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Approximate Hybrid Model Predictive Control

for Multi-Contact Push Recovery in Complex Environments

Tobia Marcucci1,2,3, Robin Deits3, Marco Gabiccini1,2,4, Antonio Bicchi1,2, Russ Tedrake3

Abstract— Feedback control of robotic systems interacting
with the environment through contacts is a central topic in
legged robotics. One of the main challenges posed by this
problem is the choice of a model sufficiently complex to capture
the discontinuous nature of the dynamics but simple enough to
allow online computations. Linear models have proved to be the
most effective and reliable choice for smooth systems; we believe
that piecewise affine (PWA) models represent their natural
extension when contact phenomena occur. Discrete-time PWA
systems have been deeply analyzed in the field of hybrid Model
Predictive Control (MPC), but the straightforward application
of MPC techniques to complex systems, such as a humanoid
robot, leads to mixed-integer optimization problems which are
not solvable at real-time rates. Explicit MPC methods can
construct the entire control policy offline, but the resulting
policy becomes too complex to compute for systems at the
scale of a humanoid robot. In this paper we propose a novel
algorithm which splits the computational burden between an
offline sampling phase and a limited number of online convex
optimizations, enabling the application of hybrid predictive
controllers to higher-dimensional systems. In doing so we are
willing to partially sacrifice feedback optimality, but we set
stability of the system as an inviolable requirement. Simulation
results of a simple planar humanoid that balances by making
contact with its environment are presented to validate the
proposed controller.

I. INTRODUCTION

For robots governed by smooth nonlinear differential equa-

tions, local linearization and linear optimal control provide

powerful tools for local stabilization of fixed points or

trajectories [1]. Convenient parameterizations (e.g. LQR)

allow designers to generate stabilizing controllers with tun-

able performance which can be applied to unconstrained

systems or (via online convex optimization) to systems with

linear constraints [2]. Through a natural description of the

dynamics in terms of momentum, rather than generalized

coordinates (i.e. joint angles), compact linear models are able

to capture the fundamental features of the robot’s physics

within a remarkably large portion of state space [3]. Such

models have been used with great success for humanoid

robots with pre-planned contact locations, as in the Linear

Inverted Pendulum Model (LIPM) [4], or pre-planned contact

timings [5], [6].

The state of the art in multi-contact feedback control, on

the other hand, is less mature: stabilization here is achieved
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Fig. 1. Two-dimensional humanoid. Hands can interact with the surfaces
that have the same color, green box-shaped sets represent the kinematic
limits for the limbs, and friction cones for the contact forces are depicted
in orange. The kinematics are roughly modeled after those of the NASA
Valkyrie robot.

mostly through one-step lookahead, e.g. using inverse dy-

namics approaches that involve solving a quadratic program

(QP) online, and/or hand-designed state machines [1], [7].

Hierarchical tools can plan and stabilize complex multi-

contact behaviors [1], [8] by choosing a contact sequence

at low frequency and stabilizing that sequence at a higher

control rate. In our case, however, we are specifically inter-

ested in creating fast online controllers which can choose

to make or break contact instantaneously, without any pre-

planned sequence of contacts or hybrid modes. To date, the

major obstacle to achieving this is a systematic procedure

for control design that can reason about stabilization across

contact modes.

In this paper, we adopt PWA approximations of the system

dynamics in floating-base coordinates as the natural and

reasonable analog to linearization when local stabilization

of fixed-points or trajectories requires crossing contact-mode

boundaries. Piecewise affinity occurs naturally in the analysis

of the centroidal dynamics of a robot subject to contact

phenomena. A naı̈ve but effective elastic contact model

relates normal force to normal penetration (and, possibly,

normal velocity) as well as friction force to tangential veloc-

ity directly in a PWA way. Complementarity-based contact

models [9] also result in PWA dynamics, though as the result

of the solution of a feasibility problem rather than a closed-

form function. Moreover, it is well known that the time



evolution of the linear momentum of a robot is governed by a

set of equations that are linear in the contact forces. The only

issue with this model is angular momentum, whose dynamics

are bilinear (because of dependency on the cross product of

limb positions and contact forces) [10]. Here we neglect an-

gular momentum and focus only on translational dynamics:

nonetheless, recent works have shown the potential of the

combined use of McCormick envelopes and binary indicators

for the piecewise approximation of bilinear laws in the

context of motion planning of legged robots [10]. Although

it is not problematic, the integration of these techniques in

the presented framework goes beyond the scope of this paper

and will be object of future improvements.

It is straightforward to directly transcribe a hybrid optimal

control problem using PWA dynamics into a mixed-integer

optimization problem, i.e. a problem with both continuous

and discrete-valued variables [10], but such models have

proved difficult to solve at real-time rates. On the other hand,

stability and optimal control of PWA systems have been

extensively developed in the context of hybrid MPC [11],

[12]: for these models, in fact, not only several stabilizing

optimal controllers have been developed [13], but also the

nature of the resulting feedback law and optimal-value func-

tion has been deeply investigated [14], [15], [16]. As in the

straightforward mixed-integer case, however, the complexity

of the optimal policy also scales poorly with the problem

dimensions, making explicit solutions complex to compute,

store, and evaluate even for relatively small problems.

In this paper we propose a novel algorithm that allows

online generation of suboptimal solutions of mixed-integer

programs arising in hybrid MPC. The method we propose

consists in the offline generation of a map that, given the

current state of the system, returns one or more feasible

binary assignments (i.e., mode sequences), reducing online

computations to the solution of a small number of QPs.

Through the use of a sampling approach the complexity of

this map is very limited and, despite the suboptimality of the

proposed control scheme, closed-loop stability of the feed-

back law is proved. A further contribution of this work is an

algorithm for the incremental approximation of QP feasible

sets; this is the key ingredient that allows the application of

the overall method to large scale systems. Simulation results

of a simple planar humanoid that balances by making contact

with its environment are presented to validate the proposed

controller. In conclusion, we remark that, even though the

synthesized controller is specific to a particular partition of

the domain of the PWA system (i.e., the geometry of the

environment in case of the push recovery problem), it is not

complicated to extend this method to consider parametric

domains, for example, treating wall positions as additional

fictitious states. The analysis of this aspect is left to future

developments.

A. Notation

Let a ∈ R
n and b ∈ R

m. We denote with (a, b) ∈ R
n+m

the vertical concatenation of a and b. Weighted 2-norms

are denoted as ‖a‖2A := aTAa, with A ∈ R
n×n. The

space of positive definite (semidefinite) symmetric matrices

of dimension n×n is denoted as Sn≻0 (Sn�0). In represents the

n×n identity matrix. int(S) and conv(S) denote the interior

and the convex hull of the set S , respectively. All physical

units may be assumed to be in meters/kilograms/seconds.

II. HYBRID AND EXPLICIT MPC BACKGROUND

Motivated by the observations presented in Section I,

in this work we consider the class of discrete-time PWA

dynamical systems in the form

xt+1 = Aixt +Biut + ci if (xt, ut) ∈ Di, (1)

where i ∈ {1, . . . , s}, xt ∈ R
n denotes the state vector at the

generic sampling time t ∈ N, ut ∈ R
m represents the input

vector, and the sets Di ⊂ R
n+m are polytopic domains. The

overall domain of the system D :=
⋃s

i=1Di is assumed to be

completely well-posed, i.e., int(Di) ∩ int(Dj) = ∅ ∀ i, j ∈
{1, . . . , s} if i 6= j [12]. In order to avoid inconsistencies, we

further suppose D to be connected and the map xt+1(xt, ut)
from (1) to be continuous on D. Finally, we assume: (x, u) =
0 ∈ int(D1), c1 = 0 (i.e., the origin is an equilibrium for

the dynamics (1) in mode i = 1), and the pair A1, B1 to be

stabilizable.

With the aim of regulating system (1) to the origin, given

the initial state x̄ of the system, we consider the optimal

control problem

min
x,u
‖xN‖

2
P +

N−1
∑

t=0

‖xt‖
2
Q + ‖ut‖

2
R (2a)

subject to x0 = x̄, (2b)

dynamics (1) ∀ t ∈ {0, . . . , N − 1}, (2c)

xN ∈ X
g, (2d)

where x := (x0, . . . , xN ), u := (u0, . . . , uN−1), P ∈
S
n
≻0, Q ∈ S

n
≻0, R ∈ S

m
�0, and the polytope X g ⊂ R

n

represents a goal terminal set with x = 0 ∈ int(X g).
We denote with V ⋆(x) the optimal value function of

problem (2), and with x
⋆(x) := (x⋆

0(x), . . . , x
⋆
N (x)),

u
⋆(x) := (u⋆

0(x), . . . , u
⋆
N−1(x)) the arguments that mini-

mize it. Through the introduction of sN binary variables (one

per domain per sampling time), a big-M reformulation can be

employed to cast problem (2) as a Mixed-Integer Quadratic

Program (MIQP) (see, e.g., the procedure presented in [12]

in case of piecewise linear systems). At each sampling time

the state of the system x̄ is measured, the MIQP is solved,

and the control action u⋆
0(x̄) is applied to the system in a

receding horizon fashion.

In opposition to the pure online mixed-integer approach,

explicit MPC techniques can solve problem (2) offline,

computing the map u
⋆(x) explicitly. To do that, it is nec-

essary to reason in terms of single mode sequences z :=
(z0, . . . , zN−1) ∈ {1, . . . , s}

N . Once a mode sequence is

fixed, system (1) becomes a time-varying affine system

xt+1 = Aztxt +Bztut + czt . (3)

Exploiting (3) recursively, it is now possible to explicitly

express the state evolution as a function of the initial state



and the input sequence. Substituting the resulting expression

in (2), we get a condensed multiparametric QP (mpQP) [14]

with the characteristic dependence on the initial state x̄

min
u

qz(u, x̄) (4a)

subject to Gz

u ≤ wz + Ezx̄, (4b)

where qz(u, x̄) is a quadratic function of (u, x̄), and Gz ,

wz , and Ez are properly assembled matrices that enforce

stage and terminal constraints. We will denote with V z⋆(x)
the (convex piecewise quadratic) optimal value function of

problem (4) and with u
z⋆(x) the related (PWA continuous)

optimal input sequence [14]. For problem (4), we define the

feasible set as X zf := {x | ∃u : Gz
u ≤ wz + Ezx}. By

definition, X zf is the orthogonal projection of the polytopic

constraint set (4b) from R
Nm+n (the space of (u, x)) onto

R
n (the space of x) and, hence, is a polytope itself. We then

define the feasible set of the hybrid MPC problem (2) as

X f := {x | ∃z : x ∈ X zf} and we denote the set of feasible

mode sequences for a state x as Z f(x) := {z | x ∈ X zf}.
Typically, explicit hybrid MPC algorithms share the fol-

lowing structure [15], [16]:

• Enumeration of all the feasible mode sequences {z |
X zf 6= ∅}. This is done through a backwards reacha-

bility analysis and, especially for long horizons N , it

might return in a huge number of sequences (see, e.g.,

Section V-A).

• Solution of a mpQP for each feasible mode sequence.

The results of this step are the laws uz⋆(x) and V z⋆(x),
whose complexity is exponential in both the number of

constraints and optimization variables.

• Comparison of the optimal-value functions V z⋆(x) to

determine the pointwise optimal binary assignments.

This requires non-convex programming techniques and

results in a discontinuous PWA control policy defined

on non-convex domains [17]. (This step is sometimes

substituted by a runtime comparison.)

The computational complexity of these steps limits the

applicability of explicit hybrid MPC to systems of very small

dimension [16].

III. STABLE MPC FOR HIGH-DIMENSIONAL HYBRID

SYSTEMS

Interestingly, the gray area between a pure online approach

and the explicit offline solution of the MPC problem has not

received much attention in the MPC literature. In this work

we propose a method which aims to split the computational

burden between the offline and the online phases in a way

that is more effective than the two extreme approaches indi-

vidually. The key observation of the algorithm we propose is

that the stabilizing properties of the feedback law from (2)

are not directly related to the optimality of the MIQP, but

just to its feasibility (see Theorem 1). Once that feasibility of

the MIQP is guaranteed, a Lyapunov argument can be made

just assuming optimality of the condensed QP (4). In light of

this observation, we propose to generate a map offline that,

given the state of the system, returns a set of feasible mode

sequences; reducing the online phase of the controller to the

solution of a limited number of QPs. Beside the clear online

advantage, the algorithm we propose uses the relatively large

feasible sets X zf to cover the state space instead of tiny

critical regions, as it is done in explicit MPC [14].

In the following we will assume the availability of the map

Z̃ f(x) ⊆ Z f(x) that for all x ∈ X f returns a nonempty set

of feasible mode sequences; details about the construction

of this map are given in next section. Denoting with τ ∈
N the absolute time step from the instant (τ = 0) where

the controller is turned on, Algorithm 1 describes how the

feedback control is derived from the measured state x̄.

Algorithm 1: Feedback control uτ
0 for state x̄ at time τ

Result: Feedback uτ
0

if τ = 0 then

Pick any feasible mode sequence z ∈ Z̃ f(x̄)
else

z := (zτ−1
1 , . . . , zτ−1

N−1, 1)
end

Solve QP (4) to get uz⋆(x̄), V z⋆(x̄)
Set uτ = u

z⋆(x̄), zτ = z, V τ = V z⋆(x̄)
while Additional computation time remains do

Pick a new z ∈ Z̃ f(x̄)
Solve QP (4) to get uz⋆(x̄), V z⋆(x̄)
if V z⋆(x̄) < V τ then

Set uτ = u
z⋆(x̄), zτ = z, V τ = V z⋆(x̄)

end

end

In order to guarantee stability, Algorithm 1 requires the

solution of only one QP. Nonetheless, the performance, in

terms of cost (2a), of the feedback can be improved by

solving additional (feasible) QPs until the the allocated time

for the feedback computation is over. Moreover, the solution

of these QPs can be parallelized, keeping the overall solution

time potentially equal to the time necessary to solve a single

QP. The online evaluation of the map Z̃ f(x) consists in

checking membership of x̄ to a set of polytopes in halfspace

representation; this requires a negligible amount of time and

can be parallelized as well.

The following theorem addresses the closed-loop stability

of system (1) with the feedback from Algorithm 1.

Theorem 1: Assume that:

H1 P in (2a) is the solution of the discrete algebraic Riccati

equation for the system xt+1 = A1xt + B1ut with the

related optimal feedback K ∈ R
m×n.

H2 X g in (2d) is an invariant constraint-admissible set for

the closed-loop system xt+1 = Λxt with Λ := A1 +
B1K (i.e., x ∈ X g ⇒ (Λtx,KΛtx) ∈ D1∀t ∈ N [18]).

Then system (1) in closed loop with the feedback control

from Algorithm 1 is asymptotically stable with domain of

attraction X f .

Proof: Consider a generic time step τ . Call x
τ the

trajectory obtained by applying u
τ from the initial state



xτ
0 ∈ X

f . At time τ + 1, starting from the new ini-

tial state xτ+1
0 = xτ

1 , we exploit H2 and the fact that

xτ
N ∈ X

g to construct a feasible input sequence ũ
τ+1 :=

(uτ
1 , . . . , u

τ
N−1,Kxτ

N ) that results in a feasible state trajec-

tory x̃
τ+1 := (xτ

1 , . . . , x
τ
N ,Λxτ

N ) for the mode sequence

z̃
τ+1 := (zτ1 , . . . , z

τ
N−1, 1). The cost of the latter control

action is Ṽ τ+1 = V τ − ‖xτ
0‖

2
Q − ‖u

τ
0‖

2
R − ‖x

τ
N‖

2
P +

‖xτ
N‖

2
Q + ‖Kxτ

N‖
2
R + ‖Λxτ

N‖
2
P = V τ − ‖xτ

0‖
2
Q − ‖u

τ
0‖

2
R,

where the second equality follows from H1. Since ũ
τ+1

is a feasible control, we have that Ṽ τ+1 ≥ V τ+1 (which

holds even if a “cheaper” mode sequence is found in the

allocated time in Algorithm 1) and hence V τ − V τ+1 ≥
‖xτ

0‖
2
Q + ‖uτ

0‖
2
R ≥ 0. Since {V τ}∞τ=0 is a nonnegative

decreasing sequence, there exists a limit limτ→∞ V τ and,

consequently, limτ→∞ V τ+1−V τ = 0. This in turn implies

limτ→∞ xτ
0 = 0 and limτ→∞ uτ

0 ∈ ker(R), hence the thesis.

Remark 1: Assumptions in Theorem 1, together with

(x, u) = 0 ∈ int(D1), can be relaxed with a more complex

formulation of problem (2), see [13]. These assumptions are

made here for simplicity and also because they are generally

fulfilled by the family of systems we are interested in.

IV. OFFLINE GENERATION OF FEASIBLE MODE

SEQUENCES

In the developments of the previous section we have

assumed the availability of a map Z̃ f(x) that, for each

feasible state x ∈ X f , returns a nonempty set of feasible

mode sequences. In this section we propose an algorithm for

its computation that allows generation of such a map even

for systems of dimensions that would be prohibitive for both

online solution of the MIQP and explicit hybrid MPC.

A straightforward approach to the generation of Z̃ f(x)
consists in the enumeration of all the feasible mode se-

quences, as done in hybrid explicit MPC, and then in the

computation of the orthogonal projection of (4b) to derive

the feasible set for each mode sequence. (Note that this

strategy would actually generate the complete map Z f(x).)
Unfortunately this naı̈ve approach has two limitations:

• It results in an excessive number of QPs to be solved

online. In fact, only a small subset of the feasible mode

sequences is actually optimal for some x ∈ X f and,

since we do not want to derive the explicit expression

of the optimal value functions V z⋆(x), we cannot

eliminate never-optimal sequences as done in [15].

• Orthogonal projection of polytopes is a very com-

plex operation (see [19] and the references therein).

Choosing the right algorithm is a very case-dependent

process and, in general, it is a tradeoff between speed

and numerical robustness. In practice, unless some

assumptions (that typically do not hold in the MPC

context) on the orientation of the polytope are made, this

operation becomes prohibitive for system with roughly

n > 5, m > 2, and N > 5. Some algorithms tailored

for the computation of MPC feasible sets have been

proposed [20], but they proved to be applicable only to

small scale problems (e.g., n = 4, m = 2, and N = 10).

In order to overcome these difficulties, we adopt a sam-

pling approach; this choice entails multiple advantages:

• Feasible mode sequences do not have to be enumer-

ated; instead they are discovered automatically by the

sampling process, which, at the same time, filters never-

optimal mode sequences.

• As shown in the previous subsection, stability of hy-

brid MPC is a consequence of feasibility rather than

optimality. In this sense a sampling rejection strategy

(i.e., discard a sample if it already belongs to a feasible

set) can be adopted to greatly reduce the number of

mode sequences to take into account.

• Sampling allows the development of tailored algo-

rithms for the approximation of feasible sets with low-

complexity polytopes, enabling the application of these

methods to high-dimensional spaces.

Algorithm 2 illustrates the generation of the map Z̃ f(x).
X̃ zf ⊆ X zf denotes an inner approximation of the feasible

set for the mode sequence z, whereas z
⋆(x̄) represents

the optimal mode sequence derived by solving (2) for the

initial condition x̄. Once the collection of polytopes X̃ zf is

generated, the evaluation of the map Z̃ f(x̄) returns the set

{z | x̄ ∈ X̃ zf}.

Algorithm 2: Coverage of the feasible set X f

Result: Collection of polytopes X̃ zf

Initialize X̃ zf = ∅, ∀z ∈ {1, . . . , s}N

while Samples x̄ are generated do

if ∃z | x̄ ∈ X̃ zf then
Reject x̄

else
Solve MIQP (2) to get z⋆(x̄)
if MIQP (2) is infeasible then

Reject x̄
else

Expand X̃ z
⋆(x̄)f to include x̄ (Algorithm 3)

end

end

end

Algorithm 3 illustrates the details about the expansion

process in Algorithm 2. This procedure is based on the

Convex-Hull method for orthogonal projections, originally

proposed in [21]. Given a point x̄ which is known to belong

to the feasible set X zf , the polytopic inner approximation

X̃ zf := {x | Dx ≤ d} is expanded until x̄ ∈ X̃ zf .

The initialization of X̃ zf is performed finding, through the

solution of n + 1 linear programs, a set of vertices of X zf

that generate a full-dimensional simplex (see Algorithm 4).

The method then consists in an iterative expansion in the

direction normal to the facet of X̃ zf whose inequality is

most violated by x̄. At each step a new vertex of X zf

is found and added to the vertex representation of X̃ zf .

The latter is the most expensive operation of the algorithm

but it can be easily performed even for high-dimensional

polytopes (the free library Qhull, for example, implements



such a progressive construction of a convex hull [22]). For

brevity, the constraint set from (4b) is here denoted as

Cz := {(u, x) | Gz ≤ wz + Ezx}. Figure 2 illustrates

the various steps of Algorithm 3 and Algorithm 4 in case of

a simple two-dimensional example.

Algorithm 3: Inner approximation of the set X zf

Result: Inner approximation X̃ zf

if X̃ zf = ∅ then

Initialize X̃ zf (Algorithm 4)

end

while x̄ /∈ X̃ zf do
Call i the index of the greatest element of Dx̄− d

and Di the ith row of D
(u⋆, x⋆) := argmax(u,x)∈Cz Dix

Update X̃ zf ← conv(X̃ zf ∪ {x = x⋆})
end

Algorithm 4: Initialization of X̃ zf

Result: Inner approximation X̃ zf

Pick a random direction a ∈ R
n

(u1, x1) := argmax(u,x)∈Cz aTx
(u2, x2) := argmin(u,x)∈Cz aTx
for i = 3, . . . , n+ 1 do

Pick any hyperplane H := {x | aTx = b ∈ R} such

that xj ∈ H, ∀j ∈ {1, . . . , i− 1}
(ui, xi) := argmax(u,x)∈Cz sign(aT x̄− b)aTx

end

Initialize X̃ zf = conv(
⋃n+1

i=1 {x = xi})

A fundamental property of the algorithm we propose is

that coverage of the feasible set X f can be achieved after a

finite number of samples. A sketch of proof for this claim is

the following: Let us denote with X z⋆ ⊆ X zf the region of

state space where the mode sequence z is optimal. As long

as there exists a full-dimensional subset of X z⋆ that has not

been included in any X̃ zf , the event of a sample (drawn

from a uniform distribution) ending up in this region has a

finite probability. Every time that this event happens, a vertex

of X zf is added to the vertex-representation of X̃ zf . Since

X zf has a finite number of vertices and X z⋆ is contained

in their convex hull, there is a finite upper bound to the

number of events that can happen. The finiteness of the

event probability and the bound on the maximum number of

events, are together sufficient conditions to claim that after a

sufficiently high number of samples an event (i.e., a sample

in a full-dimensional uncovered region of X f ) cannot occur.

The previous observation implies that the number of

samples after which the map from Algorithm 2 is such

that the feedback controller is stabilizing is finite. Moreover,

note that, due to the rejection sampling in Algorithm 2, our

algorithm does not necessarily converge to the optimal MIQP

solution, but rather to a feasible (and stabilizing) solution.

Exact feasible set
Inner approximation
First sample
Second sample

x1

x 2

x1

x 2

x1

x 2

x1

x 2

x1

x 2

Fig. 2. Result of Algorithm 3 for a two-dimensional example. From left
to right: first sample inside the orthogonal projection, inclusion of the first
sample in the inner approximation of the projection, second sample, first
expansion for the inclusion of the second sample, inclusion of the second
sample.

x1

x 2 1

23

4 5

x1

x 2

Fig. 3. Result of the application of Algorithm 2 to a synthetic two-
dimensional example. Left: five overlapping feasible sets numbered by
their cost (e.g., whenever feasible, set 1 is always preferable). Right: inner
approximation after 104 samples (only samples that required the expansion
of a set are shown). The proposed algorithm limits automatically the
complexity of the representation of the feasible sets in the regions where
there is overlapping, whereas it converges to the exact shape in the regions
where only a single mode sequence is feasible.

The main advantage of the method we propose is that

it automatically adapts the complexity of the approximated

feasible sets X̃ zf to our needs. Generally speaking, feasible

sets might be very complex polytopes defined by a large

number of facets; however, if our goal is closed-loop stability,

we actually do not need a detailed representation of these

sets: we only care about coverage of the state space. In this

sense, in the regions where multiple feasible sets overlap,

it is not necessary to derive a detailed description of their

boundaries. Algorithm 2 performs this reduction of complex-

ity automatically: simplifying the coverage process, reducing

memory requirements, and speeding up online evaluations.

Figure 3 depicts this effect for a simple example. This

coverage requirement resembles the one in the LQR Trees

approach [23] which also covers the state with locally stable

policies, rather than seeking global optimality.

V. SIMULATION RESULTS

In this section we validate the proposed controller with two

systems. First we consider a simple inverted pendulum that

is allowed to interact with an elastic wall in order to keep the
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Fig. 4. Linear inverted pendulum with elastic wall.

vertical position. Then we test the controller with a simple

two-dimensional humanoid that can make or break contacts

with a complex environment in order to recover from a push.

A. Inverted Pendulum with Elastic Wall

Consider the inverted pendulum depicted in Figure 4 with

m = 1, l = 1, d = 0.1, g = 10, and k = 1000. The state of

the continuous time system is x := (q, q̇) and the dynamics

are linearized around the vertical configuration q = 0. The

system has two modes: not in contact with the wall (mode

1), in contact with the wall (mode 2). Discretizing the model

with the explicit Euler scheme with a sampling time h =
0.01, we get a model in the form (1), with

A1 =

[

1 0.01
0.1 1

]

, B1 =

[

0
0.01

]

, c1 =

[

0
0

]

,

D2 = {(x, u) | (−0.12,−1) ≤ x ≤ (0.1, 1),−4 ≤ u ≤ 4},

A2 =

[

1 0.01
−9.9 1

]

, B2 =

[

0
0.01

]

, c2 =

[

0
1

]

,

D2 = {(x, u) | (0.1,−1) ≤ x ≤ (0.12, 1),−4 ≤ u ≤ 4}.

We then synthesize the MPC controller with N = 10, Q =
I2, R = 1, and X g equal to the maximal invariant constraint-

admissible set for the system in mode 1 [18].

Figure 5 shows the coverage of the feasible set X f

obtained by applying Algorithm 2 with 5 · 104 samples. The

result is compared with the plot of the feasible sets of all

the feasible mode sequences. In this case, all the possible

sN = 1024 mode sequences are actually feasible, resulting in

a huge map Z f(x); on the other hand, through the sampling

process only 17 mode sequences are selected, resulting in a

very compact map Z̃ f(x) that covers the entire feasible set.

The maximum number of overlapping feasible sets for Z f(x)
is 257 whereas for Z̃ f(x) it is only 6, resulting in a dramatic

reduction in the number of QPs to be solved online.

Figure 6 shows the state-space trajectories obtained by

simulating the closed-loop system from a set of initial states

(x̄ = (0.095,−0.5 + i0.05) for i = 0, . . . , 16) chosen to

force the system to switch between modes. The trajectories

derived using the feedback from Algorithm 1 are blue in the

foreground, whereas the ones obtained solving the MIQP (2)

are depicted in green in the background. Here we assumed to

have enough time to solve all the feasible QPs that the map

Z̃ f(x) returns at a given sampling time. In this case, it is

not possible to distinguish between the two controllers: this
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Fig. 5. Coverage of the feasible set of the MIQP (2) for the inverted
pendulum. Top: inner approximations of the feasible sets from Algorithm 2.
Bottom: feasible sets of all the mode sequences. The proposed algorithm
requires only 17 feasible mode sequences out of a total of 1024.
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Fig. 6. Closed loop trajectories for the inverted pendulum with the feedback
from Algorithm 1 (blue) and from the hybrid MPC controller (2) (green).

equivalence is due to the relatively long horizon N . In fact,

it is known that with the proposed formulation of the MPC

problem, if the value of N is sufficiently large to make the

terminal constraint redundant, the trajectory planned at the

initial time will coincide with the closed-loop trajectory of

the system. Consequently, the optimal mode sequence at each

time step will be the time-shifted copy of the one from the

previous time; which is exactly the “first try” in Algorithm 1.

Hence, if the map Z̃ f(x) contains the optimal mode sequence

for the initial state x̄, the two controllers will behave exactly

the same on the nominal system.

B. Two-Dimensional Humanoid in Complex Environment

In this subsection we evaluate the performance of the con-

troller from Algorithm 1 with the two-dimensional humanoid



robot shown in Figure 1. In this simple model we consider

only the translational dynamics of the body.

The massless arms are free to move in the plane and they

are velocity-controlled, while the feet have fixed positions

in contact with the ground. Using the acronyms “l” left, “r”
right, “h” hand, “f” foot, and “b” body, we denote with

q ∈ R
2 the position of a part of the robot and with f ∈ R

2

the contact force applied to a limb. The hands are allowed

to interact with the environment, generating forces flh and

frh, that are used to control the position of the body (colors

in Figure 1 indicate the surfaces that each hand can touch).

The resulting dynamics of the body is

mq̈b = flh + frh + flf + frf +mg,

with m = 1 the mass of the body and gravitational accel-

eration g = (0,−10). Denoting with fn and f t the normal

and tangential contact forces applied to a moving limb, and

with δn and δ̇t the related normal penetration and relative

tangential velocity, we employ the linear contact models

fn = −κδn and f t = −βδ̇t, with κ = 200 and β = 1000.

Considering a frame with horizontal axis q1 and vertical

axis q2, the wall for the left hand (red in Figure 1) is in

position q1 = 0.5, the floor (black) is at q2 = −0.5, and the

walls for the right hand (blue) are at q1 = −0.35 and q2 = 0.

The relative position of each limb with respect to the body

has to lie inside a 0.4 by 0.4 square set (green in Figure 1).

The centers of these regions (in body frame) are in the

position q̂lh = (0.3, 0), q̂rh = (−0.3, 0), q̂lf = (0.2,−0.5),
and q̂rf = (−0.2,−0.5). The equilibrium state of the system

is such that the body is in position q1 = q2 = 0, the limbs

are in the center of their box-shaped domains, the weight

is equally distributed between the feet, and velocities and

tangential forces are zero. Note that, in this configuration,

the hands are not in contact with the walls. The state and

the input vector are then

x := (qlh − q̂lh, qrh − q̂rh, qb, q̇b) ∈ R
8,

u := (q̇lh, q̇rh, flf +mg/2, frf +mg/2) ∈ R
8,

Velocity bounds are the same for each part of the robot

‖q̇‖∞ ≤ 1 whereas normal contact forces have to lie in

the interval [0, 2m‖g‖] for the feet and [0,m‖g‖] for the

hands. Tangential contact forces have to lie in the friction

cone (orange in Figure 1), with friction coefficient µ = 0.5.

Equations of motion are discretized with the explicit Euler

scheme with a sampling time h = 0.1.

In order to stabilize the robot in the equilibrium state, we

set the controller parameters to Q = MT Q̄M , Q̄ = R = I8,

N = 10, and for X g we employ the maximal invariant

constraint-admissible set for the system in the equilibrium

mode (the matrix M ∈ R
8×8 is introduced to penalize the

relative position of the limbs with respect to the body).

Dividing the domain of the right hand position in four convex

sets (in contact with the top of the table, in contact with the

side of the table, over the table, on the side of the table) and

the domain of the left hand in two sets (in contact with the

wall, not in contact with the wall), the number of modes for

the PWA dynamics is s = 5 (modes in which both the hands

are in contact at the same time can be removed automatically

since they generate empty domains Di).

Running Algorithm 2 with 105 samples, we get a total

number of feasible sets X̃ zf equal to 593, which is satisfac-

torily low compared to all the potential sN = 510 ≈ 107

mode sequences. In Figure 7 we show the trajectories of the

robot in closed loop with the controller from Algorithm 1

starting from three different initial states. These are chosen

in such a way that, in each motion, the robot has to interact

with a different surface of the environment in order to recover

the equilibrium state. Comparing the costs obtained applying

the exact feedback from the MIQP (2) with the results in

Figure 7, we have that only for the first motion (contact with

the top of the table) is there a difference in cost, and even

in this case the loss in optimality is just 1.11%; the reason

for this is once again related to the relatively long horizon

N as in Section V-A. For these three initial configurations,

the solution of the MIQP (2) required 2.3 s, 9.6 s, and 3.0 s
whereas the solution of one of the feasible QPs (4) required

on average 26 ms, 24 ms, and 27 ms (using Gurobi 7.0.2 on

a 2.4 GHz Intel Core i7). In conclusion, to quantify the level

of optimality of the proposed control scheme, we considered

611 feasible random initial conditions x̄ ∈ X f . In only 11 of

611 cases was there no set X̃ zf covering the sample, meaning

that the coverage of the feasible set is almost complete after

the 105 samples. For the remaining samples, on average 6.71

and at most 39 feasible mode sequences were provided by

the map Z̃ f(x). In these cases, the loss of optimality as a

function of the maximum number of QPs we decide to solve

online in Algorithm 1 was 39.0% for 1 QP, 13.3% for 2 QPs,

3.30% for 5 QPs, 2.00% for 10 QPs, and 1.86% if we solve

all the feasible QPs returned by Z̃ f(x).

VI. CONCLUSIONS AND FUTURE WORKS

In this work we have presented a framework for multi-

contact feedback stabilization of robotic systems. We adopted

a PWA model for the description of the robot’s dynamics

that is able to capture the non-smooth nature of the problem

but, at the same time, is still tractable from a computational

point of view. Leveraging recent theoretical advances in

the field of hybrid MPC, we have developed a control

algorithm that is able to generate nearly-optimal feedback

in real time for systems of high dimensions. We proved

the effectiveness of the method on a two-dimensional model

of humanoid, showing that the proposed algorithm behaves

almost identically to the exact hybrid MPC controller.

Future works will be focused on developing a high-

performance implementation of the algorithm and testing it

on systems with higher dimension, parameterized environ-

ments, and real hardware.

SOURCE CODE

The source code for all the simulations presented in

this work can be found at https://github.com/

TobiaMarcucci/py-mpc/tree/humanoids2017.

https://github.com/TobiaMarcucci/py-mpc/tree/humanoids2017
https://github.com/TobiaMarcucci/py-mpc/tree/humanoids2017


Fig. 7. Trajectories of the two-dimensional humanoid in feedback with the controller from Algorithm 1 for three different initial states. From
top to bottom: contact with the top of the table for x̄ = (0, 0.15,−0.1, 0.15,−0.05, 0.1,−1,−0.5), contact with the side of the table for
x̄ = (0.1,−0.1, 0.1,−0.1, 0.1,−0.05,−1,−0.5), and contact with the wall for x̄ = (0, 0, 0, 0, 0, 0, 1,−0.5). From left to right: frame at time
τ = 0, 1, 2, 4, 8, 16, 100. Configurations at time τ = 100 are practically indistinguishable from the nominal configuration.
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