
Approximate Halfspace Range Counting∗

Boris Aronov† Micha Sharir‡

September 9, 2009

Abstract

We present a simple scheme extending the shallow partitioning data structures of Matoušek,
that supports efficient approximate halfspace range-counting queries in Rd with relative error ε.
Specifically, the problem is, given a set P of n points in Rd, to preprocess them into a data
structure that returns, for a query halfspace h, a number t so that (1−ε)|h∩P | ≤ t ≤ (1+ε)|h∩P |.
One of our data structures requires linear storage and O(n1+δ) preprocessing time, for any δ > 0,
and answers a query in time O

(
ε−γn1−1/bd/2c2b log

∗ n
)
, for any γ > 2/bd/2c; the choice of γ

and δ affects b and the implied constants. Several variants and extensions are also discussed.
As presented, the construction of the structure is mostly deterministic, except for one critical
randomized step, and so are the query, storage, and preprocessing costs. The quality of
approximation, for every query, is guaranteed with high probability. The construction can also
be fully derandomized, at the expense of increasing preprocessing time.

∗Work on this paper has been supported by a joint grant No. 2006/194 from the U.S.-Israeli Binational Science
Foundation. Work by Boris Aronov has also been supported by NSF ITR Grant CCR-00-81964, NSF Grant CCF-
08-30691, and NSA MSP Grant H98230-06-1-0016. Work by Micha Sharir has also been supported by NSF Grants
CCF-05-14079 and CCF-08-30272, by Grants 155/05 and 338/09 from the Israel Science Fund, and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University. A preliminary version of this work appeared
as part of B. Aronov, S. Har-Peled, and M. Sharir, “On approximate halfspace range counting and relative epsilon-
approximations,” Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, pp. 327–336,
Gyeongju, South Korea, 2007.
†Department of Computer Science and Engineering, Polytechnic Institute of NYU, Brooklyn, NY 11201-3840, USA;

http://cis.poly.edu/˜aronov.
‡School of Computer Science, Tel Aviv University, Tel Aviv 69978 Israel and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA; michas@post.tau.ac.il.

1 Introduction

The problem studied in this paper is approximate range counting. In abstract terms, we are given
a range space (X,R), where X is a set of n objects and R is a collection of subsets of X, called
ranges. In a typical geometric setting, X is a finite subset of some infinite ground set U (e.g., Rd),
and R = {R∩X | R ∈ RU}, where RU is a collection of subsets (ranges) of U of some simple shape
(such as halfspaces). To simplify the notation, we do not distinguish between R and RU . The goal
is to preprocess X into a data structure that supports efficient queries of the form: Given R ∈ RU ,
compute a number t such that

(1− ε)|X ∩R| ≤ t ≤ (1 + ε)|X ∩R|.

Here the relative error ε, 0 < ε < 1, is either fixed and available during preprocessing, or not known
in advance, but specified as part of the query. We refer to such an estimate t as an ε-approximate
count of X ∩R.

Notice that the problem becomes more challenging as |X ∩R| decreases. At the extreme, when
|X ∩ R| < 1/ε, we must produce the count exactly. In particular, we need to be able to detect
without any error the empty ranges, i.e., those satisfying X ∩ R = ∅. Thus approximate range
counting, in the above sense, is at least as hard as range emptiness detection.

We make the standard assumption that the range space (X,R) (or, in fact, (U,RU)) has finite
(i.e., independent of n) VC-dimension δ which is indeed the case in many geometric applications;
see [10,19,25,27] for definitions and more details.

Epsilon-approximations. A standard and general technique for tackling the approximate range
counting problem is to use ε-approximations. An (absolute-error) ε-approximation for (X,R) is a
subset B ⊂ X such that, for each R ∈ R,∣∣∣∣ |B ∩R||B|

− |X ∩R|
|X|

∣∣∣∣ < ε. (1)

As shown by Vapnik and Chervonenkis [31] (see also [10, 25, 27]), there always exist absolute-
error ε-approximations of size cδ

ε2
log δ

ε , where c is an absolute constant. As a matter of fact, any
random sample of these many elements of X is an ε-approximation with constant probability. More
precisely, such a sample of size cδ

ε2
log δ

ε + c
ε2

log 1
q , for a sufficiently large absolute constant c, is an

ε-approximation with probability at least 1− q. See [10,11,19,26] for more details. This bound was
later improved to cδ

ε2
+ c

ε2
log 1

q , by Talagrand [30] and by Li et al. [22]; see also [16].

Absolute-error ε-approximations are not exactly what is needed for approximate range counting.
That is, suppose we are given such an approximation B. For a range R ∈ R, we can compute (say,
by brute force) |B ∩ R|, and return |B ∩ R| · |X|/|B| as an estimate of |X ∩ R|. By (1), we have∣∣|B ∩R| · |X|/|B| − |X ∩R|∣∣ < ε|X|, but we want the error to be at most ε|X ∩R|. If |X ∩R| is
large, say, at least |X|/2, we can replace ε by ε/2, and guarantee the desired relative error. But if
|X ∩R| is small, the error is much larger than what we want.

For this reason, we would like to construct a relative-error ε-approximation set for (X,R), which
should be a subset A ⊂ X satisfying, for each R ∈ R,

(1− ε) |X ∩R|
|X|

≤ |A ∩R|
|A|

≤ (1 + ε)
|X ∩R|
|X|

. (2)

1

However, this “definition” suffers from the same syndrome as the definition of approximate range
counting; that is, as |X ∩R| shrinks, the absolute precision of the approximation has to increase. At
the extreme, when A ∩R = ∅, X ∩R must also be empty (assuming ε < 1); in general, we cannot
guarantee this property, unless we take A = X, which defeats the whole purpose of using small
ε-approximations to speed up approximate counting.

For this reason, we refine the definition as follows: a relative-error (p, ε)-approximation (or
a relative (p, ε)-approximation, for short) is a subset A ⊂ X that satisfies (2) for each R ∈ R
with |R| ≥ pn, where 0 < p < 1 is another fixed parameter. As noted by Har-Peled [16] (see
also [17]), it follows from the result of Li et al. [22] (see also [14,18,28]) that there exist subsets with
this property of size cδ

ε2p
log 1

p , where c is an absolute constant. As a matter of fact, any random

sample of cδ
ε2p

(log 1
p + log 1

q) elements of X is a relative (p, ε)-approximation with probability at

least 1 − q [16, 22]. The construction can also be derandomized, using the recent technique of
Har-Peled [16]; see Section 3.1 for more details.

To appreciate the above bound on the size of relative (p, ε)-approximations, it is instructive to
observe that, for a given parameter p, any absolute-error (εp)-approximation A will approximate
“large” ranges (of size at least pn) to within relative error ε, as is easily checked, so it is a relative
(p, ε)-approximation. However, the Vapnik-Chervonenkis bound on the size of A in this case, namely,
cδ
ε2p2

log δ
εp , or even the improved bound of Li et al. and others [16, 22, 30], namely cδ

ε2p2
, is larger by

roughly a factor of 1/p than the bound of [22] stated above.

Another related notion, introduced by Brönnimann et al. [9], is that of sensitive ε-approximation.
Specifically, given a range space (X,R) of finite VC-dimension δ, a subset A ⊆ X is a sensitive
ε-approximation if for every range R ∈ R we have∣∣∣∣ |X ∩R||X|

− |A ∩R|
|A|

∣∣∣∣ ≤ ε

2

((
|X ∩R|
|X|

)1/2

+ ε

)
.

As shown in [16, Lemma 6.2.8] and [17, Theorem 2.12], (i) a sensitive ε
√
p-approximation is also a

relative (p, ε)-approximation, and (ii) a random sample of O
(

δ
(ε′)2 log 1

ε′

)
elements of X is a sensitive

ε′-approximation with constant positive probability. Combining (i) and (ii) gives a roundabout way
of obtaining relative (p, ε)-approximations with almost the same bound on their size as in [16,17]
(with log 1

p replaced by log 1
εp). The analysis in [9] also gives an efficient (albeit complicated)

deterministic algorithm for computing sensitive approximations.

The existence of a relative (p, ε)-approximation A provides a simple mechanism for approximate
range counting, in the manner outlined above; that is, for a range R, count A ∩ R exactly, say,
by brute force in O(|A|) time, and output |A ∩ R| · |X|/|A| as an ε-approximate count of X ∩ R.
However, this will work only for ranges of size at least pn. The main contribution of this paper
is to show that an appropriate incorporation of relative (p, ε)-approximations into standard range
searching data structures yields a procedure for approximate range counting that works, quite
efficiently, for ranges of any size.

Exact range counting. The motivation for seeking approximate range counting techniques is
that exact range counting is (more) expensive. For instance, consider the classical halfspace range
counting problem [24], which is the exact analog of the main specific problem studied in this paper.
Here, for a point set of size n in Rd, for d > 3, the best known algorithm for exact range counting

2

Problem Storage Preprocessing Query time Source

Reporting n log logn n log n n1−1/bd/2c + k [23]

Emptiness n n1+δ n1−1/bd/2c2O(log∗ n) [23]

Approx. ε−2n log n ε−2n1+δ ε−2n1−1/bd/2c2c
′ log∗ n log n [4]

counting n n1+δ / n log n ε−γn1−1/bd/2c logβ n Theorem 3.1

n n1+δ ε−γn1−1/bd/2c2b log
∗ n Theorem 3.2

Table 1: Halfspace range searching results for d > 3; big-Oh symbol omitted; k is the number of
points reported in the reporting query; δ > 0 is an arbitrary but fixed constant; γ is an arbitrary
constant in the range (2/bd/2c, 2); β and b depend on d and γ. We include only data structures
with near-linear space and preprocessing costs.

with near-linear storage guarantees O(n1−1/d) query time [24]. In contrast, our results (reviewed
in detail below) reduces the query cost to roughly O(n1−1/bd/2c) (ignoring the dependence on ε),
about the same cost as that of answering halfspace range emptiness queries [23]. Recall that we
cannot do better than that, since halfspace range emptiness is a special case of our problem.

For completeness, we recall the results of [23] for halfspace range reporting and emptiness queries,
for a set P of n points in Rd, for d ≥ 4 (refer also to Table 1):

Halfspace range reporting. P can be preprocessed in deterministic O(n log n) time, into a
data structure of size O(n log log n), so that a halfspace range reporting query can be answered in
time O(n1−1/bd/2c logc n+ k), where k is the output size, and c is a parameter, depending on the
dimension.

Halfspace range emptiness detection. P can be preprocessed in deterministic O(n1+δ) time,
for any δ > 0, into a data structure of linear size, so that a halfspace range emptiness query can be
answered in time O(n1−1/bd/2c2c

′ log∗ n), where c′ is a parameter, depending on the dimension.

Note that the best known lower bounds on the exact halfspace range searching (counting,
reporting, or emptiness), as summarized in [2], do not match the best known algorithms, as listed
above, so it is better to compare our approximation results to those of existing algorithms rather
than to lower bounds.

Other notions of approximate range searching. In our approach, the goal is to approximate
the count of points in a range (halfspace, that is) up to some relative error, but we are not allowed
to approximate the range itself. In some recent work by Arya et al. [6–8], da Fonseca [15], and
Chazelle et al. [12], approximate range counting is interpreted differently, in that one seeks an exact
count in a range that closely approximates the input range, according to some geometric error
measure. The more recent studies also address the case where the ranges to be approximated are
halfspaces.

Alternative recent solutions. Two recent papers address the approximate range counting
problem, and achieve improvements similar to ours. The first result is due to Aronov and Har-
Peled [4], who reduce this problem to range emptiness, by performing binary search on the size |X∩R|
for the given range R, until the desired relative error is attained. Each decision step in the search is
made by accessing O

(
1
ε2

log n
)

different range emptiness structures on certain random samples of X.
This technique is a general reduction from approximate range searching to range emptiness testing.

3

In the revised version [4], the algorithm answers a query in time O
(

1
ε2

log n
)
Qempty(n), where

Qempty(n) is the time to answer a range emptiness query. The storage is O
(

1
ε2

log n
)
Sempty(n),

and the preprocessing is O
(

1
ε2

log n
)
Tempty(n), where Sempty(n) and Tempty(n) are the storage

requirements and preprocessing time for the range emptiness data structure, respectively. All
bounds apply with high probability. See [4, Theorem 5.6] for details.

Matoušek’s data structure [23] mentioned above, combined with the technique of [4] yields (see
also Table 1) Q(n) = O(ε−2n1−1/bd/2c2c

′ log∗ n log n), S(n) = O(ε−2n log n), and T (n) = O(ε−2n1+δ),
for any δ > 0.

Another approach is presented by Kaplan and Sharir [21], who exploit a general technique of
Cohen [13] for estimating the number of data objects in a range R of a larger set X. In this approach,
one assigns to each data object of X, independently, a random weight, drawn from an exponential
distribution with density e−x, sorts the objects by their weights into a random permutation, and
then finds the minimum rank in that permutation of the objects in the query range R. As in the
technique of Aronov and Har-Peled, one then repeats this experiment O(1

ε2
log n) times,1 computes

the average µ of the weights of the minimum elements, and approximates |R| by 1/µ.

To apply this machinery to approximate halfspace range counting, one needs a data structure
that preprocesses the given set X of points, and a given random permutation thereof, into a data
structure that can answer halfspace-minimum range queries efficiently: Given a query halfspace h,
find the point of X of minimum rank among those contained in h. Kaplan and Sharir present such
structures for halfspaces in R3 (a revised version [20] extends it to any dimension). The solutions
of [20, 21] cater to the situation where we want fast (say, logarithmic or polylogarithmic) query
time, allowing the storage and preprocessing costs to grow. Specifically, their algorithm requires
O(nbd/2c log2−bd/2c) storage and O(nbd/2c log2−bd/2c) expected preprocessing time, and answers an
approximate halfspace counting query in O(ε−2 log2 n) expected time.

Finally, we mention the recent works of Afshani and Chan [1], and of Har-Peled and Sharir [17],
which give efficient algorithms for approximate halfspace range counting in two and three dimensions.

Our results. In this paper, we present an alternative, comparably efficient, and somewhat
improved solution for the approximate range counting problem, focusing mainly on halfspace ranges
in Rd, d ≥ 4. Whereas the algorithm of Aronov and Har-Peled uses a range emptiness procedure as
a black box, we examine the inner workings of such a procedure (or, more precisely, of a shallow
range reporting procedure, which has comparable performance), and turn it into an approximate
counting procedure. Informally, the range emptiness/reporting data structures of Matoušek [23]
consist of a partition tree, whose nodes store certain canonical subsets of X, and which has the
property that a query with a range that is shallow at a node v (i.e., one that contains only a few
points of the subset stored at v; see below for a more precise definition) visits only a small number
of children of v. When the procedure realizes that the query visits too many children, it stops and
reports that the range cannot be shallow. For emptiness queries, this immediately implies that the
range is not empty. For reporting queries, one can then afford to perform the reporting by brute
force, knowing that the output size is large enough and thus commensurable with the size of the
subset of X stored at v.

In contrast, our solution exploits the fact that the range is deep (that is, not shallow), to invoke
an auxiliary mechanism that approximates its size. Our main auxiliary mechanism is to use a

1In both techniques, this is a consequence of using Chernoff bounds to guarantee high probability of success.

4

relative approximation, as discussed earlier. In this manner, we derive two variants of our general
approach. The first algorithm uses O(n) storage, O(n1+δ) preprocessing time, for any δ > 0 (which
reduces to O(n log n) for certain choices of parameters), and answers an approximate halfspace
range counting query in Rd in time O

(
ε−γn1−1/bd/2c polylog n

)
, where γ can be chosen arbitrarily

from the interval (2/bd/2c, 2); the choice of γ and δ affects the implied constants and the power of
the logarithm in the query time. An important feature of this implementation is that the storage
and preprocessing costs are independent of ε, and the dependence of the query time on ε is improved
over those in the previous approaches.

A slight potential weakness of this solution is that the query time bound, ignoring its dependence
on ε, involves a polylogarithmic factor and is thus comparable with the overhead term in the
bound for Matoušek’s halfspace range reporting query algorithm [23], whereas the query time in
the solution of Aronov and Har-Peled [4] is expressed in terms of the cost of Matoušek’s halfspace
range emptiness query algorithm, which is O

(
n1−1/bd/2c · 2O(log∗ n)

)
[23]. See Table 1. On one hand,

this replaces the polylogarithmic factor in our time bound by the smaller factor 2O(log∗ n), but, on
the other hand, in the algorithm of [4] one has to multiply this bound by O

(
1
ε2

log n
)
, making the

dependence on ε worse.

Nevertheless, our second implementation demonstrates that the fine-tuning done in [23] to
achieve the improved bound for emptiness queries can also be carried out in our context, leading to
an algorithm that uses linear storage and O(n1+δ) preprocessing time, for any δ > 0, and answers a
query in time O

(
ε−γn1−1/bd/2c · 2O(log∗ n)

)
, where γ can be chosen anywhere in the same interval

as above. This bound compares favorably with the one in [4], both in terms of the dependence on
ε and the logarithmic or sublogarithmic factors. Moreover, the storage used by both solutions is
O(n), independent of ε, which is a significant improvement over the previous results.

The general technique that we propose is sufficiently modular, so as to support various extensions
and variants. One interesting variant is a data structure that answers efficiently halfspace range
minimum queries, with respect to a random permutation of the input set, of the sort that is needed
for the technique of [13,20,21] described above (see Section 3.5). Another variant is a data structure
where ε need not be pre-specified, and can be part of the query; in contrast, the “competing”
structures mentioned above have to be built with the prior knowledge of the value of ε. Another
recent application of our general approach was recently described by Sharir and Shaul [29].

The analysis of our implementations involves somewhat tedious calculations. In the hope of
making the paper more readable, we delegate these calculations to the appendix.

2 The General Technique

In this section we describe, in somewhat more detailed but still high-level terms, our general
technique. In the next section we present two concrete implementations of this machinery, resulting
in two algorithms with similar, albeit slightly different, performance bounds, as stated above. As
already mentioned, hereafter we focus on the case of halfspace ranges in Rd, d ≥ 4, rather than
more general range spaces. To conform with the notation in the existing range-searching literature,
we use henceforth P rather than X to denote the input point set.

A note on the randomized behavior of our algorithms. Before beginning the description
of our technique, it is important to clarify a critical issue concerning the randomization that we use.
The approach is essentially to construct a shallow partition tree on P , in the style of Matoušek [23]

5

(see below), and then attach to each node v of the tree a relative (pv, εv)-approximation of the set
Pv associated with v, for appropriate parameters pv, εv. Constructing these sets deterministically is
feasible, using the procedure in [9], but this construction is fairly complicated, and causes some
degradation in the preprocessing cost. We therefore prefer to construct these approximations as
random samples, of the appropriate size, from the respective sets Pv. Verifying that such a sample is
indeed a relative (pv, εv)-approximation is a non-trivial task which we do not know how to perform
efficiently. So we adopt an approach in which we just sample the subsets and trust each of them to
be an approximation of the right kind. While this will be the case on average, some of these samples
may fail to satisfy this property, and we cannot guarantee high probability for overall success (i.e.,
that all samples are approximations of the desired kind), unless we increase the sample sizes, again
causing some degradation in the algorithm performance.

Nevertheless, as we show later, in Section 3.3, things work well, with high probability, even in
our lax and “careless” approach. Specifically, as we will show, even though some of the samples
may not produce the desired level of accuracy, the excessive errors that they produce tend to cancel
each other, and result in an overall good accuracy, and this holds, with high probability, for every
query halfspace.

The details of this analysis are technical and somewhat involved, so we prefer to present the
algorithm under the assumption that all our samples are indeed relative approximations with the
desired parameters, and only later resolve the potential discrepancy between this ideal situation and
our actual implementation. Of course, this becomes a non-issue if one is willing to invest a bit more
in preprocessing, storage, and query costs, so as to ensure, either deterministically or with high
probability, that all the samples are indeed relative approximations with the correct parameters.

We now present the high-level version of our algorithm. We recall the following result of
Matoušek, where a t-shallow halfspace is one that contains fewer than t points of the set P .

Theorem 2.1 (Partition Theorem for Shallow Halfspaces [23]). For any positive integer parameter
r < n, there exists a partition of P into r/2 ≤ k ≤ r subsets P1, P2, . . . , Pk, where, for each i,
n/r ≤ |Pi| ≤ 2n/r, and Pi is enclosed in a simplex ∆i, such that any hyperplane that bounds
an (n/r)-shallow halfspace crosses at most µ(r) = O(r1−1/bd/2c) simplices ∆i, in four and higher
dimensions, and at most µ(r) = O(log r) simplices, in the plane and in 3-space. Such a partition
can be constructed in time O(n1+δ), for any δ > 0. Moreover, there exists a constant ξ = ξ(d) > 0,
so that if r ≤ nξ, then the partition and the bounding simplices can be constructed in O(n log r)
time.

For a fixed set P and a choice of parameter r at every interior node (which may vary from node
to node), Theorem 2.1 induces, in a natural way, a tree T = T (P), called a shallow partition tree
of P , which is constructed as follows. Its root stores the entire P , and some bounding simplex ∆
of P . The root has k children, each storing one of the sets Pi and its bounding simplex ∆i. Then
the theorem is used recursively on each child, possibly with different values of r, to construct the
grandchildren of the root, and so on, stopping when we reach nodes whose associated sets have size
smaller than some specific threshold.

Denote by Pv the subset of P stored at a node v of T , and by rv the parameter r used when
applying Theorem 2.1 to Pv. Our proposed approximate range counting data structure is, effectively,
an augmented shallow partition tree. We store some additional information at each node v; in
the main implementations that we present, this is a relative (1/rv, ε/2)-approximation Av of Pv.

6

Querying with a halfspace h proceeds as follows: When visiting a node v, if the boundary ∂h of
h meets many (more than µ(rv)) simplices of the set Sv := {∆i} of the partition at v, or if it
fully contains one of these simplices, it cannot be (|Pv|/rv)-shallow with respect to Pv; that is,
|h ∩ Pv| ≥ |Pv|/rv. This makes it easier to answer an approximate range counting query for Pv, e.g.,
by counting h ∩ Av instead. Otherwise, we recursively obtain an ε-approximate count at all the
children of v whose simplex is crossed by ∂h, and return the sum of the answers, which is easily
seen to be an ε-approximate count of |h ∩ Pv|. See Algorithm 1 for the pseudocode.

Algorithm 1 Pseudocode of our main query algorithm

1: function ApxCount(halfspace h, node v of an augmented shallow partition tree, ε)
2: if v is a leaf node then return LeafNodeApxCount(h, v, ε).

. S = Sv is the set of simplices associated with children of v.

. r = rv is the partition parameter at v.
3: if ∂h crosses at most µ(r) simplices of S and no simplex is fully contained in h
4: then . Shallow halfspace, recurse.
5: answer ← 0.
6: for all children ξ of v whose bounding simplex is crossed by ∂h do
7: Add ApxCount(h, ξ, ε) to answer.

8: return answer.
9: else . Deep halfspace, answer locally.

10: return DeepApxCount(h, v, ε).

It remains to specify, for each node v, the parameter rv used at v, the threshold n0(ε) for the
size of Pv, below which v becomes a leaf, and three subroutines:

1. the implicit subroutine (that we call SearchSim(h, v)) used in lines 3 and 6 of the algorithm
to determine how many, and which, of the simplices of Sv are met by the hyperplane ∂h and
whether any of the simplices of Sv are contained in h,

2. procedure LeafNodeApxCount(h, v, ε) that directly estimates the count for h at a leaf v of
the tree, and

3. procedure DeepApxCount(h, v, ε) that estimates the count of a deep range h at an interior
node v, using the relative approximation set or any other appropriate auxiliary structure.

Let Qsim(k), Qleaf(n, ε), and Qdeep(n, ε) be upper bounds on the running times of these three
respective operations, where k (with r/2 ≤ k ≤ r) is the number of simplices to test against, n is
the size of the point set associated with the current node, and ε is the approximation parameter.
We obtain the following recurrences for the query time Q(n, ε), storage S(n, ε), and preprocessing
time T (n, ε) of our data structure. The parameter r = rv is the one used at the current node of
the tree; in our implementations it is a function of n (and possibly ε). For simplicity, we use k = r
in the recurrences, for the maximum possible number of children of a node (but our analysis also
applies to any valid value of k). We use Ssim, Tsim (Sleaf, Tleaf and Sdeep, Tdeep) to denote the storage
and preprocessing time required by SearchSim (LeafNodeApxCount and DeepApxCount,

7

respectively). Tpart is the time needed to construct the partition at v.

Q(n, ε) ≤

{
Qsim(r) + max{Qdeep(n, ε), µ(r)Q(2n/r, ε)}, if n > n0(ε),

Qleaf(n, ε), otherwise,
(3)

S(n, ε) ≤

{
Ssim(r) + Sdeep(n, ε) +

∑r
i=1 S(ni, ε), if n > n0(ε),

Sleaf(n, ε), otherwise,
(4)

and

T (n, ε) ≤

{
Tpart(n, r) + Tsim(r) + Tdeep(n, ε) +

∑r
i=1 T (ni, ε), if n > n0(ε),

Tleaf(n, ε), otherwise,
(5)

where ni ≤ 2n/r for each i, and
∑r

i=1 ni = n. Note that, since Tsim, Ssim, and Qsim are the respective
preprocessing time and storage of, and query time in, a set of O(r) simplices, they are functions of
r only.

3 Two Concrete Implementations

To recap, in order to obtain concrete implementations of the data structure, we have to supply
specific choices of the parameters rv and n0(ε), as well as of the three routines SearchSim,
LeafNodeApxCount, and DeepApxCount.

There are a number of ways to choose the parameters and to implement these procedures. We
focus on two of them; the first is simpler, more naive, and has slightly poorer performance, while
the second is more sophisticated with slightly better performance. Roughly speaking, the first
implementation has performance comparable with that of the halfspace range reporting procedure
of [23], whereas the second implementation has performance comparable with that of the halfspace
range emptiness procedure of [23].

3.1 First implementation

Recall that we are implementing approximate range counting queries for halfspaces in Rd, where
d > 3. For each node v, put nv := |Pv|. Here we choose rv := nα

′
v , for some 0 < α′ < α, whose

concrete choice will be discussed below; α := 1− 1/bd/2c denotes the exponent appearing in the
definition of µ(r) in Theorem 2.1. We store at v a relative (1/rv, ε/2)-approximation Av, of size
crv
ε2

log rv, for some constant c = c(d) > 0, which we obtain by taking a random sample of these
many points from Pv. As follows from [16,22], such a sample is a relative (1/rv, ε/2)-approximation
of the desired kind with probability at least 1− 1/rbv, where b = b(c) is a linearly increasing function
of c. In Section 3.3 we will see how to boost up the overall success probability, making the failure
probability polynomially small in n. For now, we simply assume that Av is indeed an approximation
of the required type and size.

In this implementation, we use brute force for two of the three subroutines. We implement
SearchSim by simply iterating over all simplices, and selecting those that ∂h crosses, stopping
after collecting more than µ(rv) of them, or after encountering a simplex that is fully contained
in h. The cost is O(rv) = O(nα

′
v). We implement LeafNodeApxCount by iterating over Pv and

counting h ∩ Pv explicitly, at the cost of O(nv).

8

We implement DeepApxCount recursively, by calling ApxCount itself, on an auxiliary data
structure constructed for Av as the input set, with error parameter ε/3. If we were to count h ∩Av
exactly, we would have returned |h ∩Av| · nv/|Av| as an (ε/2)-approximate count of h ∩ Pv. The
recursion, though, only returns a relative (ε/3)-approximation of that latter count, which is thus an
ε-approximation of the desired count,2 for ε < 1, as is easy to verify (cf. (2)).

In order for this implementation to work efficiently, we need to impose some restrictions on the
choice of parameters. Specifically, we first insist, for technical reasons that arise in the analysis of
the storage requirements (see the appendix), that

|Av| =
crv
ε2

log rv ≤
nv

k log3 log nv
,

for some constant k. Intuitively, this requires that the size of Av be small enough (albeit not
drastically smaller) compared to that of Pv. By the choice of rv, this is equivalent to n1−α

′
v ≥

kc
ε2

log nα
′
v log3 log nv, which holds if we choose nv ≥ (c

′

ε2
log 1

ε log3 log 1
ε)1/(1−α

′), for an appropriate
multiple c′ of c. We thus set

n0(ε) :=

(
c′

ε2
log

1

ε
log3 log

1

ε

)1/(1−α′)
. (6)

Our goal is to make the query time satisfy

Q(n, ε) ≤ F (ε)nα logβ n, (7)

for some parameter β and function F (ε) whose specific choices will be discussed shortly. In particular,
we want Qleaf(n, ε) to satisfy this bound (the bound on Qdeep will follow from the recursion—see
below). That is, we require

n0(ε) ≤ c′′F (ε)n0(ε)
α logβ n0(ε),

where c′′ ≥ 1 is some constant. This will hold by simply requiring n0(ε) = F (ε)n0(ε)
α; that is

F (ε) := n0(ε)
1−α =

(
c′

ε2
log

1

ε
log3 log

1

ε

)(1−α)/(1−α′)
. (8)

Recall that 0 < α′ < α = 1 − 1/bd/2c. Hence F (ε) is approximately of the form 1/εγ , where
γ := 2(1− α)/(1− α′) satisfies 2/bd/2c < γ < 2. Note that γ approaches its upper (resp., lower)
bound as α′ approaches α (resp., 0).

Query time. Once α′ is fixed, the recurrence for Q(n, ε) becomes

Q(n, ε) ≤

{
O(nα

′
) + max

{
Q

(
n

k log3 log n
,
ε

3

)
, µ(nα

′
)Q(2n1−α

′
, ε)

}
, if n > n0(ε),

O(n), otherwise.

We show in the appendix that the recurrence solves to the bound in (7), for an appropriate choice
of β = β(α′).

2Recall our convention of assuming that all our samples are indeed relative approximations of the desired kind. We
will continue to highlight other steps of the algorithm and its analysis which make this assumption; they all work
correctly, with high probability, in view of the analysis in Section 3.3.

9

Storage. The storage bound S(n, ε) satisfies the recurrence3

S(n, ε) ≤

O(nα
′
) + S

(
n

k log3 log n
,
ε

3

)
+

nα
′∑

i=1

S(ni, ε), if n > n0(ε),

O(n), otherwise,

(9)

where ni ≤ 2n1−α
′

for each i, and
∑nα

′

i=1 ni = n. We show in the appendix that the solution of the
recurrence is S(n) = O(n), with the implied constant independent of ε. (As will follow from the
analysis in the appendix, the factor log3 log n can be replaced by any factor of the form log2+δ log n,
for any positive constant δ.)

Preprocessing. In our implementation, Tsim(k) = O(k) and Tleaf(n, ε) = O(n). For Tpart(n, r),
we use the bounds in Theorem 2.1, which depend on how small α′ is. In general, Tpart(n, r) =
O(n1+δ), for any δ > 0, and, if α′ is smaller than some threshold α′0, implied by Theorem 2.1,
Tpart(n, r) = O(n log r) = O(n log n). The resulting recurrence for T (n, ε) is thus

T (n, ε) ≤

{

O(n1+δ)
O(n log n)

}
+ T

(
n

k log3 log n
,
ε

3

)
+

nα
′∑

i=1

T (ni, ε), if n > n0(ε),

O(n), otherwise,

where ni ≤ 2n1−α
′

for each i, and
∑nα

′

i=1 ni = n, and we choose the O(n1+δ) version if α′ > α′0 and
the O(n log n) version otherwise. It is straightforward to verify that the solution of this recurrence is

T (n, ε) =

{
O(n1+δ), if α′ > α′0,

O(n log n), otherwise,

with implied constants of proportionality independent of ε.

We thus have our first main result, with all the ingredients in place (and with the details supplied
in the appendix), except for the high probability assertion, for which see Section 3.3.

Before stating the theorem, we emphasize the role of the “hidden parameter” α′. It can be
chosen within the range 0 < α′ < α = 1− 1/bd/2c. As α′ decreases, γ decreases (thus making the
factor depending on ε smaller), while β increases (thus making the polylogarithmic factor larger).
We therefore obtain a tradeoff between these two factors. In addition, bringing α below the threshold
α′0 reduces the preprocessing time bound from O(n1+δ) to O(n log n).

Another point to emphasize is that, in the statement of Theorems 3.1 and 3.2, the bounds on the
query cost, storage, and preprocessing, and on the quality of the approximation, are “almost” (a)
deterministic, and (b) worst-case. The bounds hold with high probability. The only randomization
used in our algorithm is the sampling of the various relative approximation sets.

Theorem 3.1. We can preprocess a set P of n points in Rd, with a pre-specified error parameter ε,
0 < ε < 1, into a data structure of size O(n), independent of ε, so that, with high probability, for any
query halfspace h, we can obtain a relative ε-approximate count of h ∩ P , in time O

(
ε−γnα logβ n

)
,

where α = 1− 1/bd/2c, where γ can be chosen anywhere in (2/bd/2c, 2), and where β is a constant
that depends on γ, and increases when γ decreases.

3Again, recall that summations are written, for simplicity, with the maximum possible number of child nodes.

10

The data structure is constructed deterministically, except for the random samplings that produce
the various relative approximations. The (worst-case) preprocessing cost is O(n1+δ), for any δ > 0.
It reduces to O(n log n) when γ is chosen sufficiently small, with an appropriate calibration of
parameters, thereby increasing β. These bounds are also independent of ε.

Remarks. (1) We note that the construction of the relative approximation sets can also be
derandomized, as mentioned in the introduction. We give here only a brief sketch of such a
construction, since, in our opinion, the randomized construction, combined with the high-probability
analysis of Section 3.3, is much simpler and cleaner. The idea of the derandomized construction is to
use the deterministic algorithm of Brönnimann et al. [9] to construct a sensitive (ε

√
p)-approximation

A, and then argue, as in [16, Lemma 6.2.8] and [17, Theorem 2.12], that the resulting set is also a
relative (p, ε)-approximation. Such a construction takes time linear in n and polynomial in 1

ε
√
p .

(2) We note that, although the storage and preprocessing time bounds asserted in Theorem 3.1
are independent of ε, there is nevertheless some implicit dependence on ε, in that n has to be
sufficiently large, as a function of ε, to make these bounds hold. This remark also applies to our
second implementation; see Theorem 3.2 below.

3.2 Second implementation

We present the second data structure ignoring the issue of high success probability again, which is
handled in Section 3.3.

This implementation follows the approach of Matoušek [23] for answering halfspace emptiness
queries. We choose rv = nv/ logρ nv, for some parameter ρ > 2 whose value will be fixed below. The
partition tree has depth O(log∗ n). However, efficient implementation of the three subroutines is
now more challenging, because rv is almost as large as nv.

Our second implementation proceeds as follows. First, the (1/rv, ε/2)-approximation Av at a
node v is now of size

c1rv
ε2

log rv =
c1nv

ε2 logρ nv
log

nv
logρ nv

,

for some absolute constant c1. We now want this size to be at most nv/ log nv. That is, we require
that, for n ≥ n0(ε),

c1n

ε2 logρ n
log

n

logρ n
≤ n

log n
,

or logρ n ≥ c1
ε2

log2 n, which holds if we choose

n0(ε) := 2

(
c′
ε2

)1/(ρ−2)

, (10)

for an appropriate constant c′ > 0. (Note that the dependence of n0(ε) on 1/ε can be “controlled”
by increasing the value of ρ. However, as we will shortly notice, there is a limit on how large we can
take ρ to be.)

We also note that the construction can continue only as long as logρ n < n. That is, we need to
ensure that

logρ n0(ε) ≤ n0(ε),

11

or that (
c′

ε2

)ρ/(ρ−2)
< 2

(
c′
ε2

)1/(ρ−2)

.

For x :=

(
c′

ε2

)1/(ρ−2)
, the above requirement is that xρ < 2x, and it holds if x = Ω(ρ log ρ) (with

an appropriate constant of proportionality), or

c′

ε2
= Ω((ρ log ρ)ρ−2).

That is, it is sufficient to ensure that ρ log ρ = O(log 1
ε), or that

ρ ≤
λ log 1

ε

log log 1
ε

, (11)

for an appropriate constant λ. It is easily checked that, with λ appropriately calibrated, setting ρ

to this maximum value yields n0(ε) = 2O(polylog 1
ε).

We now proceed to describe our implementation of the three subroutines.

SearchSim: We take the set Vv of O(rv) vertices of the simplices of the partition at v, and
preprocess it for halfspace range reporting, as in [23]. This takes O(rv log log rv) storage, and a
query with a halfspace h takes O(rαv logβ rv + k) time, where k = |h ∩ Vv| is the output size. (We
may assume, without loss of generality, that β is the same as in our first implementation.) In fact,
one can easily fine-tune the algorithm, so that it never reports more than some threshold number
k0 of vertices, which we set to k0 := (d+ 1)µ(rv) = O(rαv). With an appropriate choice of ρ and
this choice of k0, the reporting time is at most O(nαv logβ nv/ logαρ nv) = O(nαv / logαρ−β nv). By
choosing ρ sufficiently large, we may assume that this is at most O(nαv).

To execute SearchSim(v), we call the reporting structure just defined with the query halfspace h.
If it reports all vertices of a single simplex, or if it reports more than k0 vertices, we stop—h is then
deep at v. Otherwise, ∂h crosses at most (d+ 1)µ(rv) simplices. We count the actual number of
simplices that it crosses, recurse at the appropriate children of v if this number is at most µ(rv), or
declare h to be deep otherwise. If h is deep, we proceed to call DeepApxCount(h, v, ε).

LeafNodeApxCount, at a leaf v, is implemented by querying our first data structure, con-
structed for Pv, with h. The query time is at most F (ε)n0(ε)α logβ n0(ε). We want to upper bound
it by a bound of the form G(ε)n0(ε)

α, which thus requires that F (ε) logβ n0(ε) ≤ G(ε). Using (10),
this constraint will hold if we set

G(ε) = F (ε) ·
(
c′

ε2

)β/(ρ−2)
. (12)

That is, if we take ρ to be sufficiently large, say, its maximum allowed value, given by (11), we can
make G(ε) “close enough” to F (ε) (when ρ is given its maximum value, G(ε) is larger than F (ε) by
a factor of the form polylog 1

ε), and can still bound it by ε−γ , where γ can be chosen anywhere in
the interval (2/bd/2c, 2).

DeepApxCount is implemented recursively, by calling the auxiliary data structure constructed
for Av with error parameter ε/3, similar to what is done in the first implementation.

12

Analysis. The analysis of the query time, storage, and preprocessing leads to corresponding
recurrence formulas, similar to the ones that arise in the first implementation, whose precise form
and solution are given in the appendix. It implies the following second main result.

Theorem 3.2. We can preprocess a set P of n points in Rd, with a pre-specified error parameter
0 < ε < 1, into a data structure of size O(n), independent of ε, so that, with high probability, for
any query halfspace h, we can obtain an ε-approximate count of h ∩ P , in time O(ε−γnα · 2b log∗ n),
where α = 1− 1/bd/2c, γ can be chosen anywhere in (2/bd/2c, 2), and b depends on the choice of γ,
increasing as γ increases. The preprocessing cost of the algorithm is O(n1+δ), for any δ > 0, and is
also independent of ε.

Again, the bounds on the quality of the approximation and the query time, preprocessing time,
and storage hold with high probability.

3.3 Ensuring high probability

So far we have presented the data structures under the assumption that at each node v we have, or
can efficiently construct, a relative (1/rv, ε/2)-approximation of the required size. We can achieve
this either by a fairly complicated preprocessing step that constructs these sets deterministically
based on the technique in [9], as already mentioned, or by drawing them at random and verifying
that they are indeed relative approximations with the appropriate parameters, which does not
appear to be trivial. In this subsection we argue that neither of these steps is necessary, and that
simply drawing these sets at random without any verification still ensures high success probability.

A priori, though, drawing, at each node v, a random sample of size crv
ε2

log rv as the respective
approximation set (without any verification), as proposed in both implementations, makes it difficult
to guarantee high probability. Indeed, the failure probability of such a sample at a node v is only
O(1/rbv), for some constant b that depends on c. For nodes v that are deep in the tree, rv is small,
and the success probability becomes smaller, approaching constant probability as we get closer to
the leaves. Since the number of distinct ranges is polynomial in n, bounding the overall failure
probability via a naive probability union bound does not imply a small overall failure probability.

Alternatively, increasing the sample size by a factor of log n would guarantee low failure
probability, but this might (slightly) affect the algorithm’s performance (recall that a similar
phenomenon occurs in the “competing” algorithms [4, 20,21]).

We argue that, nevertheless, using such a random sampling approach, with some additional
simple mechanisms, does guarantee high success probability. The intuition is that we can think of
the elements of all the relative approximation sets at the nodes that a query halfspace reaches as a
sequence of independent Bernoulli trials, so that an appropriate weighted sum of their corresponding
indicator variables is the approximate count that the algorithm produces. This suggests that the
errors that the individual relative approximation sets incur tend to cancel each other out, leading to
an overall error that is much smaller than the sum of the individual errors.

In more detail, the analysis proceeds as follows. We consider a fixed halfspace h, and bound the
probability that the query with h fails to produce the desired ε-approximate count. Consider the
set V = V (i) of all nodes v that satisfy (i) n/2i < nv ≤ n/2i−1, for some fixed “level” i ≥ 1, (ii) v is
reached by the query with h, and (iii) h is found to be deep at v, so |h ∩ Pv| is approximated using
Av. (By construction, no node of V (i) is a descendant of another such node.) For each of these

13

nodes v, we can think of the relative-error approximation Av as a random sample, where each point
of Pv is chosen independently with probability4

pv =
cvrv
ε2

log rv

nv
,

where cv is the constant in the bound of [16,22], which we adjust at v, multiplying it by at most
some absolute constant factor, so as to ensure that the probabilities pv are all equal for nodes v at
the same level; we denote this common value by p(i), for nodes at level i. At each such node v, we
count |h ∩Av| (approximately, in both of our implementations, but let us pretend, for the sake of
analysis only, and without affecting the resulting asymptotic bounds, that we get the exact count5

and add |h ∩Av| · nv/|Av| to the global count. To fit into the new model, we slightly modify this
step, and add instead to the global count

|h ∩Av| · nv
E {|Av|}

=
|h ∩Av|
pv

=
|h ∩Av|
p(i)

.

Hence, the overall count that the approximations yield at a fixed level i is

1

p(i)
·
∑
v∈V
|h ∩Av| =

1

p(i)
· |h ∩A|,

where A = A(i) :=
⋃
v∈V Av. Under the above assumptions, we can treat |h ∩ A| as the sum of

independent indicator variables Ix, for x ∈ h∩
⋃
v∈V Pv, where Ix = 1 if x is chosen in the respective

Av. The expected value of
∑

x∈h∩
⋃
v∈V Pv

Ix is

µ := E
{
|h ∩A|

}
= p(i) ·

∑
v∈V
|h ∩ Pv| =

∑
v∈V

cvrv
ε2

log rv

nv
|h ∩ Pv|.

Note that since h is deep at each of the nodes v, by assumption, we have |h ∩ Pv| ≥ nv/rv for each
v ∈ V . Hence

µ ≥
∑
v∈V

cvrv
ε2

log rv

nv
· nv
rv
≥ |V | · cmin

ε2
log rmin, (13)

where cmin = min{cv | v ∈ V } and rmin = min{rv | v ∈ V }. By Corollary A.14 of [3], we have

Pr
{∣∣|h ∩A| − µ∣∣ > εµ

}
< 2e−c(ε)µ,

where

c(ε) = min

{
(1 + ε) ln(1 + ε)− ε, 1

2
ε2
}
>

1

4
ε2,

for 0 < ε < 1. Hence, using (13), we have

Pr
{∣∣|h ∩A| − µ∣∣ > εµ

}
< 2e−

cmin
4
|V | log rmin .

4Note that the sampling model used in [31] and the majority of subsequent papers picks a random subset of
pre-specified size, with all such subsets chosen with equal probability. Most of the results also hold in the model we
use here, where each point is sampled independently, with a fixed probability. We have elected to use the latter model
to be able to apply Chernoff bounds.

5Recall that the actual approximate count that we get is within a factor of 1 ± ε/2 of the exact count. This is
another instance where we rely on the high-probability analysis spelled out here. Technically, we apply it recursively
to Av and guarantee the estimate with high overall probability.

14

In other words, the failure probability (within the present fixed level i) depends on |V |. Specifically,
putting a := cmin/4, the above probability is smaller than

2e−a|V | log rmin =
2

r
a|V |
min

.

Recall that rv is chosen to be either a fixed fractional power of nv, or nv/ polylog nv; in either case,
since nv ≈ n/2i at our fixed level i, the failure probability is at most

2

(
2i

n

)a′|V |
, (14)

where a′ is an appropriate multiple of a.

Informally, if either n(i) := n/2i is large or |V | is large, this bound is exponentially or at least
polynomially small in n (recall that n(i) is at least n0(ε), so it is never close to 1). However, if |V |
is small (in the extreme case, we could even have |V | = 1), and if n(i) is small too (we are in a deep
level), then the failure probability in (14) might be quite large (in the worst case, it depends only
on ε (via the dependence on n0(ε)), and not on n).

To rectify this problem, we simply note that when |V | is small, we can afford more time for
the query at the nodes of V , and can even afford to process the query at these nodes by brute
force, testing every member of Pv for belonging to h. To make this argument more precise, we fix
some fraction ν < α, and consider situations where n(i) < nν/2, and |V | < nν/n(i). (It is easily
checked that in any other situation, the bound in (14) is at most polynomially small in n, with an
exponent that can be chosen arbitrarily large, by calibrating the constants cv and cmin.) In such
cases, the brute-force cost of processing all the nodes of V is O

(∑
v∈V nv

)
= O(n(i)|V |) = O(nν),

and summing this over all levels, we get an overall cost of O(nν log n) = O(nα), well within our
target bound (note that this part of the procedure is purely deterministic).

To complete the analysis, we apply a union bound to estimate the probability that the approx-
imate count yielded by the above procedure will fail for at least one level for at least one query
halfspace h. Since the number of levels is only logarithmic, and the number of (combinatorially
different) halfspaces is only O(nd), it follows that this overall failure probability (namely, that for at
least one halfspace the count is not accurate enough) is at most polynomially small in n, with an
exponent that can be chosen arbitrarily large.

To implement the modified procedure, we first collect, during the processing of the query with
h, the sets V (i) of all the nodes v at any fixed level i, where h is deep in Pv. If, for any level i,
n(i) and |V (i)| are both small, in the precise sense defined above, we count

∑
v∈V |h ∩ Pv| by brute

force. Otherwise, we obtain this count using the approximations stored at these nodes, as prescribed
earlier.

We have to be careful with the storage requirement, especially in the second implementation,
because the above technique requires us to store each of the sets Pv, so that we can search any
of these sets by brute force during a query, if necessary. Storing these sets explicitly would
require Θ(n log logn) storage in the first implementation, and Θ(n log∗ n) storage in the second
implementation. However, we can reduce the storage to linear, if we maintain just one master
list (or array) of all the points in P , so that, for any node v, Pv is a contiguous sublist, which

15

can be specified by two pointers to its first and last elements. We omit the further easy details of
constructing this list and these pointers during preprocessing.

The preceding discussion implies that, with high probability, the resulting data structure yields
an ε-approximate count of h ∩ P , for any halfspace h. The storage, preprocessing time, and query
time all remain asymptotically the same, but the query procedure is slightly modified, as explained
above. (Recall that these bounds are worst-case deterministic, except for the sampling of the
approximation sets.)

With this analysis, the proofs of Theorems 3.1 and 3.2 are now complete.

3.4 Discussion

We conclude the presentation of the basic technique with a few comments.

(1) Notice that there is a sharp discontinuity in the performance of a query in the first implementation,
as we reach the leaves of the partition tree. At internal nodes, we effectively ensure that the cost
of the approximate counting via the (1/rv, ε/2)-approximation stored at a node v is roughly nαv .
In contrast, when we reach a leaf, the cost goes up to Θ(nv). Quite likely, smoothly interpolating
between these two scenarios should refine the dependence of the performance bounds on ε. We leave
this as an open problem for further research.

(2) Our technique can be modified to produce a data structure where ε is not known in advance. Of
course, we cannot let ε become arbitrarily small, or else the size of the structure will grow out of
control. We therefore specify the smallest value εmin of ε that we want the structure to handle and
maintain, at each node v of the tree, many relative approximations. Specifically, we store at v a
relative (1/rv, εi)-approximation, for each εi in an appropriate geometric sequence, stopping at the
larger of εmin and the smallest εi for which the size of the approximation is still below the threshold
nv/(k log3 log nv), say. Since the sizes of these approximations also form a geometric sequence, their
overall size is still within the allowed storage. Note that a node v may become a leaf for certain
values of εi, and remain an internal node for smaller values of εi. This can easily be handled by
comparing nv with n0(εi), at each node v. Overall, assuming n is sufficiently large, we get a data
structure whose storage and preprocessing costs are as stated in Theorem 3.1 or Theorem 3.2, and
whose query performance is again bounded as in these theorems, but in terms of the actual ε ≥ εmin

specified in the query.

(3) An interesting issue not addressed in this paper is that of designing a range of data structures
exhibiting the query-time–storage-space trade-off; such trade-offs have been studies extensively for
other range searching problems [2].

3.5 Range-minimum queries

We can apply our technique to design an efficient algorithm for answering range-minimum queries
for halfspaces, with respect to a given random permutation π of the input points, of the type needed
in the approach of Cohen [13] and of Kaplan et al. [20, 21], as described in Section 1. The only
difference is that at each node v of the partition tree, we restrict π to Pv, and store the prefix of the
first crv log n elements of the resulting restricted permutation πv, for a sufficiently large constant c.
Intuitively, if a halfspace h is deep at v (i.e., |h ∩ Pv| ≥ nv/rv), the point p of h ∩ Pv of minimum
rank should appear, with high probability, among the first crv log n elements of πv, so we can find

16

p by examining each of these elements. This allows us to execute a query in much the same way
as above. It is also fairly easy to show that the procedure has high overall success probability.
Omitting all further details, we obtain (the theorem parallels our first implementation; extending
the second implementation can also be done):

Theorem 3.3. One can preprocess a set P of n points in Rd, and a random permutation π of P ,
into a linear-size data structure, such that, with high probability, the element of P with minimum
rank in π in a query halfspace can be computed in time O(n1−1/bd/2c logβ n), for an appropriate
constant β = β(d). The preprocessing cost is O(n1+δ), for any δ > 0, and it improves to O(n log n)
if β is chosen sufficiently large. The bounds on the preprocessing, storage, and query costs are all
worst-case deterministic, and the correctness of the queries is guaranteed with high probability, for
all queries.

3.6 Approximate range counting with semi-algebraic sets

Our techniques can be extended to yield efficient data structures for approximate range counting,
where the ranges are semi-algebraic sets of constant description complexity. This has recently been
carried out by Sharir and Shaul [29], who first extended Matoušek’s range reporting and emptiness
data structures [23] to semi-algebraic ranges, and then plugged the machinery of the current paper
into those extended structures. See [29] for details.

4 Open Problems

As mentioned above, we have presented a general framework of using shallow partition trees for
approximate range counting. We examined in some detail two specific instances of such a data
structure and several extensions. It remains to explore other uses of this structure and other
combinations of building blocks that may yield more efficient, or less complicated variants. In
particular, we do not feel we have completely exhausted the entire “bag of tricks” to reduce the
dependence of the query time on the approximation parameter ε.

References

[1] P. Afshani and T. M. Chan, On approximate range counting and depth, Discrete Comput. Geom.
41 (2009), 3–21.

[2] P. K. Agarwal and J. Erickson, Geometric Range Searching and Its Relatives, Advances in
Discrete and Computational Geometry, 1–56, 1999, American Mathematical Society.

[3] N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience, New York, 1992.

[4] B. Aronov and S. Har-Peled, On approximating the depth and related problems, SIAM J. Comput.
38 (2008), 899–921.

[5] B. Aronov, S. Har-Peled and M. Sharir, On approximate halfspace range counting and relative
epsilon approximations. Proc. 23rd ACM Symp. on Computational Geometry (2007), pp. 327–336.

[6] S. Arya, G. D. da Fonseca, and D. Mount, Tradeoffs in approximate range searching made simpler,
Proc. 21st Brazilian Sympos. Computer Graphics and Image Processing, 2008, pp. 237–243.

17

[7] S. Arya, T. Malamatos, and D. Mount, Space-time tradeoffs for approximate spherical range
counting, Proc. 16th Annu. ACM-SIAM Sympos. Discrete Algo., 2005, pp. 535–544. Full version
available as Dept. of Computer Science Technical Report CS-TR-4842, Univ. of Maryland,
November 2006.

[8] S. Arya, T. Malamatos, and D. Mount, The effect of corners on the complexity of approximate
range searching, Discrete and Computational Geometry, 41 (2009), 398–443.

[9] H. Brönnimann, B. Chazelle, and J. Matoušek, Product range spaces, sensitive sampling, and
derandomization, SIAM J. Comput. 28 (1999), 1552–1575.

[10] B. Chazelle, The Discrepancy Method, Cambridge University Press, Cambridge, UK, 2001.

[11] B. Chazelle, The discrepancy method in computational geometry, chapter 44, in Handbook of
Discrete and Computational Geometry, 2nd Edition, J. E. Goodman and J. O’Rourke, Eds., CRC
Press, Boca Raton, 2004, 983–996.

[12] B. Chazelle, D. Liu, and A. Magen, Approximate range searching in higher dimension, Comput.
Geom. Theory Appls. 39 (2008), 24–29.

[13] E. Cohen, Size-estimation framework with applications to transitive closure and reachability, J.
Comput. Syst. Sci. 55 (1997), 441–453.

[14] E. Cohen, H. Kaplan, Y. Mansour, and M. Sharir, Approximations with relative errors in range
spaces of finite VC dimension, manuscript, 2006.

[15] G. D. da Fonseca, Approximate range searching: The absolute model, Proc. Workshop on
Algorithms and Data Structures, 2007, Springer LNCS 4619, pp. 2–14.

[16] S. Har-Peled, Carnival of samplings: nets, approximations, relative and sensitive, manuscript,
2008; http://arxiv.org/abs/0908.3716v1. Revised version appears as Chapter 6, “Yet even more
on sampling” in Har-Peled’s class notes.

[17] S. Har-Peled and M. Sharir, Relative (p, ε)-approximations in geometry, manuscript, 2009;
http://arxiv.org/abs/0909.0717.

[18] D. Haussler, Decision theoretic generalizations of the PAC model for neural nets and other
learning applications, Inf. Comput. 100 (1992), 78–150.

[19] D. Haussler and E. Welzl, Epsilon nets and simplex range queries, Discrete Comput. Geom. 2
(1987), 127–151.

[20] H. Kaplan, E. Ramos, and M. Sharir, Range minima queries with respect to a random
permutation, and approximate range counting, Discrete Comput. Geom., accepted.

[21] H. Kaplan and M. Sharir, Randomized incremental construction of three-dimensional convex
hulls and planar Voronoi diagrams, and approximate range counting, Proc. 17th ACM-SIAM
Sympos. Discrete Algorithms (2006), pp. 484–493.

[22] Y. Li, P. M. Long, and A. Srinivasan, Improved bounds on the sample complexity of learning,
J. Comput. Syst. Sci. 62 (2001), 516–527.

[23] J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl. 2 (1992), 169–186.

18

[24] J. Matoušek, Efficient partition trees, Discrete Comput. Geom. 8 (1992), 315–334.

[25] J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics, Vol. 18, Springer Verlag,
Heidelberg, 1999.

[26] J. Matoušek, E. Welzl and L. Wernisch, Discrepancy and approximations for bounded VC-
dimension, Combinatorica 13 (1993), 455–466.

[27] J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley Interscience, New York, 1995.

[28] D. Pollard, Rates of uniform almost-sure convergence for empirical processes indexed by
unbounded classes of functions, manuscript, 1986.

[29] H. Shaul and M. Sharir, Semi-algebraic range reporting and emptiness searching with ap-
plications, SIAM J. Comput., submitted; http://arxiv.org/abs/0908.4061v2. An earlier version
appeared as “Ray shooting amid balls, farthest point from a line, and range emptiness searching,”
Proc. 16th ACM-SIAM Sympos. Discrete Algorithms (2005), pp. 525–534.

[30] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Annals of Probability 22
(1994), 28–76.

[31] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of
events to their probabilities, Theory of Probability and its Applications 16 (1971), 264–280.

Appendix

First implementation.

Analysis of query time. We want to show that the solution of the recurrence

Q(n, ε) ≤

O(nα
′
) + max

{
Q

(
n

k log3 log n
,
ε

3

)
, µ(nα

′
)Q(2n1−α

′
, ε)

}
, if n > n0(ε),

O(n), otherwise

is given by (7), with F (ε) given by (8). We proceed by induction on n. Eq. (7) clearly holds for
n ≤ n0(ε), by the choice of n0(ε). For larger values of n, to carry out the induction step, we need to
show that

c1n
α′ + max

{
F
(ε

3

)(n

k log3 log n

)α
logβ

(
n

k log3 log n

)
, c2n

α′αF (ε)n(1−α
′)α logβ n1−α

′
}

≤ F (ε)nα logβ n,

for appropriate constants c1, c2. If we calibrate the constant in the definition of F (ε), so that F (ε)
is always at least 2c1, then c1n

α′ < c1n
α ≤ 1

2F (ε)nα logβ n. Hence, it is enough to show that

1

2
+ max

{
F
(
ε
3

)
F (ε)kα log3α log n

, c2(1− α′)β
}
≤ 1,

which holds, by the way F (ε) is defined in (8), if β and k are chosen large enough.

Remark: Note the tradeoff between β and F (ε): We can make F (ε) asymptotically smaller (i.e.,
decrease γ) if we decrease α′ and consequently increase β. (The bound on the cost of a query can
thus be optimized, for given values of n and ε, if so desired.)

19

Analysis of storage. We want to show that the solution of the recurrence

S(n, ε) ≤

{
O(nα

′
) + S

(
|A|, ε

3

)
+

nα
′∑

i=1

S(ni, ε), if n > n0(ε),

O(n), otherwise
(9)

is linear in n, where, for an appropriate constant c1,

|A| = c1n
α′

ε2
log(nα

′
) ≤ n

k log3 log n

is the size of the relative (1/r, ε/2)-approximation stored at the current node, ni ≤ 2n1−α
′

for each i,

and
∑nα

′

i=1 ni = n.

We first show that S(n) ≤ Dn log log n, where D is a constant that does not depend on ε. Again,
we prove this by induction on n, noting that it holds for n ≤ n0(ε), for an appropriate choice of D
(independent of ε). For larger values of n, to carry out the inductive argument, it suffices to show
that

c2n
α′ +

Dn

k log3 log n
log log

(
n

k log3 log n

)
+

nα
′∑

i=1

Dni log log(2n1−α
′
) ≤ Dn log logn,

for an appropriate constant c2. We use n instead of nα
′

in the first term, and ensure that nα
′/2 > 2

for n ≥ n0(ε), which we enforce, independently of ε, by choosing the constant c′ in (6) large enough.
Then it is sufficient to guarantee that

c2 +
D

k log2 log n
+D(log(1− α′/2) + log log n) ≤ D log logn,

which holds if we choose, say, α′ > 2

(
1− 1

22/k

)
, and D > 2c2k. (Again, we have a tradeoff: to

reduce F (ε) asymptotically, we have to choose smaller α′, so k has to be chosen larger, which causes
the constant of proportionality in the storage bound to increase.)

This finishes the argument that S(n, ε) ≤ Dn log log n. Armed with this bound, we apply it to
S
(
|A|, ε3

)
, to obtain

S
(
|A|, ε

3

)
≤ Dn log log n

k log3 log n
= O

(
n

log2 log n

)
.

Since this dominates the first term O(nα
′
) in the recursion (9), we get a new recurrence of the form

(in which we drop the unnecessary dependence on ε)

S(n) ≤

D′n

log2 log n
+

nα
′∑

i=1

S(ni), if n > n0(ε),

D′n, otherwise,

for some absolute constant D′, with the usual constraints on the numbers ni.

We claim that the solution of this recurrence is S(n) = O(n), where the constant of proportionality
clearly does not depend on ε. To show this, we unwind the recurrence, as follows. When we expand
a node v of the tree and form its children, each child w satisfies, by construction, n1−α

′
v ≤ nw ≤

2n1−α
′

v ≤ n1−α
′/2

v . We say that a node v lies at a level j if

n(1−α
′/2)j+1

< nv ≤ n(1−α
′/2)j .

20

Thus the root lies at level 0, and the maximum level is at most c3 log log n, for some constant c3,
depending on ε and α′. Also, no two nodes on a common path have the same level, so the sum of
the sizes nv, over all nodes v of a fixed level, is at most n. Hence, the sum of the overhead terms of
all the nodes at level j is at most

D′n

log2 log n(1−α′/2)j+1 =
D′n

(log log n− ξ(j + 1))2
,

where ξ = log 1
1−α′/2 > 0. The sum of the amounts of storage S(nw) at the leaves w of the tree is

clearly at most D′n. Hence, the overall storage requirement is at most

D′n+
∑

0≤j≤c3 log logn

D′n

(log log n− ξ(j + 1))2
.

The smallest value of any denominator is attained at the parents of the leaves, and is at least
(log log n0(ε))

2. This implies (e.g., by replacing the sum by an integral) that the sum can be bounded
by O (n/ log logn0(ε)), which is O(n) (with the constant of proportionality independent of ε)

Second implementation.

Analysis of query time. The query time Q(n, ε) satisfies the following recurrence.

Q(n, ε) ≤

O(nα) + max

{
Q

(
n

log n
,
ε

3

)
, µ

(
n

logρ n

)
·Q(2 logρ n, ε)

}
, if n > n0(ε),

G(ε)nα, otherwise,

where G(ε) is defined as in (12).

We claim that Q(n, ε) ≤ G(ε)nα · 2φ(n), for an appropriate choice of b and of the constant of
proportionality of G, where φ(n) is the following recursively defined function

φ(n) =

{
φ(2 logρ n) + 1, if n > n∗0,

1, if n ≤ n∗0,

where n∗0 is the smallest integer satisfying n ≥ 2 logρ n. It is easily checked that φ(n) = Θ(log∗ n),
so for the sake of simplifying the presentation, we abuse the notation, and refer to φ also as log∗ n.
We are thus set to prove that

Q(n, ε) ≤ G(ε)nα · 2bφ(n). (15)

We prove (15) by induction on n. It clearly holds when n ≤ n0(ε)—this follows from the way G
was defined in (12). For larger values of n, using the induction hypothesis, it is sufficient to show
that

anα + max

{
G(ε/3)

(
n

log n

)α
2b log

∗(n/(logn)),

A

(
n

logρ n

)α
·G(ε) (logρ n)α · 2b log

∗(2 logρ n)

}
≤ G(ε)nα · 2b log

∗ n,

for appropriate constants a,A. Calibrate the constant of proportionality in the expression for G(ε)
so that G(ε) > 2a. It then suffices to show that

1

2
+ max

{
G(ε/3)

G(ε)
· 1

logα n
,
A · 2b log∗(2 logρ n)

2b log
∗ n

}
≤ 1,

which follows easily (i) from the definition of G(ε), and (ii) from our redefinition of the log∗(·)
function, provided that b is chosen large enough to satisfy 2b ≥ 2A.

21

Analysis of storage. The storage bound S(n, ε) satisfies the following recurrence, in which
n = nv, the storage needed for SearchSim is O(rv log log rv), and the storage for leaf nodes is
O(nv) = O(n), a bound independent of ε, since we use our first data structure at each leaf.

S(n, ε) ≤

O
(
n log log n

logρ n

)
+ S

(
n

log n
,
ε

3

)
+

n/ logρ n∑
i=1

S(ni, ε), if n > n0(ε),

O (n) , otherwise,
(16)

where ni ≤ 2 logρ n and
∑n/ logρ n

i=1 ni = n.

We bound S(n) in two stages. We first claim that the solution of the recurrence (16) is
S(n) ≤ Dn · 2b′ log∗ n, for appropriate constants D, b′ independent of ε. We prove this by induction,
noting that it trivially holds for n ≤ n0(ε), with an appropriate choice of D. For larger values, to
carry out the induction step, it suffices to show that

c′n log logn

logρ n
+

Dn

log n
· 2b′ log

∗ n +

n/ logρ n∑
i=1

Dni · 2b
′ log∗(2 logρ n) ≤ Dn · 2b′ log

∗ n,

for an appropriate constant c′. This is easily seen to hold if D and b′ are chosen sufficiently large
(independently of ε).

Armed with this intermediate bound, we use it to get the upper bound

S

(
n

log n
,
ε

3

)
≤ Dn · 2b′ log∗ n

log n
≤ D′n

log1/2 n
,

for some constant D′. This is also an upper bound on the first term in (16), so the recurrence
becomes

S(n, ε) ≤

D′′n

log1/2 n
+

n/ logρ n∑
i=1

S(ni, ε), if n > n0(ε),

O (n) , otherwise,

for yet another constant D′′, where ni ≤ 2 logρ n and
∑n/ logρ n

i=1 ni = n. We claim that the solution
of this recurrence is S(n, ε) = O(n), with the constant or proportionality independent of ε, and
show it by unwinding the recurrence, using the fact that there are only O(log∗ n) levels. Specifically,
we proceed similarly to the analysis of the first implementation. We define a sequence n0 = n,
nj+1 = 2 logρ nj , j ≥ 0, and say that a node v is at level j if nj+1 < nv ≤ nj . The sum of the sizes
nv, over all nodes v at any fixed level j, is at most n (again, no two nodes on a common path can
have the same level), and the sum of their overhead terms is at most D′′n/ log1/2 nj+1. It is now an

easy exercise to show that
∑

j≥0 1/ log1/2 nj = O(1). This is because the nj ’s form a sequence of

exponential towers, so the terms 1/ log1/2 nj increase very rapidly, and their sum is essentially equal

to the last term 1/ log1/2 log njmax , which is at most a constant (independent of ε), since nj ≥ n0(ε)
for all j.

This completes the proof that S(n) = O(n), with a constant of proportionality independent of ε.

Analysis of preprocessing. Here we use the bound Tpart(n, r) = O(n1+δ), for any δ > 0 where
this bound is independent of ε, and note that this bound also applies to Tsim and Tleaf. We thus get

22

the following recurrence.

T (n, ε) ≤

O(n1+δ) + T

(
n

log n
,
ε

3

)
+

2n/ logρ n∑
i=1

T (ni, ε), if n > n0(ε),

O(n1+δ), otherwise,

for any δ > 0, with the usual constraints on the ni’s. Using techniques similar to (and somewhat
simpler than) those in the previous analyses, one can easily verify that T (n, ε) = O(n1+δ

′
), for any

δ′ > δ > 0 with a constant of proportionality independent of ε.

23

