Eq. [1] was smaller than 5% when ðv1=vRFÞ � 0:55, and
the error between the results of the simulations and the
results of Eq. [15] was smaller than 5% when
ðv1=vRFÞ � 0:62. For all of the pulse shapes with a 100-
Hz offset frequency, the error between the results of the
simulations and the results of Eq. [1] was more than 8%,
but the error between the results of the simulations and
the results of Eq. [15] was less than 5% when
ðv1=vRFÞ � 0:55.

In Figure 6, we demonstrate the relation between vRF

and the phase for the hard, Fermi, and SLR pulse shapes

with an 8-ms pulse duration and 1 and 5 mT peak B1

magnitudes. When 1 mT is used as the peak B1 magni-

tude, v1=vRF � 0:85, and there is a limitation in reducing

the offset frequency to increase the phase. Figure 6a–c

shows that the inverse proportionality between the phase

and the offset frequency starts to become invalid after

some frequency. These figures also show that the results

of the frequency domain approximation (fFD) follow the

results of the simulations quite well for all the simulated

frequency points for the 1 mT peak B1 magnitude, even

though the time domain approximation (fTD) fails at

lower offset frequencies. In contrast, for the 5 mT peak

B1 magnitude and v1=vRF � 4:26, both the time domain

approximation and the frequency domain approximation

fail at lower offset frequencies.

DISCUSSION AND CONCLUSIONS

In this study, we have presented a new approximated
Fourier domain expression to increase the understand-
ability of the BS-based B1 mapping method. Using this
expression, jBþ1 j, values can be predicted from the
phase data using the Fourier transform of the BS RF
pulse.

When Plancherel’s theorem is used, the time domain
approximated expression can be written in a manner
similar to the frequency domain approximated expres-
sion. When the BS RF pulse has a narrow bandwidth, it
can easily be shown that the time domain and the fre-
quency domain approximated expressions are equivalent
to each other. Although the expressions are similar, they
are not identical. In fact, as shown with simulations, the
frequency domain representation is more accurate for BS
RF pulses with wide spectral content such as short RF
pulses. This finding is not surprising because the fre-
quency domain expression is formulated based on the
phase difference between the actual BS shift and its
time-domain expression.

The hard, Fermi, and SLR pulse shapes were used to
compare the results of the simulations and the results

FIG. 6. Relation of vRF to the phase shift for (a) Hard, (b) Fermi, and (c) SLR pulses with an 8-ms pulse duration and jBþ1 j ¼ 1 mT, (d)
Hard, (e) Fermi, and (f) SLR pulses with an 8-ms pulse duration and jBþ1 j ¼ 5 mT.
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obtained by the time domain approximation and the fre-
quency domain approximation. For each pulse shape,
different pulse durations and offset frequencies were
used to analyze the effect of each parameter and to verify
the frequency domain approximation.

Considering the TE value limitation, the pulse dura-
tion was decreased for each pulse shape. When the fre-
quency domain approximation is used, it is observed
that the frequency domain relation of the BS pulse shape
also affects the relation between the pulse duration and
the phase. In contrast, for the time-domain approxima-
tion, the duration of the BS pulse and the phase shift
appear to have a simple linear relation for a constant off-
set frequency and a constant B1 amplitude.

Note that the decrease in the signal level when the off-
set frequency is decreased should also be considered. It
can be argued that use of low offset frequencies may be
counterproductive because the MR signal level may
decrease due to on-resonance effects. In our experiments,
when the BS pulses with 100-Hz offset frequency were
used, the signal level decreased by up to 50%, whereas j
Bþ1 j increased from 0:5 to 5 mT. In contrast, in the jB1j
range for which v1=vRF � 0:5, there was a 10% decrease
in the signal level. Therefore, when the specific absorp-
tion rate limitation becomes the principal concern, the
low offset frequency can be decreased under the follow-
ing condition: v1=vRF � 0:5. Furthermore, in certain
cases such as when surface coils are used, the B1 profile
has different B1 values ranging from low to high; to
obtain the correct image profiles, small jB1j values also
need to be measured. When using BS pulses with high
offset frequencies, the phase-shift for these low-level jB1j
values will be noisy. For the correct calculation of these
low-level values, it is beneficial to use BS pulses with
low offset frequencies.

During the simulations and experiments crusher gra-
dients were also used, as suggested in (6), and their
effects were monitored. Our observations indicate that
crusher gradients must be used to minimize the echo
originating from on-resonance excitation by the off-
resonance pulse, especially when low offset frequencies
and small pulse durations are used.

In conclusion, simulations and experiments show that
the proposed frequency domain approximated expres-
sion works well even for short pulse durations and low
offset frequencies when the condition v1=vRF � 0:5 is
valid. Moreover, because the frequency domain expres-
sion supplies more information about the relation
between the pulse shape and the phase shift, this expres-
sion can also be used to design new BS pulse shapes.

APPENDIX A

Eq. [7] is rewritten as follows:

d

dt
MyðtÞ ¼ v1xðtÞMzðtÞ þ vTDM0; [18]

d

dt
MzðtÞ ¼ �v1xðtÞMyðtÞ þ v1yðtÞM0: [19]

Note that v1x ¼ gBe
1ðtÞcosð

R T
0 ðvRFðtÞ � vTDÞdt þ uþ u0Þ

and v1y ¼ gBe
1ðtÞsinð

R T
0 ðvRFðtÞ � vTDÞdt þ uþ u0Þ. These

differential equations are written as a single differential
equation in the form of Myz where Myz ¼ My þ iMz

d

dt
MyzðtÞ ¼ �iv1xðtÞMyzðtÞ þ ðvTD þ iv1yðtÞÞM0: [20]

The solution to this first order differential equation
can be written as:

MyzðtÞ ¼ f ðtÞexp �i

Z t

0

v1xðsÞds

� �
: [21]

To find f (t), this solution is plugged into Eq. [20]. As a
result, the solution for Myz at time T is found to be the
following:

MyzðTÞ ¼ M0

Z T

0

ðvTD þ iv1yðtÞÞexp �i

Z T

t

v1xðsÞds

� �
dt:

[22]

APPENDIX B

To find a simplified solution for the fBS given in Eq. [13],
the limits of the integration are changed by adding a unit
step function [u(t)] as follows:

fBS � �
Z T

0

Z T

0

v1yðtÞv1xðsÞuðs� tÞdsdt: [23]

v1xðtÞ and v1yðtÞ are expressed in terms of v1ðtÞ and v�1ðtÞ,
where v�1ðtÞ is the complex conjugate of v1ðtÞ, and Eq. [23] is
rewritten in terms of v1ðtÞ and v1ðtÞ� as follows:

fBS � �
Z T

0

Z T

0

v1ðtÞ � v�1ðtÞ
2i

v1ðsÞ þ v�1ðsÞ
2

uðs� tÞdsdt:

[24]

To obtain a Fourier relation instead of an v1ðtÞ term,
we used the Fourier relation

R1
�1V1ðftÞexpði2pfttÞdft as

follows:

fBS � �
Z T

0

Z T

0

Z 1
�1

Z 1
�1

V1ðftÞ �V�1ð�ftÞ
2i

ei2pft t

V1ðfsÞ þV�1ð�fsÞ
2

ei2pfssuðs� tÞdfsdftdsdt: [25]

The variables t and s are replaced with the new varia-
bles q and r, where s ¼ ðr þ qÞ=

ffiffiffi
2
p

and t ¼ ðq� rÞ=
ffiffiffi
2
p

. By
changing the order of the integrals and using the relation:

Z 1
�1

uð
ffiffiffi
2
p

rÞeði2pfr rÞdr ¼ � 1

2
dðfrÞ þ

1

i2pfr

� �
[26]

the final expression becomes the following:

fBS � �
Z 1
�1

jV1ðf Þj2

4pf
df �V2

1ð0Þ �V�21 ð0Þ
8i

: [27]

Because v1ðtÞ is defined in a BSTD rotating frame,
(v0 þ vTD rotating frame) such as:
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v1ðtÞ ¼ gBe
1ðtÞexp i

Z t

0

ðvRFðtÞ � vTDÞdt

� �� �
expðiðuþ u0ÞÞ;

[28]

the term eiðuþu0Þ stands out in the V1ðf Þ term. The second
part of Eq. [27] also includes these phase terms. In con-
trast, because the phase difference of two acquisitions
taken with positive and negative offset frequencies is
used and the term eiðuþu0Þ does not change, we can ignore
this part. Thus, the expression simplifies to the follow-
ing relation:

fBS � �
Z 1
�1

jV1ðf Þj2

4pf
df : [29]
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