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ABSTRACT

In this paper we investigate certain generalizations
of the strict topology and of topological measure theory.
Although we are primarily interested in noncommutative
C*-algebras, we do devote some attention to linear spaces
of vector-valued functions.

In Chapter I notation and terminology are established.

In Chapter IIL, we study approximate identities (in
Banach algebras) which are interesting in themselves and
also provide a useful tool for studying strict topologies
and topological measure theory, Our main results in Chap-
ter II have to do with well-behaved and B-totally bounded
approximate identities in the function algebra cO(S) .

We show that co(s) has a B-totally bounded approximate
identity if and only if S is paracompact and that if S
is connected or locally connected and CO(S) has a well=-
behaved approximate identity, then S is paracompact. We
also define several other types of approximate identities
and give conditions on Banach algebras necessary and/or
sufficient that they possess one or more of these types.

Chapter III is the central chapter in our paper. 1In
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the first section we consider the double centralizer al=~
gebra M(A) of a C¥-algebra A with its strict topology
8 and state certain results obtained by R. C. Busby and
D. C. Taylor, Among the resulis in the second section are
these: (1) M(A)B is semireflexive if and only if A is
dual; (2) M(A)p is nuclear if and only if A is finite-
dimensionals (3) M(A)ﬁ has a B-compact unit ball if and
only if A is a subdirect sum of finite~dimensional
C*-algebras; and (%) M(A)B is (DF) or (WDF) if and
only if me(A) is an essential A-module, In Section 3

of Chapter III, we define measure compactness of a (*-algebra
A and shpw that *-homomorphic images of measure compact
C*-glgebras are measure compact, that tensor products of
measure compact C¥-algebras are measure compact and that
subdirect sums of measure compact C¥-algebras are measure
compact. We also show that algebras with countable approxi-
mate identities or series approximate identities (plus a
cardinality condition) are measure compact and that B
weak-* compact subsets of positive linear functionals in
the adjoint of M{A) , with the strict topology, are
B-equicontinuous. We conclude Chapter IIT with a study of
the Stone-Weierstrass theorem for M(A) with the strict
topology.

In Chapter IV we define topologies BO, ﬁl, and B
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for C¥*(X:E) and o-additive, r-additive, and tight lin-
ear functionals on C*(X:E) where X is a completely
regular space and E 1is a normed space. We generalize
some of the work of Sentilles by showing that- the adjoint
spaces of C*(X:E) with the topologies Bos B, and B
are the spaces of tight, o-additive and r-additive linear
functionals, respectively. We also give a vector measure
characterization of tight linear functionals on C*(X:E)
and show that several different definitions of tightness
are equivalent. We conclude Chapter IV by showing that

c*(X:E)a has the approximation property when E has the
o]

metric approximation property and by computing the double
centralizer algebras of the algebras C*(X:E) and CO(S:E)
for E a (*-algebra, X , a completely regular space, and

S , a locally compact Hausdorff space.

vii
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INTRODUCTION

The algebra C(X) of continuous functions on a com-
pact Hausdorff space with the norm topology is a mathemat-
ical object that has fascinated many mathematicians for
several decades. In 1958 R. €, Buck presented in [5] the
results of his efforts to find a topology, which he called
B, on C*¥(S), the bounded complex-valued functions, con-
tinuous on a locally compact space S , so that C*(S)ﬁ
would enjoy many of the topological vector space properties,
as a class, that C(X) does.

Buck's paper on B, the strict topology, was followed
by many others on the strict topology and its generalizations.
Wells in [66] computed the adjoint space of C*(S:E)S .
Conway in [11-13] proved several important results. Per-
haps his most interesting centribution was to the problem
posed by Buck in [5}: when is C*(S)B a Mackey space?
Conway showed that paracompactness of S is a sufficient
condition. This result was also obtained independently in
[33].

In [7] Collins studied the space 1L°"(s)ﬁ and in [8]

Collins and Dorroh obtained, among other things, the re-

viii
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sults that C*(s)5 has the approximation property and

that CO(S) has a B-totally bounded approximate identity
if 8§ is paracompact, Dorroh in [18] studied an important
localization property of 8 .

The strict topology was generalized in a noncommuta=-
tive direction by R. C. Busby [6] in his study of the
double centralizer algebra M(A) of a C¥-algebra A .

D. C. Taylor continued this study [57-59] with computations
of the dual space of M(A) with its strict topology and
extensions of Phillips! Theorem [1%4, p. 32] and Conway's
result on the Mackey problem being only a few of the nice
results he obtained.

The strict topology was studied in a Banach module
setting in [51,52].

Several authors extended the strict topology to C*(X)
for X completely regular and not necessarily locally com-
pact. Some of this work is to be found in [21,22,27,50,
53~56,61,67]. The work of Sentilles is especially important,
in our opinion, as he connected the strict topology with
topological measure theory as initiated in [62] and sub-
sequently studied in [21,29,30,31,35-371.

The main problem motivating this thesis was to study
noncommutative C¥-algebras without identity, particularly

in the strict topology context. Approximate identities in

ix
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Banach algebras are studied since they seem to be a use-
ful tool for guestions about M(A)s and are interesting
in their own right.

We are particularly interested in well-behaved approxi-
mate identities because of Taylor's result that M(A)B is
a strong Mackey space if the C¥-algebra A has a well-be-
haved approximate identity. We were also interested in the
question posed in [8]: does the existence of a B-totally
bounded approximate identity for CO(S) imply that S is
paracompact? We answer this question in the affirmative
and also show that if S is conmnected or locally connected
and co(s) has a well-behaved approximate identity, then
S 1is paracompact.

Returning to the study of M(A) , for a C*-algebra 4 ,
we first study topological vector space properties of
M(A)H (M(A) with the strict topology). Among our results
are the following: M(A)a is semireflexive if and only if
A is dual; M(A) has a B-compact unit ball if and only if
A 1is a subdirect sum of finite-dimensional C*-algebras;
M(A)p is nuclear if and only if A is finite-dimensionalj;
and M(A) is (DF) or (WDF) if and only if £7(A4) is
essential (generalizing a result in [54]).

We next generalize topological measure theory to a

C*-algebra context by defining a notion of measure compact-
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ness for (C*-algebras. Using this notion, we show that
C¥-algebras with countable or series approximate identi-
ties (plus a cardinality condition) are measure compact.
We also obtain some permanence properties of measure com-
pactness as we show that C*¥-tensor products of measure com-
pact C*¥-algebras are measure compact and *-homomorphic
images of measure compact C*-algebras are measure compact.
Finally, we show that weak-* compact subsets of positive
linear functionals in the adjoint space of M(A)9 are
B-equicontinuous. Chapter IITI concludes with some partial
results on the Stone-Welerstrass Theorem for M(A)S )

In Chapter IV the linear space C¥(X:E) 1is studied
with the topologies GO,B and Bl which we defined so as
to extend definitions in [50]. We define the notions of
o-additivity, r-additivity, and tightness for bounded linear
functionals on C*(X:E) and compute dual spaces, showing
that the adjoint of C*(X:E) with topology B(ﬁo,sl) ié
the space of r-additive (tight, o-additive) functionals.

We characterize tight functionals in several ways and give
a vector measure representation for tight functionals. Two
other results in Chapter IV are a characterization of the
double centralizer algebra of C*(X:E) (for a C*-algebra
E) and a proof that C*(X:E)BO has the approximation pro-

perty if E has the metric approximation property.

xi
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We list several unsolved problems to conclude the

thesis.

We conclude with some remarks on our numbering con-
vention., Chapter I has only one section so items are
nunbered consecutively, e.g., l+x denotes item x in
Chapter I, In Chapters II,III, and IV items are numbered
in the form arbec , where item a-b.c is item c¢ in

Section b of Chapter a .
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CHAPTER I
PRELIMINARIES

The purpose of this chapter is to present some facts
and results which we hope will facilitate reading of this
thesis. Many of the terms used in the text are defined
here and nowhere else in the text. For this reason,

familiarity with the contents of Chapter I is helpful.

TOPOLOGY AND CONTINUOUS FUNCTIONS

Our standard references for general topology are
[19,28]. Throughout this paper S will always denote
a locally compact Hausdorff space and X a completely re-
gular Hausdorff space. A covering of a topolcgical space
is locally finite if each point in the space has a neigh-
borhood which meets only finitely many elements of the
covering. A Hausdorff space Z is called paracompact
if each open cover of Z has an open, locally finite
refinement. The next theorem gives a useful characteri-

zation of locally compact, paracompact Hausdorff spaces.

1.1 THEOREM [19, p. 107]. The space S is paracompact
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iff S is the union of a pairwise disjoint collection of
open and closed o compact subspaces, The space of ordi-
nals less than the first uncountable ordinal, with the

order topology, is not paracompact.

Note the use of '!'iff'' for ''if and only if'! in
the statement of the theorem. We shall follow this con-
vention in the sequel.

Let ¢*(X) denote the space of bounded continuous
scalar-valued functions on X . !''Scalar'' refers to
either the real numbers or the complex numbers and we
shall make it clear at each point which meaning we are
using. A function f mapping X into the scalar field

vanishes at infinity if {x € X : [f(x)] > €] is a sub-

set of a compact subset for each € > 0 . A real-valued

function f 1is called upper semicombvinuous if {x:£(x) < a}

is open For each real number a . Iet co(x) denote the
elements of C*(X) which vanish at infinity and C(X)
denote the subset of (*(X) consisting of functions which

vanish outside a compact subset of X .
LOCALLY CONVEX SPACES

Our general reference here is [45]. Let E be a

vector space (real or complex). A seminorm on E is a
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function p from E into the nonnegative reals satis-
fying p(0) = 0 , p(ax) = |ajp(x) for scalars a and
x € E, and p(x+y) < p(x) +p(y) for x,y e E. A4 lo-

cally convex topological vector space (locally convex

space, for short) is a vector space E with a topology

T , which has a family P of seminorms so that the sets
{x € B: p(x) <€} for peP and € >0 form a sub-
basis for the neighborhood system in T of the origin.

The space of continuous linear functionals on E is called
the adjoint (adjoint space) of E and denoted E' .

The weak-* topology on E' is that topology deter-
mined by the seminorms f < |f(x)] , for x € E and
T € E' . The adjoint of E' with the weak-* topology is
E . The weak-* topology on E , thinking of it as the
adjoint of E' , is called the weak topology.

We assume familiarity with the Hahn-Banach theorem,
the open mapping theorem, and the uniform boundedness
principle as presented in [45]. We also assume a know-
ledge of polar sets, If E is a locally convex space
and AC E, the polar of A in E , denote AO, is
{f e B': |f(a)l <1, Ya e A} . The strong topology on
E! dis the topology of uniform convergence on bounded
sets of E, i.e., a net {fa] C E' converges to O in

the strong topology iff for every bounded set BC E ,
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(fa] is eventually in BO . ‘The second adjoint of E ,

denoted E'' , i1s the adjoint of E' with the strong to-
pology. If for x € E, we define the element F, in
E'' by means of the equation FX(I‘) = f(x) for f ¢ E',
the map x = FX is a one-to-one vector space homomorphism
of E into E'' ., In general, this map is neither onto
nor continuous when E has its initial topology and E'!
has its strong topology. If the map is onto, E 1is
called semi-reflexive; if it is onto and continuous, E

is called reflexive.

1.2 THEOREM., A space E 1is semi-reflexive iff every

bounded weakly closed subset of E .is weakly compact.

A set HCE' is eguicontinuous if B is a zero
neighborhood in E . Every eguicontinuous set has weak-%*
compact closure, but the converse falls in general.

An important topology for a locally convex space E
is the Mackey topology. This is the topology of uniform
convergence on weak-* compact convex circled subsets of
E' . The Mackey topology is the finest locally convex
topology on E for which E' is the adjoint space [145].
We shall call E a Mackey space if its topology is the

Mackey topology, or equivalently, if every weak-* compact
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convex circled subset of E' is equicontinuous. We shall
call E a strong Mackey space if every weak-* compact (but
not necessarily convex and circled) subset of E!' is
equicontinuous. Some authors have used the term '‘strong
Mackey space'!! to mean that every weak-* countably compact

subset of E' is equicontinuous, e.g., see [12].

MEASURE THEORY
We shall discuss some measure theory concepts for
locally compact Hausdorff spaces here; more general
measure theory will be summarized in Chapter IV. Let S
be a locally compact space and B denote the sigma alge-
bra generated by the closed subsets of S ., B 1is called
the Borel sigma algebra, Our reference for measure theory

on locally compact Hausdorff spaces is [47].

1.3 THEOREM [47]. Let 1 be a bounded linear functional
on CO(S) . Then there exists a unique Borel measure g
so that L(F) = Ifdu for all f € Co(s) . Furthermore,

ol = lull .
BANACH ALGEBRAS

Our general references for this section are [17,381.

A Banach algebra is a complex Banach space A with a
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multiplication satisfying |labll < flal| ||bll , where |||

denotes the norm of the element x in A .

1.4 DEFINITION, Let A be a Banach algebra. A

net {ea] < A 1s called an approximate identity for

A if: (1) el €1 va and (i1) 1im fxe, - x| =
a

=lim]|eax-x||=0 ¥x € A .
a

1.5 DEFINITION. Let A be a Banach algebra. A 1is said

to be a *-algebra or an algebra with involution if there

is a linear map *:A 2 A which satisfies the following
conditions (where we denote by x* the image of the ele-
ment x € A under the map *):

(1) fx*l = lixll (2) (xy)* = y*x* for all x,y € A

(3) x** =x Vxe A (4) (ra)y* = Xa* for any complex
number A and a € A (T denotes the complex conjugate

of L) .

If A 1is a Banach algebra, A can be imbedded na-
turally in a Banach algebra with identity. Iet Al de-
note the set of ordered pairs (a,t) where a € A and
t 1is a complex number. Define a norm on Al by
fi(ast)lly = Ball + 16} . If A is a *-algebra, A can

be made into a *-algebra by defining (a,t)* = (a*,T) .
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Define addition and scalar multiplication coordinatewise.
If (a,t) and (al,tl) € A, define the product
(a,t)(a.l,tl) = (aa._.L + tay + tla,ttl) . Note that A, is
a Banach algebra with identity containing A isometrically
and isomorphically and that Al is a ¥*-algebra if A 1is,
with the *-operation on Al extending that on A . Let
I denote the identity in A, . If a € A, the spectrum
of a , denote Sp(x) is the set of complex numbers A
such that x -~ AI is not invertible in Al .

Let A be a *-algebra and x € A . Then x is
called hermetian if x = x* and positive if it is her-

metian and Sp(x) is a subset of the real numbers,

1.6 DEFINITION, Let A be a *-algebra. A is called a
C*-algebra if llxll2 = |lx*x|| for all x € A . The term
B¥*-algebra will also be used interchangeably with C*-alge-

bra in this thesis.

Since this thesis is mainly about C*-algebras, we
shall give several examples and state certain structure
theorems we will use, Two examples of C¥-algebras are
the algebra C(X) of continuous functions on a compact
Hausdorff space X and the algebra B(H) of bounded

linear operators on a Hilbert space H .
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Let A and B be two ¥-algebras, A ¥*-homomorphism
f is an algebra homomorphism that satisfies f(a*) =
= (f(a))* for all a € 4 .

The following structure theorems are needed in the

sequel [17].

1.7 THEOREM, Let A be a commutative C¥-algebra without
identity. Then there is a locally compact Hausdorfi space
§ so that A is isometrically *-isomorphic to Cy(S)
i.e., there is & *-homomorphism h mapping A onto Cy(S)

such that ||h(a)]l = [jall for a1l a e A .

1.8 THEOREM, Let A be a commutative C*-algebra with
identity. Then A 1is isometrically *-isomorphic to the
algebra C(M) of all continuous functions on some compact

Hausdorff space M .

1,9 THEOREM, Let A be a (*-algebra (not necessarily
commutative)., Then A is isometrically *-isomorphic with
a norm closed self-adjoint subalgebra of B(H) , the

bounded linear operators on some Hilbert space H .

Let A be a Banach *-algebra, A linear functional

f on A is said to be positive if f£(x*x) >0 Vx e 4.
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1.10 PROPOSITION (Cauchy-Schwarz Inequality), If f is
& positive linear functional on a Banach *-algebra Al

then |£(ab)|? < £(a*a)f(b*) V a,b ¢ A [38, p. 187].
We shall need one more theorem about C*-algebras.

1.11 THEOREM [17]. Every C*-algebra A has a bounded
approximate identity, The adjoint space is algebraically
spanned by the positive linear functionals (every positive

linear functional on A 1is continuous),

FACTORIZATION THEOREMS

Let A be a Banach algebra, A Banach space V 1is
called a left A-module if there is a mapping from A X V
into V , whose value at the pair (a,v) in A XV is
depoted asv , satisfying the conditions that a.v is
linear in .a for fixed v and linear in v for fixed
a and (ab)sv = a-(b.v) for a,b € A and v €V . The
left A-module V is said to be isometric if
flasvll < llalf vl for all a € A and v € V. Suppose that
A has a bounded approximate identity {ea} . The left
A-module V is called essential if Hea-v-vll ; 0 for
all vevV,

The next theorem is very important in our work.
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10

1.12 THEOREM [26] . Let A be a Banach algebra with a
bounded approximate identity and V an isometric and
essential left A-module, Let € >0 and x € V. Then
@ ae€A and y €V such that:

(1) x=a-y

(i1) ly-=xll < ¢

(111) llall <2

(iv) y Dbelongs to the closure of f{a-z]la € A and z e V].

It is pointed out in [26] that if the approximate
identity is contained in a closed cone in A , then the
element a in 1,12 may be chosen from ¢ . For example,
it is known that the positive elements of a C¥-algebra form
a closed cone and that a C*-algebra has an approximate
identity consisting of positive elements., Thus if A is
a C¥-algebra the element a in 1.12 can be taken to be a

positive element of A .
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CHAPTER II
APPROXIMATE IDENTITIES AND THE
STRICT TOPOLOGY

The purpose of this thesis, as stated in the abstract,
is an attempt to generalize the theory of commutative
C*~algebras to a noncommutative setting. A particular
problem along this line is the question of what is to
substitute for the maximal ideal space [38] in the non-
commutative case, As explained in Section 2 of this
chapter, the approximate identity has proven to be a use-
ful device for a large class of problems, particularly
those connected with generalizations of the theory of the
strict topology (defined in Section 1).

Section 1 of Chapter II contains preliminary material
relating to the strict topology. In Sections 2-7 relation-
ships between the existence of certain types of approximate
identities on a C¥-algebra and other properties of the
algebra are studied. In Section 8, we study a property
of C*-algebras which arose from trying to decide whether
every C*-algebra has a canonical approximate identity.

The most interesting results in Chapter II are in Section 3

11
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because they are related to the important Mackey problem

posed by Buck [51.

SECTION 1. THE STRICT TOPOLOGY

In this chapter, S will always denote a locally
compact Hausdorff space, In this section, we present de-
finitions and theorems pertinent to the strict topology,

which was defined and first studied by R. C. Buck [5].

2,1.1 DEFINITION. The strict topology on C*(S) 1is that
locally convex topology given by the seminorms f = |£g|
for £ € C*¥(8) and & € CO(S) . Note that we may consider
only nonnegative @. and that the sets

Vg = {f € ¢%(8): ||£g]l < 1} actually form a neighborhood
basis at the origin. In terms of nets, a net {fb} in
C*(8) converges to zero in the strict topology iff

fb¢ % 0 in the norm topology for each £ € CO(S) . The
strict topology is denoted B .

2.1.2 DEFINITION, Another important topology for C*(S)
is the compact open topology, denoted C -~ Op . The semi-~

norms are f 4 ]|f||K for f € C*(S) and K a compact
subset of S (|Ifllg = sup {|£(x)]: x € K}) . Clearly the
seminorms £+ |£4| , for ¢ e Cy(S) , also determine

the compact open topology. Thus B8 is a finer topology

12
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that C - Op since it has a larger family of seminorms,
A net {fb} in  C*¥(8S) converges to zero in the compact
open topology (denoted £ # 0 C - Op) iff £, 2 0 uni-

formly on all compact subsets of S .,

The following results on the strict topology are due

to Buck [5].

2.1.3 THEOREM. (a) The norm topology and 8 on C*(S)
agree iff S8 1is compact.

(v) c*(s)B(c*(s) with topology B) is complete.

() B is metrizable iff § is compact.

(d) A set is p-bounded iff it is norm bounded.

(e) On bounded subsets of C*(S) 8 =2C ~ Op .

(£) C,(8) 1is B-dense in C*(8) .

2.1.4 THEOREM. ILet L be a p-continuous linear functional
on C*(8) . Then there is a unique regular Borel measure

M on S so that L(f) = jfdu for f € C*¥(8) . Conversely,
if @ is a regular Borel measure on S and T(f) = ‘[fdu
for f e 0*(8) , then T is a B-continuous linear func-

tional on C*(8) .

It follows from 2.1.% that B-continuous complex homo-
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morphisms of (*(8) are given by evaluation at points of
S . This fact, 2.1.%, and other results below show that
(}*(S)]a has many of the same properties as does C¥*(X)
with its norm topology, where X 1is a compact Hausdorff
space. In [ 5] Buck posed the question: When is c*(s)B
a Mackey space? A partial answer was given by Conway [12].

Theorem 2.1.5 -~ 2.1.9 are due to him.

2.1.5 THEOREM. Let H G c*(s)a . The following statements
are equivalent:

(a) H is uniformly bounded and, for every € > 0 , there
is a compact set K € S so that |uf(S\K) < € for all
uenH.,

(v) ® is B-equicontinuous.

(e) H is uniformly bounded and for every net {fa] in
C,(S) such that £ =0 C-0p and |f ]l <1 for all

a , fa < 0 uniformly on H .

2.1.6 THEOREM, Let S be paracompact. If H is a
B-weak-* countably compact subset of M(S) , then H is

g-equicontinuous. Hence C*(s)a is a strong Mackey space.

A crucial fact used in proving 2,1.6 is this result

of Conway:

14
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2.1.7 THEOREM. If S is the space of positive integers

with the discrete topology and ® < 4% = M(S) , then the

following are equivalent:

(a) H is weakly conditionally compact;

(v) H is B-weak-* conditionally compact;
(¢) H is norm conditionally compact;
(d) H is B-equicontinuous.

Conway's next result is a generalization of the clas-

sical Ascoli theorem.

2.1.8 THEOREM. If F c C*(S) then the following are
equivalent:

(a) F is B conditionally compact;

() F is uniformly bounded and C - Op conditionally
compact;

(¢) F is uniformly bounded and for every compact set
XKES, F|K = {f‘IK:f € F} is norm conditionally compact
in ©*(K) (flg denotes the restriction of £ to X) ;

(d) F is uniformly bounded and an eguicontinuous family,
2.1.9 EXAMPLE, Let X denote the space of ordinals less

than the first uncountable ordinal with the order topology.

C*(X)8 is not a Mackey space,
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We shall now mention some of the work of Collins [7]
and Collins and Dorroh [8] on the strict topology. The
work of several other authors will be considered in Chap-

ters III and IV of this thesis.

2.1.10 THEOREM, The following are equivalent for a lo-
cally compact space S :
(a) 8 1is discrete;
*
(b) ¢ (S)S is semi-reflexive;

(c) each bounded subset of C*(S)s is precompact,

2.1.11 THEOREM, The following conditions are equivalent:
(a) C*(S)B is nuclear [149];

(o) C*(S)B is semi-reflexive and every unconditionally
convergent series in c*(s)B is absolutely convergent;

¥*
(¢} S is finite, i.e., € (S) is finite-dimensional.

Results 2.1.10 and 2.1.11 are in [7]. Collins and
Dorroh proved 2.1.12 - 2,1,14 in [8].

2,1.12 THEOREM. C*(S)s has the approximation property
[3491.

2,1.13 THEOREM. The following are equivalent for locally

16
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compact S :

(a) 8 is ¢ compact;

(b) co(s) has a sequential approximate identity;

(e) CO(S) has an approximate identity whose range is a

countable subset of c*(s) .

2.1.1% THEOREM. If S is paracompact, CO(S) has a
canonical approximate identity whose range is totally

bounded in ¢ (8)g .

SECTION 2. INTRODUCTION TO APPROXIMATE IDENTITIES.

The problem of extending theorems about commutative
B*algebras to the non-commutative case has received a
great deal of attention in recent years. Because many
proofs made in the commutative case make use of the spect-
rum (= maximal ideal space), an obvious question is: what
is to replace this device in the case of a non-commutative
B¥*algebra? Various possible replacements have been sought;
e.g., see Akemann [2] and Pedersen [%1,%2], Much progress
has been made for certain types of problems by means of
restrictions on approximate identities for the algebra in
question by Taylor [57,59], Akemann [3], and others. The
class of problems solved or seemingly susceptible to this

technique is rather large., This fact and the paucity of
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results for this class of problems obtained by studying
Prim A [17] and thé space of equivalence classes of irre-
ducible representations suggest that the approximate
identity is a useful tool for extending many commutative
theorems to a non-abelian setting., A question that arises
immediately in the case of a commutative B*algebra is:
what do restrictions on the approximate identity imply
about the spectrum of A and vice versa? Along this
line, Collins-Dorroh [8] characterize ¢ compactness of
the spectrum and ask for necessary and sufficient condi~
tions on S ‘that co(s) (in this chapter, S always

denotes a locally compact Hausdorff space) have an approxi-

mate identity that is totally bounded in the strict topo-
logy. This portion of this thesis answers this question
and several related ones, including some in the non-com-

mutative context.

2,2.1 DEFINITION. Let A be a Banach algebra. An approxi-
mate identity for A 1is a net (exl)\ € A} (we generally
write simply {e,} ) with 1lim [le,x ~ x|} = lim [xe, - x| =
=0 for xehd and [l <1 for all A . It is well
known that all B¥algebras have approximate identities [1T7].

2.2.2 DEFINITION. The double centralizer algebra M(A)

18
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of a B¥algebra A was studied by R. C. Busby [6] who de-
fined the strict topology as that topology on M(A) gene-
rated by the seminorms x - max {|xy|| , |lyx|| } for

x € M(A) and y € A . Two motivating examples for the
double centralizer algebra concept are the algebra CO(S)
of continuous complex functions on S which vanish at in-
finity (this class is identical with the class of all com-
nutative C*algebras by the theorem of Gelfand) » whose
double centralizer algebra was identified by Wang [63] as
c*(s) s the algebra of all bounded continuous complex
functions on S ;3 and the algebra of compact operators on
a Hilbert space H , whose double centralizer algebra
was shown to be the bounded linear operators on H by
Busby. For a definition of M(4) and some of its pro-
perties, the reader is referred to Chapter III of this pa-
per. By M(A)B we shall mean M(A) endowed with the
strict topology 8 .

2.2.3 DEFINITION. If £ € G (S) , the support of f ,
spt £, 1is the closure in 8§ of N(f) = {x:f(x) % 0} .

2.2.4 DEFINITION. S is sham compact if each ¢ compact

subset i1s relatively compact.
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2.2.5 DEFINITION. Let A be a B*algebra and {e)‘} be a.n‘
approximate identity for A . We shall be interested in
the following conditions:

(a) {e)\} is countable, i.e., the range of [e)\} is a
countable set;

(b) {e)\] is sequential, i.e., A is the set of positive
integers with the usual order;

(e) {e;} is canonical, i.e., € 20 and if Ay <1,
then e)\lek2 = e)‘l H
(a) {e,} is well-behaved (after Taylor [57]), i.e.,

{a} is canonical and if X € A and {kn] is a strictly
increasing sequence in A , there is a positive integer
N so that e)‘e}‘n = e)\e)‘m for n,m >N 3

(e) {e)‘] is B totally bounded, i.e., totally bounded
in the strict topology;

(£f) {e} is abelian;

(g) {e)‘] is chain totally bounded, i.e., if {ln} is an

increasing sequence in A , then {e)‘n} is B totally
bounded;

(h) e} 1is a(M(A),M(A);) relatively compact, where
o denotes the weak topology on M(A)} in the pairing
with its B dual ;3

(1) {e)\} is sham compact, i.e., {e,\] is canonical and

if {kn] is a sequence in A , then there is a A in A

20
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so that A > 1, for all integers =n .

2.2.6 REMARK. A sequence (e } in a B*algebra A which
satisfies 1lim [le,x - x|l = ll':;m llxe, - x| = 0 is nomm
bounded by the uniform boundedness principle and the B*norm
property. Thus it is not necessary to require norm bounded-

ness in 2,2.1 for this case.

2,2,7 REMARK, Taylor [57] introduced the notion of a well-
behaved approximate identity and used it to prove many in-
teresting improvements of results of Phillips [1%, p. 32],
Akemann [3], Bade [4], Collins-Dorroh [8], and Conway
[10,12,13].

SECTION 3., A CHARACTERIZATION OF PARACOMPACT SPACES.

Qur main result in this section, 2.3.10, answers two
questions posed in [8]. Our interest centers exclusively
on B*algebras without identity; for these, we need informa-
tion about increasing sequences in the directed set of an
appropriate identity and about supports. Lemmas 2,3.1 and

2.3.2 provide what we need,

2,3.1 LEMMA., If A 1is a Banach algebra without identity,
[e)‘} an approximate identity for A , and 10 € A, then

21
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83X € A so that )\>Xo.

Proof. If the conclusion does not hold, then ¥V A € A,

A< )‘0 s from which it follows that e is an identity
0
for A .

2.3.2 LEMMA, Let [ex} be an approximate identity for

Co(8).

(a) If {eh} is canonical, then iy < A, implies

spt e, € et (1) © N(e, ) and A € A implies that the
1 2 2

spt e is compact;

(b) If K is a compact subset of S, then Tk € A so

3
that |e| >3 on K.

Proof. This is straightforward.

We are mainly interested (in Section 3) in two types
of approximate identities, viz., well-behaved ones, shown
to be important by Taylor [57], and 8 totally bounded

ones, the study of which motivated this section.

2.3.3 LEMMA, Let (el] be an approximate identity for
co(s) which is either B totally bounded or well-behaved.

Then there exists a cover of S by clopen ¢ compacht

22
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sets,

2.3.4 REMARK., All topologies between the compact open
and the strict agree on norm bounded sets. Thus
'8 totally bounded'' may be replaced in 2.3.3 by 'f‘com-

pact open totally bounded.!'!'

Proof. We assume that S is n_ot compact in either case
to avoid trivialities. Assume first that [ex] is

B totally bounded. Replacing {ex} by [leklz] s, per-
forming a straight forward computation and using 2.3.%4,

we may assume that (e)‘) is compact open totally bounded
and e >0 for each A . Let x € X and choose by
2.3.2 (b) Ay € A sO that e)‘l(X) >% . Let

K, = {x e S:ehl(x) _>_-i— 1 . Suppose that {KJ.] J=1¢e0,n

and (Aj} j=1,°°,n have been chosen so that

(1) e:)\(j >13;— on Ky J=1,-5n

(2) Kj= {XES:eL(x)Z% for some i, 1L<i<J]}
i

: 3
By 2.3.2 (b) again, choose X, ., € A 50 that e)‘n+l >

= : 1 .
on K, and let K., = {x e S.e)‘i(x) 2 ey for some i ,
1 <1i<n+l} . By induction we obtain sequences {kn}

and (K,} satisfying (1) and (2) above. Let X = g K, .
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X 1is clearly o compact and contains x . It is open
since I% € interior of Kn+1 . To show that X is
closed, take a compact set K . It suffices to show
KN X is closed [28, p. 231]. The total boundedness
condition of {e)\} gives the existence of an integer i

so that for all positive integers J ,
min

(3) 1<i<iy o -e <z
= =70 )‘j hi||K I

(Il = swp £(x)| for £ e ¢y (s)) .
K xekK Cb
Let yeKmnK where m>io.
By construction e,  (y) >% so by (3) there is an inte-
m+l
ger 1<ig io so that . (¥) Z% which shows that
ES

, _ 16
y€e€K, . Thus XNK=KNUK, so XNZX is closed.
* i=1 *

For the other part of the lemma, let x ¢ X , assume
that {e)‘) is well-behaved, and choose by 2.3,1 and 2.3.2
an increasing sequence U‘n} so that e (x) >0 . TLet
Kn = spt e)\n and note, by 2.3.2, that Kn € interior of
Kn+l . Let X = UKn and note that X 1is open, ¢ com~
pact and x € X . From 2,3,2 (a) and the definition of

well-behaved approximate identity, it follows that {e;\_]
i

is totally bounded in the compact open topology and that
y € X implies e (y) =1 for Jj large enough. With
J

24
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these observations, the proof that X is closed is the

same as in the first part of the lemma.

©
2.3.5 REMARK, Note that in 3.3, U spt e CX.
n=1 n

2.3.6 COROLLARY. If S is comnected and has an approxi-
mate identity that is either well-behaved or B8 totally

bounded, then S 1is o compact.

2.3.7 PROPOSITION, Let F be a closed subset of S, If
CO(S) has either a well-behaved or a B totally bounded
approximate identity, then F contains a o compact set

that is relatively clopen in F .

Proof. TLet (el] be an approximate identity with either

of the properties above. For A € A, let dh be the re~
striction of e, to F . Since F is closed, {&} & Cy(F).
We claim that {dx} has the same property as {e,]} does;
i,e., that {dh} is a well-behaved (resp. B totally
bounded) approximete identity for CO(F) . To show this,

it suffices to show that if f e CO(F) s then there is an
extension g in CO(S) of f . Let S* denote the one-
point compactification of S and « denote the point at

infinity., ILet f' be an extension of £ to F U {«} ob-
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tained by defining f£'(v) =0 ., Since £ ¢ CO(F) s I

is continuous and extends to a continuous function p on
all of 8" by Tietze's Theorem since F U {w»} is closed
in S* . The restriction g of p to S 1is clearly an
extension of f in CO(S) . This concludes the proof of

2.3.7.

2.3.8 COROLLARY, If S 1is locally comnected and CO(S)
has an approximate identity that is either well-behaved or

B totally bounded, then S is paracompact.

Proof. By 1l.1,it suffices to show that S is a disjoint
union of clopen o compact subspaces., In a locally con-
nected space, the components are clopen and connected and

so o compact by 2.3.7.

2.3.9 LEMMA. Suppose that Cy(S) has a B totally
bounded approximate identity and let % be the family of
all clopen o compact subsets of S constructed by the
method of the first part of 2.3.3. If Y &% , then

U W is clopen .
wey

Proof, We may assume e, > O as in 2,3.3. Let X = UW
L We¥

and K be an arbitrary compact subset of S . Since S
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is locally compact, it suffices to show that X N K 1is
closed. With each W in % is associated a sequence

{e‘g} from the approximate identity such that E spt eTI'I1 cW
(see 2.3.4) and if y e W eﬁ(y) >%— for n l{al;ée enough.
From B total boundedness of {eE:W €Y, n=1,2,"*},

we get a set [Wi} from % and associated inte-

i=l,e-e5n
gers {ni} i=1,"+-,n so that for any V in % and po-~
sitive integer »p

® s - fh<d

If ye€XNK, then ye KN W for some We¥Y, so
choosing p large enough so that ez(y) >% we see that

eﬂii(y)>0 for some 1< i<n sothat yeW; . We
1

n
have established that XN K=XKn U W; so X NK is

closed. This concludes the proof of 2,3.9.

In [8] Collins and Dorroh show that if S is para-
compact then co(s) has a 8 totally bounded approximate
identity and ask two questions: (1) Does the existence of
a B totally bounded approximate identity imply the
existence of a canonical one that is B totally bounded?
And (2) does the existence of a B totally bounded approxi-
mate identity in CO(S) imply that S is paracompact? We

add to these a third question: Does the existence of a
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B totally bounded approximate identity in C,(S) imply
the existence of a well-behaved one? The answer to all

these questions is given in 2.3.10.

2,3.10 THEOREM, These are equivalent: (1) S is para-
compact; (2) co(s) has a canonical approximate identity
that is B totally bounded; (3) Cy(S) has an approximate
identity that is B totally bounded.

Proof, For the first implication see [8]., Since the
second implication is trivial, we prove only that if [e)\}
is a B totally bounded approximate identity for CO(S)
then S is paracompact. Take % to be the set in 2.3.9
and well order 1t, ILet W, be the first element in %
and W6=WO. If We%, and W4T
W'o= WA (UV) .

V<

Ve¥

o ? let

Each set W' is clopen and o compact by 2.3.3 and
2.3.9.

If xe€S and W 1is the least element in
{(W:Ww e¥ and x € W} , then x clearly belongs to W' .
The collection {W':W € #} then consists of disjoint sets

and so forms a partition of S by clopen o compact sub-

sets. We apply 1.1 to conclude the proof,
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SECTION 4., NON-COMMUTATIVE RESULTS AND EXAMPLES.

Taylor [57] gives the following examples of B*alge-
bras with well-behaved approximate identities: algebras
with countable approximate identities, algebras with
series approximate identities (for a definition, see Ake-
mann [3])such as the compact operators on a Hilbert space,
and subdirect sums of algebras having well-behaved approxi-
mate identities, such as dual B*algebras which are subdirect
sums of algebras of compact operators.

In this section, we give examples of algebras with
B totally bounded approximate identities using some techs,
niques borrowed from Taylor and some of our own. We also
give some partial results, e.g., 2.%.1, relating the exis-
tence of approximate identities of one type to existence of

another type.
2.4,1 PROPOSITION., Let A be a Banach algebra with a
sequential canonical approximate identity {en] . Then

{en) is B totally bounded and well behaved.

The proof requires the following observation whose

proof is straightforward:

2,4.2 REMARK, If (f)\} is an approximate identity for A ,
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then the locally convex topology on M(A) (see Chapter
III, Section 1) generafed by the seminorms
X % max [[]fxx\l,llekll} agrees with the strict topology

on norm bounded sets in M(A) .

Proof of 2.4.1. Let m and ny <n, < -+ be positive
integers. Choose a positive integer io so that ng >m
for i > i, . Then em(eni - enj) =0 for 1i,j>1i, by
the canonical property so [en] is well-behaved. Total
boundedness in the strict topology follows from 2.4.2 and
the fact that [en} is well-behaved., Part (a2) of the
next result was used by Taylor [57] in his study of well-
behaved identities. We shall use it in 2.4.5 to show that
algebras with countable approximate identities have ones

with other nice properties.

2.4.3 LEMMA. Let A be a Banach algebra. (a) If {e}
is an approximate identity for A and {fp} is an approxi-
mate identity for the normed algebra generated by {el} 2
then {fp] is an approximate identity for A 3 (b) If
{e)‘] is a norm bounded net in A and D a dense subset
in the Hermitian part of the unit ball of A so that

ex % x and xe =+ x for each x in D, then [e)‘} is

an approximate identity for A . 1In part (b), we assume
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A is a B*-algebra.
Proof. This is a straightforward computation.

Separable B*algebras haye many types of approximate

identities as 2.4.% shows.,

2.4.% TEMMA, Let A be a separable B¥algebra. Then A
contains an approximate identity that is canonical, seguen-
tial, and abelian (and by 2.%4.1, well-behaved and B to-
tally bounded).

Proof. Let [xn} be a countable dense set in the Hermi-
tian part of the unit sphere of A , and let

X = ; i% X2 . Since x 1is a positive element of A ,

n=l 2° “n

the B*algebra C generated by x is isometrically ¥*-iso-
morphic to the algebra CO(S) , where S is the maximal
ideal space of C . Since CO(S) is generated by a single
function, S is o compact. We may select from C(=CO(S))
an approximate identity [eK} for C possessing all the
properties mentioned in the statement of 2,4,4, It remains
only to show that [ek] is an approximate identity for A .
Adjoin a unit I to A in the customary manner so that

the adjoined algebra is B* , hence we have that
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I(x - e )x (T - ek)”k » 0 . From [17, p. 14] we have that
T - e ).x 2% (T - el < 2°0(T - &) = (I - el

so that |[(I - e )x || = ]|xn(I - ek)“k % 0 . Thus applying
2.4.3 (b) to D = {xn) and [ek] we see that [ek} is

an approximate identity for A .

2.4.5 DEFINITION, Iet [AY} be a family of normed alge-
bras. The subdirect sum, (T AY)O 5, of the family [Ay}

i hat bset of P isti f all = €

is that subset o Yel‘AW consisting o a (av) P A’Y

so that {y € I‘:l]avll > €} 1is finite for each € >0 .
The algebraic operations are pointwise and |la]| =

= sw (flaflzy e T3 .

2.4.6 PROPOSITION. If A = (T AY)O and each A, has a

B totally bounded approximate identity, then so does A .

Proof. The proof is the same as Proposition 3.2 in [5T7]
where the same result is proved for well-behaved approxi-

mate identities.

2.4.7 REMARK., Proposition 2.4.6 is true when ''totally
bounded'! is replaced by any of the types of approximate

identities listed in Section 2, except countable and se-

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quential. Dual B*algebras have B totally bounded

approximate identities by 2.4.6,and 2.4.5 and 2.4.6 give
a proof, different from that in [8], that CO(S), for 8
paracompact, has a B  totally bounded approximate iden~-

tity.

2.4.8 CONJECTURE. We conjecture that Co(8) has a well-
behaved approximate identity if and only if S is para-
compact. As indicated earlier, our results on this ques-
tion are incomplete, but we give an example in Section 6

that is perhaps illuminating.

SECTION 5. SHAM COMPACT SPACES AND APPROXIMATE IDENTITIES.

The definition of sham compact space and sham compact
approximate identity, given in 2.2.5, is motivated by the
space X of ordinals less than the first uncountable ordi-
nal with the order topology, and the algebra CO(X) . For
example, let A = X with the usual order and if \ € A,
let fx be the characteristic function of the interval
[0,A] . It is clear that [f)\} is a sham compact approxi-
mate identity for C,(X) . We note that C,(X) cannot
have a B totally bounded approximate identity since X
is not paracompact. Furthermore, it cannot have a well-

behaved approximate identity either since it is pseudocom-
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

pact.

2.5.1 PROPOSITION. Let S be pseudocompact., If Co(S)
has a well-behaved approximate identity, then § is com-

pact.

Proof. Let {e)‘} be a well-behaved approximate identity
for Cy(S) , suppose that S is not compact, and choose,
by 2.3.1, an increasing sequence {xn] so that

& ¥ e for any integer i ., Note that
i i+l .

€y < e K revy, ie., [ex } is an increasing sequence.
1 2 i

Since the sequence {e)\} is Cauchy in the compact open
¥
topology and C (S) is complete in this topology, there

is a function in cb(s) so that e, * f uniformly on
i

compact subsets of S . By [24, Theorem 2] e, = £ in
norm so . f is in CO(S) . By2.3.2, £=1 on

©
U spt e\ which then is contained in the compact set
i=1 i

K = f'lil) . Choosing X € A so that & =1 on K,
we obtain a contradiction to the fact that ey } &,
i

i+1
for all 1 .

2.5.2 REMARK. Proposition 2.5,1 admits the following non-

abelian generalization, stated here, without proof, for
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completeness: Suppose a B*algebra A has a well-behaved
approximate identity and M(A) satisfies the following

condition: whenever (an} is an increasing sequence in

A and [an} converges in the strict topologyjﬁ x in

M(A) , then Jla - x[» 0. Then A has an identity and
A = M(A) . (See [24, Proposition 2] to see that this re-
sult includes 2,5.1.)

The next proposition relates sham compactness of S ,
existence of sham compact approximate identities in cO(s)

and the property (DF) of Grothendieck.

2,5.3 DEFINITION. Let E be a locally convex topological
vector space with dual E , The space E is (DF) if
there is a countable base for bounded sets in E and if
every countable intersection of closed convex circled
zero neighborhoods which absorbs bounded sets is a zero

neighborhood,

2.5.4% REMARK. The vector space C*(S)B is complete and
the $ bounded sets coincide with the norm bounded sets
s0 c*(s)a is (DF) if each countable intersection of
closed convex clrcled zero neighborhoods which absorbs

points of c*(s) is a zero neighborhood [45, p. 67].
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We shall use the following remerk in the proof of
Theorem 2,5.6,

2.5.5 REMARK. W. H. Summers [54] has recently shown that
*

[ (S)B is (DF) if C*(N;CO(S)) is essential, where
c*(N;CO(S)) is the Banach algebra of all norm bounded
sequences from Co(S) with the sup nomm topology (| li,)

and ''essential'' means that |, (£} - {fn}llw-): 0 where

{ek} is any approximate identity for co(s) and [fn)
any element of c*(N;CO(S)) .

2.5.6 THEOREM., These are equivalent: (a) C*(S) is (DF);
(p) S 1is a sham compact space (c) CO(S) has a sham
compact approximate identity.

Proof. Assume that C*(S)ﬁ is (DF) and X is the

00
union of compact sets s .., X= U . For each
% ooy Fn

integer n ,‘ let @, De a function in Cy(8) so that
OS‘Pnsl and cpnsl on Ig] Let

V={fce cb(S):Ilf o ll £1,%} . V absorbs points of
c*(s) 5 ‘therefore it is a zero neighborhood in the strict
topology by (a). It is obvious that the sets

(£ e c'(s):llf ol <1} (for © 20 in Cy(S)) is a base

at zero for the strict topology. Thus # ¢ » 0 in CO(S)
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so that ({f ¢ c*(s):llf ol <1} €V . This shows that
®(x) > for x in X . For if not, there is an inte-
ger n and a point X, in K, so that o(xy) <1 .

By a standard Urysohn's lemma argument If € CO(S) s0
that f(xy) >1 and flo £l <1 . This contradiction
establishes our claim, i.e.,, X & (p_lfl} s 80 X is re-
latively compact.

Suppose that (b) holds. Let A be the set of all
pairs (K,0) where K€ O0<¢ S, K is compact and O is
open with compact closure. If % = (XK,0) and A; = (K3507)5
we define lle if A =hl or if OlCK . If x = (K,0)
let f, De a function in C,(5) which satisfies: (1)

05 <13 (2) fy, =1 on K; and (3) spt T,
The net {fy} is by (b) a sham compact approximate iden~
tity for CO(S) .

(=3 ¢]

Assume (c), with {e)‘) a sham compact approximate
identity, and let (fn} be a sequence contained in the
unit ball of CO(S) , and € >0 . Choose a sequence
U‘n) from A so that Ile)\nfn - fnll < € for each integer
n . Let )‘O € A be such that g > )‘n for all integers
n . Remark 2,5.5 and the following computation finisgh the

proof:

A >y implies |le, £ - £l =
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1@ - &)el = 10 - )G - o)l <

¢ =~ exn)fnn <€ for all n .

SECTION 6. METACOMPACT SPACES - AN EXAMPLE.

We have been unable to prove our conjecture that S
is paracompact if C4(S) has a well-behaved approximate
identity except in special cases (see section 3), but we
are able to give an example that shows that metacompact-
ness is not sufficient for existence of a well-behaved

approximate identity.

2.6.1 EXAMPLE, ILet I be the unit interval with the
discrete topology and I¥ , the one-point compactifica-
tion of I , with « denoting the point at infinity. Si-
milarly, let N denote the positive integers with discrete
topology, N* +the one-point compactification of N , and
w the point at infinity., Let 8 = I* x N*\ {(»,w)} .
Being an open set in a compact Hausdorff space, S 1is lo-
cally compact Hausdorff,

To show that X is metacompact, take an open cover
Y of X, For each point (w,n) , there is a finite set
Fn of I so that a member of % contains the open set
U, = {x,n):x & F,} . sSimilarly, for each point (x,w)
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there is a finite set GX of N with a member of Y
containing the open set W, = {(x,n)m § GX} . If

(x,y) € X and x £ and y #£w , (x,y) is discrete,
Let Wx,y = {(%,¥)} . It is easily checked that the sets
{Wx} B [Un} » and {Wx,y] form a point-finite open re-
finement of % . Recalling that a space is metacompact
if each open cover has a point-finite open refinement, we
see that X is metacompact.

Before we show that C,(X) has no well-behaved
approximate identity, we point out that X is not pseudo-~
compact; thus we cannot simply apply 2.5.1. In our de-
monstration that Cy(X) does not have a well-behaved
approximate identity, we first exhibit a o(M(X),C" (X))
convergent sequence {pn} which is not tight, where a
subset H of M(X) is tight if it is bounded and
for each € > O there is a compact set Ke in X so
that |u|(XN\NK,) < € for all p eH (|p| denotes the
total variation of p) . We may then apply Corollary 3.k
in [57] to conclude that CO(X) does not have a well-be-
haved approximate identity.

For each positive integer n , 1let My be the mem-
ber of M(X) defined by the equation uL(£) = £((»,n)) -
- £({»,n+l)) for f£ in C*(X) . DNote that the total

variation of u satisfies the equaticn |[u |(f) =
n n

39
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= F{(w,n)) + £{{=,n+l)) for f in C*(X) and so

"“n” < 2 for each integer n . We now show that oy o]
in the weak-* topology of M(X) . Let f € c*(x) and

m e N . Since £ is continuous at (w,n) , for each

€ >0, there is a finite subset Is,n of I so that
if x ¢ Ie,n 5 |£(xn) = £(w,n)| < € . Thus there is a
countable subset I, of I so that if x § I, , f(x,n) =
= f{w,n) . If I; 1s the union of the sets ({I } , we
see that it 1s countable and if x ¢ I, , then £(x,n) =
= f(=@,n) for all integers n ., Choose a point xp ¢ Ip o
Then the sequence {(xf,n)] converges to the point

(xpsw) so that f£((xp.n)) + £((xp,w)) . Thus

Lim £((®,n)) = Lim T((xg,n)) = £((xpw)) so that

1Ii)m £({o,n)) = £({wn+l)) =0 , i,e,, py(f) » 0 . Since
f is arbitrary, we have shown that My -+ 0 weak-* ,

We next see that [un} cannot be tight: Let € = %
and note that a compact set in X can contain only finite-
1y many of the points (o,n) , If K is a compact subset
of X and («,p) § K, we can choose f € c*(x) so that
spt £ is compact, f£((=p)) =1, £=0 on X, and
0<f<g1l, i.e,, so that
lugl (XNE) 2 e ()1 2 1£((=5p))| = 1 . Applying [57,
Corollary 3.%.], we see that CO(X) does not have a well~

behaved approximate identity (note that X is not para-
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compact by [57, 3.1 and 3.2].

2.6.2 REMARK. The space C*(X)‘3 where X is as in
2,6.1 is interesting for several other reasons. First
c*(x)ﬁ is not a strong Mackey space. Conway [12] has
shown that C*(X)B is strong Mackey if X 1is paracompact.
The problem of finding topological conditions on X ne-
cessary and sufficient for C*(X)a to be a strong Mackey
(or Mackey) space is an intriguing problem. If we let
M, be the element of M(X) whose value at f in C*(X)
is f£({(»,n)) , arguments similar to the above show that
{u,}  is weak* Cauchy but has no weak-* limit in M(X) ,
i.e., M(X) is not B weak-* sequentially complete (see
[8,5.1]). C*(X)B is also not sequentially barrelled
(see [65]).

SECTION 7. MISCELLANEOUS REMARKS.

2.7.1 REMARK., It is easy to show that if {e)\) is a sham
compact approximate identity for a (possibly non-abelian)
Banach algebra A , then {e)‘} cannot be well-behaved
unless A has an identity, The question one really wants
to answer is whether A can have another approximate iden-
tity that is well-behaved unless A has an identity ele-~

ment. If A is commutative, the question is answered in
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the negative by 2.5.1 and 2,5.6 of this paper. We have
the following generalization of Theorem 4,1 in [54] (see
Chapter III for a proof),

2.7.2 THEOREM. These are equivalent: (1) M(A) is (DF) ;

3

(2) M(8) is (WDF) ; (3) £7(A) is both a right and a
left essential module (£7(A) is the set of all bounded
sequences in A 3 LQ(A) is a right essential module

means that if {f)‘} is any approximate identity for A

and x = {x ] € £7(&) then Um (sup |l £ - xyll) = 0) .

2,7.3 PROPOSITION, Let A have a well-behaved approximate
identity and suppose that [e)‘} is a sham compact approxi-

mate identity for A . Then A has an identity.

Proof, Let x = (:&Q) e 27(A) 3 we can choose, by induc-

tilon, a sequence [lk} from A so that
lim Ye. -xll=2imllx e -xl}=0
X xkxn *n X n )‘k n

for all positive integers n . By the sham compact pro-
perty, choose e, so that A > )‘k for all integers Kk .

Thus e, e)‘k = e)‘k so that & X, = X, for all n . Thus

1;4‘k.m(sup len & - xnll) =0 and lim (s;p ||ex x, - xn) =0,

i.e., EW(A) is both left and right essential, Suppose

b2
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[fY} is a2 well-behaved approximate identity for A and
¥, <y, < +++ is a sequence in T so that O % fY +
i
+ fY~+1 for all integers i , Since 47(A) 1is essential,
1

there is an element Yo in T 50 that

e, £, -z 1<t
Yo Y3 Yi I

for all positive integers i . Since [fy} is well-be=
haved, there is a positive integer N so that n,m > N
implies that

f big - £ =0

VQ( Yn Ym)

which further implies that ||f.

1
-f || <5 for nm> N,
Yo Yp 2 I

Let C be the commutative B* algebra generated by
{f, :¥ > N} . We claim that spt f, § N(f, ). If
n Yy Y2
this is not true, then spt f = spt T = spt T
Yy Y+l Yo

and so f = the characteristic function of the

= ¥,
Yeer Ymee
by 2.3.2, contradicting the choice of {fY

o

spt 1 e
n n=1

T,
Yy
Thus ¥x € N(£fy ) spt £, which implies that
N+2 N
II£ (x) - ty (x)] =1 . This contradiction concludes
Yn3 N
the proof that a (nonabelian) B*algebra A cannot have

both a well-behaved and a sham compact approximate iden-

tity.

43
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it is easy to give an example of 2 B totally bounded
approximate identity in cO(S) that is not canonical (and
a fortiori, not well-behaved). Our next result points out
the rather interesting fact that in an abelian B*algebra
a canonical chain totally bounded approximate identity is

well-behaved.

2.7.4 PROPOSITION. Let {ek} be a canonical chain totally
bounded approximate identity for CO(S) . Then {g} is
well-behaved,

Proof. Let [)\n} be an increasing sequence in A and

«©
F= Uspt L . Then F is clopen as in the proof of
n=1 )‘n

2.3.3 and, for any compact subset X of F, KcC N(e)‘ )
N

for some integer N , so that e)t =1lon K for n>N,

n

If A e A, let K=spte7\nF; then e;\(eh Y y=0
n m

for n and m large enough by the preceding remarks,

Therefore {eA] is well-behaved.

Taylor [57] proves several interesting theorems about
M(A) assuming that the B*algebra A has a well-behaved
approximate identity. From 2.4.3 and 2.7.4 we see that

(looking at the algebra generated by the approximate iden-

i
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tity) an abelian, canonical, and chain totally bounded

approximate identity for A 1is a well-behaved approxi-
mate identity so Taylor's theorems hold in this case.

We conjecture even more, viz.,, that if A has a canoni-
cal chain totally bounded approximate identity, then the
theorems in [57] hold. Our reason for believing this is
the next proposition, which shows that a canonical chain
totally bounded approximate identity is '’almost'' well-

behaved.

2.7.5 PROPOSITION. If ({e,} is a canonical chain totally
bounded approximate identity in a Banach algebra A , then
(ek] satisfies the following condition: if € >0 , D‘n}
is an increasing seguence in A, and A € A there exists

a positive integer N so that n,m > N implies

fley(ey, - M<e.
e S

Proof. By chain total boundedness of (e)‘ } , there is
n

an integer P so that for all positive integers n

nin fle, (e, - ) <= .
1<p<P A Xn )\p 2

Choose N >P so that if N<n<p, Iqg >p so that

lley (ey - exq)li <e€. If nm >N and n<m, choose
n

q >m so that uex(e)‘ - e )I < € . Then
n q
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"e)‘(e)‘n - e)‘m)" = “e)\(eln - e)\q) ehmll < ”eh(e)‘n - e)‘q)" < e

2.7.6 EXAMPLE. We now give an example of an approximate
identity that is well-behaved but not 8 totally bounded.
Let R denote the real line and A be the set of pairs
(i,3) where i is any positive integer and j = O or
jJ=1. Order A as follows:

1) (i,d) = (3',g') if i =41' and j = J' ;

2} (3,0) > (i,1) for all integers i and J ;

3) (1,0) > (3,0) if i >j .
If A= (1,0) let f, bein Cy(R) so that 0 f <1

and f, =1 on [-i,i] and £, =0 off [-(i+l)(i+1)] .

by
If A = (i,1) , let £, again be in CO(R) so that
_ 1,1 0,1
0<% &1, (%) =1 vhere x;, =3(z5p + 1) and
= 1 1 . .
£, =0 off Is57 - T] . The net {fx} is easily seen
to be well-behaved but the infinite sequence {f(i,1)} is

clearly not 8 totally bounded.

2.7.7 EXAMPLE. 1In 2.3.3, we showed that if Cy(S) has

an approximate identity that is well-behaved (or B totally
bounded) then S contains a clopen set X so that

Co(8) = By ® B, where B; = {f ¢ Co(8):f =0 on X} and
B, = {f ¢ Cn(8):f =0 on S X} are 2-sided ideals of

CO(S) . Obvious noncommutative generalizations of the
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above fail as we now show. Let A be the algebra of
compact operators on a Hilbert space H,{eY:y €T} an
orthonormal basis for H , and A the set of finite sub-
sets of I ordered by inclusion. If X € A, let Pk'
be the finite-dimensional projection defined by the equa-
tion

P, (h) = £<h,e,>e, for held.
A Yer VY

It is easy to show that [Pl] is a well-behaved and to-
tally bounded approximate identity for A , but A has no
non~trivial decomposition as a direct sum of two-sided

ideals [38].

2.7.8 REMARK., It is perhaps worth pointing out that if
Cy(s) and Cy(T) have approximate identities with certain
properties, so does CO(SXT) and the converse is also
true. Suppose for example that CO(S) has a well-behaved
approximate identity {ex} and CO(T) has a well-behaved
approximate identity {fy} . If f and g e CO(S) and
CO(T) respectively let f ® g be the function on § X T
defined by f ® g(s,t) = £(s)g(t) . It is easy to see that
f®ge CO(SXT) . Because the algebra generated by
(f®gl|fe cossg} is dense in C,(SXT) by the Stone-

g € ColT

Welerstrass Theorem, the net [ex ® fo.3 with directed set
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all pairs (A,x) where (A,a) >Q',a') if A >A' and
a >a' is an approximate identity for cO(SXT) which is
easily seen to be well-behaved. C(onversely, if {ex} is
a well-behaved approximate identity for CO(SXT) and

to € T, the net of functions (f,) defined by £, (s)
eh(s’to) is a well-behaved approximate identity for

co(s) .

2.7.9 EXAMPLE, Our investigations of o(M(A),M(A);) re-
latively compact approximate identities is in the first
stages only. We wish to present the following example,
however, as it seems interesting, Let S = the ordinals
less than first uncountable with the order topology. C,(S)
has no c(c*(s),M(S)) relatively compact approximate iden-
tity, For, suppose that CO(S) has an approximate iden-
tity [eh} which is a(c*(s),M(s) relatively compact.
Note that (Ie)\lz) is an approximate identity which is
also o(c*(s),M(S)) relatively compact, SO we may suppose

g >0 . Let X; € A and x, =min {xes:y>x=ehl(y)=

2 3
and let x, = min {x e Sty >x= €, (y) = 0} . Note
2

= 0} . Choose 1, € A so that e >2 on [O,x1+l]
2

x22xl+1 s0 x2>x:L .
Suppose xl,---,kn and Kys® oo, have been chosen

so that:

18

Further reproduction prohibited without permission.



49

k
1) e"k>m on [0,x,_1+1] for 2¢<k<n
2) x =min {x € S:y >x= ¢ (y) =0}
K
3) Ep >Ey g > DAy >y

By induction we select a sequence (An) in A and a

sequence (x,) from X satisfying 1) and 2) and 3).

Let x = lub [:5]} . By assumption, df ¢ C*(S) so that
*

e}\n clusters o(C (8),M(S)) to £ . If y>x,

e)‘n(y) =0 for all n so that f(y) =0, If y<x,
then there is an integer N so that y < RN for n> N
so that eln(y) clusters to 1 ; therefore Ff(y) =1 .
We now show that f cannot be continuous at x . Since
{xn] is strictly increasing, xn < x for all n so that
e (x) =0 for all n and so f(x) =0 ; on the other
ha?:d, X, *x, 80, if £ were continuous, f(x) would
be the limit of the constant sequence f(xn) » l.e., 1.
This confradiction concludes the proof that CO(S) has no

o(c*(s),M(S)) relatively compact approximate identity.

Our last result 2.7.10 answers only one of a number of
questions of the following form: given an algebra A with
an approximate identity having property P and another
approximate identity {el] » can we select from A a sub-

set A (cofinal, perhaps) so that {ex:)\ € AO] has pro-~
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perty P . Easy examples show that the subset AO in
2.7.10 need not be cofinal in A ,

2.7.10 PROPOSITION, If a Banach algebra A has a count-
able approximate identity {fh} and {e)‘} is another
approximate identity, & countable /\O S A so that

e, Aé} is an approximate identity.

Proof. Choose a countable subset A, of A so that
)]:iﬂoe)‘fy = i.:gofveh = fv for each y €T .
SECTION 8., PROPERTY (B) FOR BANACH ALGEBRAS.

The results in this section arose from our attempts
to answer the question: Does every C*-algebra have a ca-
nonical approximate identity ? This question led to the
formulation of Property (B) (defined below) for Banach al-
gebras and an investigation of some of the permanence pro-
perties of Property (B) . Further study of the canonical
approximate identity problem led us to consider group al-
gebras and their group C*-algebras [17]. This question
seems to be very hard, However, Akemann in [1] gave an
example of a C*~algebra without an abelian approximate
identity. The C*-algebra he constructed may not have a

canonical approximate identity; we are studying his ex-

50
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ample now,

2.8.1 DEFINITION. Let A be a Banach-¥ algebra. An ele~-
ment a € A is called factorizable if & € A, b = b¥

so that ba=3ab=2a.

2,8.2 EXAMPLES, If A = CO(S) , then a € A 1is factori-
zable iff a & C,(S) . If A = LCH , the algebra of com-
pact operators on some Hilbert space, the Tfactorizable ele-
ments of A are finite rank operators, Note that if A
has an identity then every element of A is factorizable.,
Thus the concept is of interest only in algebras without
identity. Also note, however, that the algebra A of ope-
rators with separable range on a nonseparable Hilbert space
has no identity but every element of A is factorizable,
Finally, note that if =x = x¥* belongs to a C*-algebra A
then x is factorizable iff ¥ ae€ A, a>0 and

llall <1 such that ax = x .

In studying approximate identities in C*-algebras we
were led to ask the question: Suppose A 1s a C*-algebra
and x and y are arbitrary factorizable elements of A .
When does ¥ a € A so that ax =Xa=Xx and ay=ya=y ?

This question led us to define Property (B) for Banach al-
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gebras,

2,8.3 DEFINITION. ILet A be a Banach *-algebra, A is
sald to have Property (B) if whenever x and y belongs

to A and are factorizable then so is x + y .

2.8.4 EXAMPLES, Banach algebras with identity have Pro-
perty (B) trivially. The algebra LCH of compact ope-
rators on a Hilbert space H has Property (B) since fac-
torizable elements are finite-dimensional, All commutative
C*-~algebras have Property (B) ; so does the algebra of ope-
rators having separable range on a nonseparable Hilbert

space.

2.8.5 THEOREM, Let A= { T At)O where each At has
teT

Property (B) . 'Then A has Property (B) .

Proof. This is clear from the definition of a subdirect

sum of Banach algebras.,
2,8.6 COROLLARY. Dual B¥-algebras [17] have Property (B).

Proof, They are subdirect sums of algebras of compact ope-

rators.
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Our next result 1s that a C¥-algebra with Property
(B) has a canonical approximate identity. It was this
discovery which spurred our interest in Property (B). We

need several lemmas first,

2,8.7 LEMMA, Let A be a C*-algebra, Suppose that when-

eVEr 23,85,y ,X%, € At (positive part) and a;X; = X; »

i=1,2, there exists a e A" that ax; =x; , 1=1,2.

Let n be a positive integer and suppose & finite sets
n n . N R +

{bi} i1 and {yi]i-:l contained in A" such that

l,°*+,n . Then I b,c € AY , so that

biyi =¥; o i
fiell <25 Hell

i=1,%",n .

N

1, be=cb=>b and byi=yi,

Proof, * By induction choose d. in A+ so that d.¥. = ¥,
B-1 n-1 1

for 1<ig<mn-1. Hence d;( L¥;)= Ty; . By induc-
i=1 i=1

n
tion agein, we select d € AT so that a( =y;) =
i=1

- - n-1 n

=d(gy. +y. )= Ty.+y = Ty, . Let C bea com-
1 e T T =

n

_E

mutative C*-subalgebra of A containing 4 and ¥y o.
- ) 1

1=.
By 1.7, there is a locally compact Hausdorff space S so

that € is isometrically *-isomorphic with co(s) . Hence

n
z y; € Cc(s) > S0 we may select elements b and ¢ in
i=1

53
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n

A" sothat ol <1, flell <1, be=c, b(my) = Ty, .
i=1

Computing in M(A) (which has an identity, denoted by I),

n

we get that O < (I-b)yi(I-b) < (I-b)( = yi)(I—b) =0 so
i=1

that (using the B¥-norm property) (I—b)yi =0, i.e.,

byi=y:.L for 1<{i<n.

2,8.8 LEMMA. Suppose the C*-algebra A has Property (B).
Let ¥ denote the family of all finite subsets of A+ .
Then families {a.:F ¢ ¥} and {bF:F € #} can be chosen
from A+ so as to satisfying the following conditions:
(1) IIaFII <1 and ||bF|| <1 for every F e ¥ ;

(28) If GE&F and G4 F then agha = &
(3) bgap = ag s

(#) If C(F) denotes the cardinality of ¥ , then

G 3

llan-xu <—é—%ﬂ for each x € F ,

Proof, If F is a singleton, we may consider the commu-
tative C¥-algebra generated by the element of F and se-
lect ap and bF using 1.7. We proceed by induction on
C(F) , the cardinality of the set F , Suppose we have
selected ap and by so as to satisfy (1) - (%) for all
¥ such that C(F) <k . Suppose F belongs to ¥ and
has k + 1 (distinct) elements, Let m denote the num-

k+1

ber of proper, non-void subsets of T (m = 2 -2).

54
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Each such subset has two elements of AT associated with
it satisfying (1) - (%) above, Denote these elements by
{ai:l <i<m} and {bizl < igm} . Next select elements

s +
an.q and bm+1 in A" so that am+lbm+l =2 and

X
flogax - xll < gr for all x e F. Let z= z;% and
XE.

regard, by 1.7, the conmutative C¥-glgebra generated by z
as CO(S) » Tor some locally compact S . Choose
f,8 € Cp(S) sothat 0 Ff<1,0<aggl, fg=1 and
Itz ~ z}| < ﬁ . Let a ., and by, be the elements of
A whose images are f and g , vrespectively, under the
isomorphism guaranteed by 1.7.

Hence we have the system of equations biai =2y
i=1,°°*,m+l , By 2.8,7, we can choose elements ap and
bp in AT so that (1) end (3) are satisfied and such that

= &

;> 1£1i<mdl . Thus (2) is satisfied also. I%

aFai
remains to be shown that (4) is satisfied. Working in

M(A) , we have that | (I - am_l)xll < E}Tl‘ for every x € F,
s (T - epdxll = BT - ap) (T = apq)xl <

< T = ay )=l < ;c—,l;l- for all x € F , i.e.,

[la,Fx -z} < ﬁ for all x € F . This completes the in-
duction step and shows that the families [aFIF e ¥} and

{bFlF ¢ ¥} can be constructed so as to satisfy (1) - (4).
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2.8.9 THEOREM, ILet A be a C*-algebra having Property

(B). Then A has a canonical approximate identity.

Proof. The family {aF:F € &} of 2.8,8 becomes a net if
& is partially ordered by inclusion, This net is a ca-

nonical approximate identity for A .

Our next result is that *-homomorphic images of alge-

bras with Property (B) have Property (B).

2,8.10 THEOREM. Suppose A is a C*-algebra with Property
(B) and ¢ is the image of A under a *-homomorphism f .

Then C has Property (B) .

Proof. Let KA be the subset of A formed in the fol-
lowing way: take the linear span of the smallest order
ideal (cone with the property that if 0 x <y and y
belongs to the cone then so does x ) of A containing the
factorizable elements of AT . Note that Property (B) for
A implies that the factorizable elements in AT form a
cone, Also note if 0 x <y and ¥ ace A+ s with

lall €1 and ay =y that 0 < (I - a)x(I - a) <

< (T -a)y(I -a)=0 sothat ax = x by familiar argu-

ments. Thus KA is the linear span of the factorizable
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elements of AT and, by Property (B) again, if
xeK, @ aecAh" satisfylng ax=xa=x . In[39,40]

it is shown that T(K;) = K, where K, is defined as the
analogue in ¢ of K, . Hence every element of Kc is
factorizable, Since KC is closed under addition, to show
that C has Property (B) it suffices to show that if

x € ¢ and x is factorizable then x ¢ KC . Suppose

c=c*¥eA and cx =xc=x, Then cx*¥ = x¥c = x*¥ so

that we may suppose x = x* (by locking at x;_x* L B2,

21
Let J be the commutative C¥-algebra generated by x and
¢ . Write x=3x" - x where X ,x € J° = ¢t and
x'x" = 0. Note that cx' = x’c =x* and cxxc=x .

Clearly x' and x e K, so x¢€K,.
We next want to comsider algebras of type
CO(S:E) = {£|£f:T+ B , £ is continuous, and
s = |[£(s)lt € co(s)} where S is locally compact and E
is a B¥-algebra., We make CO(S:E) into a B*-algebra with

pointwise operations and involution and [|£]l = sup J£(t)} .
tes

A claim is made in [39] which amounts to the assertion that
if E 1is the algebra of compact operators on a Hilbert
space then CO(S:E) has Property (B) for any locally com-
pact S . To our surprise, we discovered this is not the

case, Let T Dbe the one-point compactification of the
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positive integers, denoted by N , We will show in 2.8.19
that C*(T:LCH) = CO(‘I‘:LCH) does not have Property (B)
if H is infinite-dimensional,

Before we do this, it is necessary to look at some
examples and results about factorizable elements in Banach

*-algebras,

2.8,11 EXAMPLE, Let T be an operator on a Hilbert space
H . The range projection of T is the smallest projection
in the set {P e B(H): P is a projection and PT = TP = T}.
Let A denote the algebra C*(N¥:LCH) , i.e., the alge~
bra of convergent sequences in the compact operators on H .
We give a counterexample to a reasonable conjecture, namely
that if g € A and f denotes the sequence whose n-th co-
ordinate is the range projection of g(n) then f£(n) con-
verges, i.e., f €A, Let P and @ be finite rank pro-
jections in H with PQ =0 . Let g be the sequence

(P, %Q,, %’-P, -J,fQ,,'") . Then f 1is the sequence
(P,Q,P,Q,°++) and f(n) clearly does not converge in

LCH .

2.8.12 EXAMPLES, An algebra may have a well-behaved approxi-
mate identity (and certainly then, a canonical one) without

having Property (B) . An example is given in [41, p. 135]
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of an algebra generated by two elements which does not
have Property (B) . We thought for a while that the pro-
perties of a C*-algebra being liminal or having continuous
trace [17] were related to having Property (B). This is
not so. The algebra of operators with separable range on
a nonseparable Hilbert space has Property (B) but is not
liminal and does not have continuous trace. On the other
hand, C*(N*:LCH) is liminal and has continuous trace but

does not have Property (B) as 2.8.19 shows.

2.8.13 QUESTION., Does every C*-algebra have a canonical

approximate identity? This seems very hard.

2.8.14 LEMMA, Suppose A and B are compact operators
on a Hilbert space H such that 0 ACI, 0BT
and JA - Bl <% . Tet m(T,\) denote the dimension of
{h € H:Th = Ah} for any operator T € B(H) . Then

n(a,1) < Tm(BA) .
A5

Proof. Suppose the result is false. Let n = m(A,1) and

p= Tm(BA) and suppose n >p . Let [xill <i<n}
lZé'

be an orthonormal basis for the eigenspace corresponding

to the eigenvalue 1 for A , Let H0 be the subspace
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of H spanned by the eigenvectors of B corresponding
to eigenvalues A >%— . Note that the dimension of Ho
is p. Foreach 1<ign, let X; = ¥; + z; where
vy € Ho and Zy belongs to the orthogonal complement of
Hy . Note that, by the Spectral Theorem, if x € H (the
orthogonal complement of Hy) then [|Bx| < —;— x|l . since

p < n there are scalars {dill < i < n} , not all zero,

n n n n
so that .Eldiyi = 0 . Thus ifldixi = ifldiyi + ifldizi =

i=
n n n 1 n

= ifldizi . IIB(iflaixi)ll = "B(ifldizi)“ <3 "ifldixi" .

1 n n
Hence [A - B| > ——r——o ]]A(ii!ldixi) - B(izldixi)" =
Il ifldixill

= Tl—-——— ll; a;%; - B(_% dixi)ll 2% .

REEN N 1=

This contradiction establishes the lemma,
2.8.15 PROPOSITION. Suppose f and g belong to
C*(N*:LCH) and fg=g where O f, 0<g, Ifl <1,

gl 1. Then sup {rank g(n)} < + « .
n

Proof, Choose p in N so that n >p implies that
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I£(n) - £(=)| <% where « denotes the ''point at in-

finity'' in N* . By 2.8.1% m(f(n),1) < I m(f(w),1)
23

<+ ®, since f(o) is a compact operator, Thus

sup m (f(n),1) < + ® so that sup m (£(n),1) < + « ,
nyp n

Hence sup rank g(n) is finite also.
n

2.8.16 LEMMA, Suppose T is a compact operator on a Hil~
bert space and {en] is an orthonormal sequence, If
€ >0 there is an integer p so that n > p = [[T(e ) -

enll >e .

2.8.17 EXAMPLE, Another '’obvious'' conjecture is that
if f e C*¥(N*:LCH) , then f is factorizable if

sup rank f(n) < + ® ., This is false as the following
e;xample shows. Let £(n) =%— times the projection onto
e, where [en}n=l,2,3,c-« is an orthonormal sequence in
an infinite-dimensional Hilbert space H . Note that £

is not factorizable by applying 2.8.16.

2.8,18 LEMMA. Suppose T is a completely regular space,
K a compact subset of T , € >0, E a Banach space,
and f a continuous function from K into E . Then f

has an extension g to T such that” ‘gl < Iifh + € .
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If T 1is locally compact, g may be chosen in CO(T:E) .

Proof. First we do a special case, Assume that f is
defined by the formula (for t e K) £(t) = b Ti(t)e;
i=1

where {fi}?=l € o*(K) and {ei] € E . Extend each func-
tion f; to g; € C*(T) by Tietze's Theorem and let

n
h(t) = g;(t)e; for t e T . Let

i=1
0= {t e T:fig(t)f < lIfll + €} and let P:T ~+ [0,1] be
continuous and satisfy p=1 on X, p=0 on T\O.

n
Let g(t) = £ p(t)gi(t)ei for t € T and note that
i=1

lell < lifh + € . Let C(K) ® E denote the subspace of
C*(K:E) consisting of functions representable in the form
assumed for the special case of the theorem done in the
preceding paragraph. Note C(K) ® E is a linear subspace
of C*(X:E) .

Let us assume for the time being that a sequence
{fn}:=1 can be chosen from C(K) ® E so that
an - ff» 0. We will show below that a sequence satis-
fying this condition can be chosen. By extraeting a sub-

s 1
sequence, if necessary, assume that [lf, - £ .|l < o

for n=2,3,**+ . ILet g, be a function in C*(T:E)
which extends fl . The special case of this theorem,

done in the first paragraph, guarantees the existence of
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g) . Let h; be an extension of f, - f; in C*(T:E)
s 1
which satisfies ||l < 5+ Let g, = h, + g, . Then

]}g2 - gln <—é— and g, extends f Suppose that

5 -
gy5crs8, 1in C*(T:E) satisfy: (1) g; extends f.
. 1 s
1<in; (2) lig; - g, <QT_T for 2<1i<n.

i * . - ig=-
Let h, Dbe an extension in ¢ (T:E) of fo41 - T, satis

fying bl < ~213 and let g, .4 =h + g, . DNote that
8ny1 oxtends f. .. and |lgn+1 - gnll < ? . By induction,
we have a sequence {gn}:=l € C*(T:E) satisfying the fol~
lowing conditions: (1) g, extends £ and

(2) Hepyy - goll < -2%-1- . Clearly then ({g,] ds Cauchy in
C*(T:E) . If g 1is the limit of (g )p , then g € C*(T:E)
and g extends f . By multiplying g be a suitably
chosen function p (chosen by Urysohn's Lemma) that has
value one on X , we may assure that (gl < |£ff + ¢ .
Note that p can be chosen in CC(T) if T 1is locally
compact, S0 that g € CO(T:E,,) .

A1l that remains to be shown is that £ is the limit
of a sequence ({f; )} in C(X) ® E. Let ¢ >0 . Since
f£(X) dis bounded, K has a finite open cover {Oi}?=l
so that if x,y € O |£(x) - £{y)] < e . Let lo; !i1=l

be a partition of unity [19] on K subordinate to the

n R
cover {oi)i=1 . 'Then for each 1<i<n 0<o < 1,
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1 €0

n

®; € C¥(K) and % 9; =1 . Choose a point x
i=1

and let h in C(X) ® E be the function defined by the
n

equation h(x) = 2 @i(x)f(xi) for x € K. Note that
i=1

flh - #ll < € . Hence it is clear that the sequence

{fn}:;:l can be chosen as assumed.

2.8.19 THEOREM. Suppose T is a locally compact Haus-
dorff space and T contains a point p which has a dis-
crete sequence {pn]:___l € 8 such that pn <+ p . Then if
H is an infinite~dimensional Hilbert space CO(T:LCH)
does not have Property (B), where LCH denotes the alge~

bra of compact operators on H .

Proof. Let K = {pn} U {p} . Clearly K is compact and
homeomorphic to N¥ , the one-point compactification of

N , the space of positive integers with the discrete to-
pology. From 2.8.10 and 2.8.18, we see that Co(T:LCH)
cannot have Property (B) unless the algebra A = C*(N*:LCH)
has Property (B). We shall show that A does not have
Property (B). Let {en):=1 be an orthonormal sequence in
H ., For each n € N¥ , let f(n) denote the projection
of H onto the span of e . Let f denote the constant
©

funetion {f(n)}n e N* in A ., ZLet {a‘n):;l and {bn]n=1

be sequences of positive real numbers satisfying:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

ai + bg =1 for all n, and an converges upwards to

1. Let y,=ape +bpe . . Note that |yl =1 for
all positive integers n and Yn - ey . For neN,
let g(n) denote the projection of H onto Vo - Let
g be the function in A with co-ordinates g(n) for
neN and g(o) = (1) . (Note that Y, * ey implies
that g(n) » £(1).) Since f°=f and g =g, f and
g are clearly factorizable, We will show that f + g
is not., OSuppose Ha € A so that a(f +g) = (f + gla =
=f+ g . We may assume that a >0 and |[ja] <1 . By
the familiar C¥-norm argument, we may then assume that
af = f and ag =g . Hence a(n)(en) =e, so that for
n large enough lla(m)(en) - enH <%— . This contradicts

the fact that a(«) ¢ LCH , by 2.8.16.

2.8.20 EXAMPLE, An interesting guestion is whether every
C*¥-algebra has an abelian approximate identity., An example

is given in [1] to show this is not true.

In looking for examples of C¥-algebras, in our study
of approximate identities, we were led to group algebras
and the group C*-algebras of a locally compact topological
group [17]. Let L'(G) denote the group algebra of the

locally compact group G "and m denote Haar measure on
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G . We will use the symbol C*(G) for the group C*-alge-
bra of G, for the rest of Section 8. There is no
problem of confusing this symbol with our previous use

of it to represent the set of bounded continuous functions,

since we shall not use it this way for the rest of Chapter

II1.

2.8,21 DEFINITION, Let G be a group and UCS G ., U is
said to be invariant if xe-l €U foreach xeG. U is

said to be symmetric if x € U implies x—l €U,

2.8.22 LEMMA, Let G be a compact group and W an open
neighborhood of the identity e . Then I an invariant

open set U containing e so that UES W.

Proof. Suppose not, Then &W , a neighborhood of the
origin, so that for each neighborhood U of the identity
there are elements Xy € G and ¥y € U so that

nyle:.Il £W . Regard ({xy} and (y;} as nets. Since
Ni=¢e, vy % e . By taking subnets and using compactness,
assume that x; = X, € G . Hence nyUxI-Il % e , This
contradicts the fact that W 1is a neighborhood of e and

concludes the proof of the lemma.
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2.8.23 LEMMA, ILet G be a unimodular [38] locally com-
pact group with a neighborhood basis at the identity con-
sisting of invariant, symmetric sets. Then L'(G) has an

abelian approximate identity.

Proof, Let Y denote this neighborhood basis of symmetric,
invariant sets, For U e Y let i‘U be the function
(m(U))—l times the characteristic function of U , where
m denotes Haar measure on G . It is easy to see that the
net {fU] s with the U's ordered by reverse inclusion, is
a bounded approximate identity for L'(G) . It is also
clear that fU(xy) = fU(yx) for every pair x and y in
G . We shall show that {I‘U] is contained in the center
of L'(G) . Let * denote convolution in IL'(G) . Then

if x e G and f € L'(G) , (f*fU)(x) = ij(y)fU(y' x)dy =
IGf(y)fU(xy'l)dy = IGf(y'lX)fU(Y)dy = ijU(y)f(y' x)dy =

(fy*f)(x) . Hemce fafy = fyxf , for every f e L (@) »

i.e., [fU} is contained in the center of L'(G) .

2.8.24 COROLLARY. If G is a compact group, L'(G) has

an abelian approximate identity.

We are interested in studying approximate identities
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in the group C*-algebras C*(G) [17, 13.9] of a locally
compact group. Our next result concerns the existence of

abelian approximate identities in C*(G) .

2.8.25 THEOREM. Suppose the locally compact group G is
either (1) separable, (2) abelian, (3) compact, (4) a

group with an invariant neighborhood basis, or (5) first
countable, Then C*(G) has an abelian approximate iden~

tity.

Proof. Recall that C*(G) dis the completion of I'(G)
under a smaller norm than the given norm on L'(G) . If

G is separable, then so is L'(G) [17, 13.2.4]. Hence
C*(G) is separable and so has an abelian approximate
identity by the results in Section % of this chapter. If
G 1is abelian, so is C€%¥(G) . If G is compact or has an
invariant neighborhood basis, L'(G) has an abelian
approximate identity by 2.8.23 and 2.8.24, This approxi~
mate identity is clearly an approximate identity for

¢*(G) . Finally, if @ is first countable then L'(G)
has a cguntable approximate identity; hence, C€*(G) has a
countable approximate identity and we apply the results of

Section U again.
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We have three more results in this chapter. The
first is stated without proof, since its proof is similar
to that of 2.8.23., The other two results have to do with
Property (B) and canonical approximate identities for

1'{¢) for G abelian.

2.8,26 PROPOSITION. ILet G be a locally compact group.
Then L'(G) has an approximate identity {fU} based on
a neighborhood basis % such that if U. ,U2 €Y and

U, €0

1 S0 * £

then 1 * £ .
Up U U

2,8.27 PROPOSITION. Let G be an abelian locally com-
pact group. Then L'(G) has Property (B).

Proof. For f € L'(G) , let 4/‘.‘\ denote the Fourier trans-
form of f [46,38]. Also let I(; denote the character
group of G . Note that fe Co(e) so that if £ is
factorizable in L'(G) , §e Cc(e) . Since f = Q is a
linear mapping, the fact that if X _C_e is compact then
h € L'(G) such that 0 51’1\ and A=1 on x [46,

2.6.8] shows that L'(G) has Property (B).

2.8.28 PROPOSITION. Let G be a locally compact abelian

group. Then L'(G) contains an approximate identity
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[ehlk € A} satisfying:

(1) llelig2 v en

(2) 2 <ry= ekle)k2 = e)\l .
Proof. Let A = {f € L'(G):0 < ?_<_ 1, % cc(é),llfil < 2},
Order V as follows fl > f2 iff fl = f2 or

f.‘l* f2 = f2 . This is clearly a partial ordering. We
must show that A is directed under this ordering., This
follows from [46, 2.6.8] which asserts if K is a com=
pact subset of é » there is an element g of L'(G)
such that 05251, lgh <2, and B=1 on K. We
now show that {f]fel\ is an approximate ldentity for
L'(6) . From [46, Section 2,6] we have that {g € L' (G):g
has compact support} is dense in L'(G) . It suffices to
show that if g € L'(G@) such that g has compact support,
then If € V so that % = 1 on the support of 2 (hence
f*g = g since %é\ = 2 and L'(G) is semisimple [38]).
This is guaranteed by [46, 2,8.3]. This concludes the

proof,
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CHAPTER IIT
DOUBLE CENTRALIZER ALGEBRAS

In this chapter we extend certain results of Buck
and others concerning the strict topology. We have seve-
ral interesting results including characterizations of
nuclearity and semireflexivity for the double centralizer
algebra of a C*~algebra, endowed with the stirict topology.
We then develop a generalization to (C¥*-algebras of topo-
logical measure theory and obtain many interesting theo-
rems. Finally, we give some partial results concerning a
general Stone-Weierstrass Theorem for double centralizer
algebras; although our results on this topic are incomplete,
we feel that techniques developed in our study of the
question may lead us to a solution,

In the first section of this éhapter, the double cen-
tralizer algebra of a C*-algebra is defined and some of
its important properties listed, Our references are

[6,591.

SECTION 1, PRELIMINARIES.
3.1,1 DEFINITION., Let A be a C¥*-algebra. By a double

71
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centralizer on A, we mean a pair (T',T'') of func-
tions from A 4o A such that =xT'(y) = T''(x)y for
%X,y in A ., We denote the set of all double centralizers

of A by M(A) .

3.1.2 THEOREM. Let (T',T'') ¢ M(A) . Then
(1) T* and T'' are bounded linear operators from A

to A,

(2) T'(xy) = T'(x)y Vxyecal

(3) T'i(xy) =xT''(y) V x,y €A

3,1.3 LEMMA, If (T',T'') e M(a) , T = fT'l) .

3.1.4 DEFINITION. Let L be a function from A to A .
Let I*¥ be the function from A to A satisfying
I*(x) = (L(x*))" vxea.

3.1.5 LEMMA, Let (T',T'') € M(A) . Then (T''¥,T'*) € M(A).

3.1.6 LEMMA, ILet (T',T'') and (S',S'') belong to M(A).
Then (T'S',S''T'') e M(A) .

3.1,7 DEFINITION., Let (T',T'') and (S',8'') belong to

M(A) and A be a complex number. Define *-algebra and
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norm structures on M(A) as follows:

(1) (T',T'r) + (S',8'1) = (T 4+ ST,T0 4 811
(2) A(T!,T1') = (AT,AT!!)

(3) (TLT)(s,8) = (T'sT,80T)

(B) (T',Tr)* = (TR, )

(5) Wzl =zl = el

3.1.8 THEOREM. M(A) , provided with the operations and

norm defined in 3.1.7, is a C¥-algebra with identity.

3.1.9 THEOREM, Ya €A, let La be the operator in A de-
fined by La(b) =2ab , ¥b € A, and let R, be the ope-
rator in A defined by Ra(b) =ba , Vb € A, Then
(LsR ) € M(A) . TLet py:zA - M(A) be the map

uo(a) = (La’Ra) Va ¢ A . Then kg is an injective
*~homomorphism and uO(A) is a closed two-sided ideal in
M(A) . The map p, is surjective iff A has an identity.

M(A) is commutative if and only if A is commutative.,

3.1.10 DEFINITION. The strict topology is that locally
convex topology on M(A) generated by the seminorms

x = |lyx]| and x = lxyl] for y € A and x € M(4) (re-
garding A as contained in M(A) by virtue of 3,1.9).
Let B denote the strict topology on M(A) and M(A)B de~
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note M(A) endowed with 8 ,
3.1.11 PROPOSITION. A is B-dense in M(A) and M(A) is

g-complete.

3.1.12 EXAMPLES, Wang [63] showed that M(CO(S)) = C*%(8) .
Reid in [43] shows that if A € B(H) , then M(A) =
ft €B(H) : tAC A and At S A, te=-—et =1t} where e

is the projection of the Hilbert space H onto A<H .

3.1.13 THEOREM, Suppose B is a C¥*-~algebra containing the
C*-algebra A as a two-sided ideal, Then there is a uniqgue
*-homomorphism p:B = M(A) with the property that

uix) = uo(x) for x € A . Let A {x ¢ B|xA = {0} } .

Then AO

is the kernel of u . Let BA denote the strict
topology on B generated by A . Then u:(B, BA) 2 M(A)B
is a continuous vector space homomorphism open onto its
image. Suppcse that AO = {0} and that B is BA com-
plete. Then M is an imbedding of B in M(A) and is

onto in this case, i.e., B = M{A) .

The next results, 3.1.1% -~ 3.1.16, are due to D. C.
Taylor [59].
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3.1.,4 THEOREM, If A is a C*-algebra, then

M(A)‘; = {a:fia € A, £ € M(4)'}) = {f-at a € A and

£ ¢ M(A)'} , where a.f(x) = f(xa) and f-a(x) = f(ax)
¥x € M(A) . Under the strong topology, M(A); is a Ba-
nach space that is isomorphic with A' .
3.1.15 THEOREM. ILet A be a C*-algebra and {e)\:x € A}
an approximate identity for A . If HCE M(A)é the fol~-
lowing are equivalent:

(1) H is B-equicontinuous}

(2) H is uniformly bounded and e .f + ., -~ e, -f.e, =+ f
uniformly on H (see 3.1,1%).

Using 3.,1.15, Taylor shows that B = 8' , where B!
is the finest locally convex linear topology on M(A)
agreeing with B on bounded sets of M(A) . He also shows
that if A has a well-behaved approximate identity, then
M(A)13 is a strong Mackey space, 1,e., every B-weak-¥com=-
pact subset of M(A)é is B-équicontinuous. Taylor also
proves the following result which we will need later in

Chapter III.

3.1.16 THEOREM. Let B be a C*-algebra and A te a
closed two-sided ideal of B . If £ e B' , &) € (B,8,)
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and f, ¢ A" ={geB': g=0 on A} so that £ =1+ £,
Furthermore if f is a positive linear functional on B
then so are f‘l and f2 .
SECTION 2. BASIC RESULTS.

We begin our study of M(A) by proving some facts,
2.2.1 - 3.2.5, which may be known but do not appear ex-

plicitly in the literature, as far as we know,

3.2.1 PROPOSITION, Let S denote the unit sphere in M(A).
Then S is closed in the strict topology.

Proof. Suppose (T,,T!) is a net in M(A) and

(T§sTy) » (T,T') strictly. Regard A as contained in
M(A) and note that the strict topology on M(A) is a type
of pointwise convergence on 4 , i.e., (S&,Su) » 0
strictly iff S,(x) * O in norm and 84(x) » 0 in norm
for each x € A, Thus Tg(x) » T(x) for each x € A.
Hence |T(x)l < ||xll for all x e A, i.e., [Tl L1.
Hence [[(T,T')[| <1 by 3.1.3.

Our next result is a partial generalization of Conway's

'1Ascolit'' Theorem for C*(S)a [11,12].
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3.2.2 PROPOSITION, Let F € M(A) . The following are
equivalent:

(1) F is totally bounded in the strict topology;

(2) F 1is norm bounded and totally bounded in the kappa
topology (see 3.2.3) of some bounded approximate identity
for A ;

(3) F 1is norm bounded and totally bounded in the kappa

topology of all bounded approximate identities for A .

3.2.3 DEFINITION, ILet A be a Cx-algebra and {eh] a
bounded approximate identity for A . The kappa topology
associated with {eh} is that locally convex topology on
M(A) generated by the seminorms x * [xe,fl and x = [leyxi
for x € M(A) [52]. For example, if A = Cy(8) and a
bounded approximate identity is chosen from Cc(s) s the
corresponding kappa topology is the compact-open topology.
This example is, in large, the motivation for the defini-

tion of kappa topology as given in [52].

Proof of 3.2.2. This proposition follows from the fact
that all kappa topologies agree with the strict topology on
norm bounded subsets of M(A) . It is clear from the de-
finition that 8 1is finer than any kappa topology. Let

[e)\} be an approximate identity in A and suppose [fb}
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is a net in the ball of M(4) such that fy, * 0 in the
kappa topology associated with {e)‘} . Let ae€ A and
€ >0 , Choose )‘O so that A > )‘0 implies

lia - el <—Z— and |la - aekll <% . Choose b, so that

0]
N < €
b > b implies T e o £ .
2 bg P e, Aol < BTe 24 nexo Wl <3y
Then for b > by, [ifpal < ]Ifbeloa - fall + Hfbe)‘oall <e.

Similarly ||afb|l <e for b>Db,, i.e., £ - 0B.

The next result 3.2.4 is a generalization of 2.1.3

(a).

3.2.4 PROPOSITION. Let A be a C*-algebra, The P and
norm topclogies on M(A) coincide iff A has an identity,

i.e., iff A = M(A) .

Proof. Clearly, we need only show that if the norm and B
topologies coincide on M(A) then A has an identity.

If this is the case, there exists a >0 in A so that

Izl < max {llax|l, |xall} for all x e M{A) . ILet C be the
commutative C*-algebra generated by a . Then C may be
regarded as the algebra CO(S) » where the locally compact
space S 1is the maximal ideal space of C . The inequality

Ixll < llax]| for =x e ¢ implies that Jla(s)l > 1 for all

78
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5 € S, by Urysohn's lemma, Thus S dis compact, i.e.,
Be € C so that ea=ae=a, Let y € A, Then if I
denotes the identity in M(A) , a[ (I-e)yy*(I-e)] =0 =
[ (1-e)yy*(I-e)]a . Hence (I-e)yy*(I-e) = O and thus

ey = y = ye from the C*-norm property,

3.2.5 PROPOSITION., ILet A be a C¥-algebra. Then M(A)S

is metrizable iff A has an identity.

Proof. If M(A)B is metrizable, the open mapping theorem
for Fréchet spaces [45] applied to the identity mapping from
(M(&),norm) to M(A)B yields that the B and norm topo-
logies agree., Apply 3.2.%4,

The next result is used in the proofs of some of the
principal results of this chapter., Let H be a Hilbert
space and LCH denote the algebra of compact operators and
B(H) , the algebra of bounded linear operators on H .
M(LCH) can be canonically identified with B(H) (see
3.1.13), so the expression strict-LCH topology on B(H)

makes sense,

3.2.6 PROPOSITION., Let H be a Hilbert space. The unit

ball in B(H) is compact in the strict-LCH topology iff
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H is finlte-dimensional.

Proof. If H 1is finite-dimensional, LCH = B(H) and the
strict topology is the norm topology. It is well known
that the bounded closed sets in a finlte-dimensional normed
space are compact.

For the converse, note that B8 is finer than the to-
pology of pointwise convergence on H . Hence the unit
ball of B(H) is compact under the topology of pointwise
convergence on H , Let x ¢ H and |ix}l = 1 . There are
finite-rank operators Tl""’Tn in the ball of B(H) so
that if T is any finite-rank operator in the ball of
B(H) , JlT(x) - T,(x)l} <1 holds for at least one
1<ign. If H is not finite-dimensional, choose y € H
so that |yl =1 and y 1is orthogonal to the set
{Z;(x)I1<1<n} . Let T(z) =< zx>y for zeH,
where '' < > '’ denotes the inner product in H , T is
a finite-rank operator in the unit ball of B(H) . But
Iz(x) - 7 (2 = iy = 7,12 = 702 + Imy@)IZ > 1 for
all 1< i< n. This contradicts the assumption that H

is infinite-~dimensional.

The following question is motivated by Reid's charac-

terization of M(A) for subalgebras A of B(H) . Suppose
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Hy = A-H and R:B(H) » B(H,) is the map taking a e A
to ea restricted to Hl » where e 1is the projection
of H onto H; . Is R(M{A)) = M(R(A)) ? Note that I

1
is a Hilbert space by 1,12,

3.2.7. Let AH,H; , and R De as above. Then R,
restricted to M(A) , defines an isometric ¥*-isomorphism
of M(A) into B(Hl) (here we are taking M(A) € B(H) by
Reid's Theorem). Furthermore R(M(A)) = M(R(A)) .

Proof. By Reid's theorem, M(A) = {t ¢ B(H):ete=t and
tA + At € A} . Thus e commutes with everything in M(A)
so R is a *-homomorphism. If =x € M(A) and R(x) =0
then xe =0 80 x=-exe=0, Thus R

is one-to-one and so an igometry [17]. Finally, if

t € M(R(A)) , let s =ete . Then R(s) =t . This con-

cludes the proof.

Our next result relates the double centralizer algebra
of a C*-algebra A with the double centralizer algebra of
the closed C*-subalgebra generated by an approximate iden-

tity for A .

3.2.8 PROPOSITION. Let A be a C*-algebra and Ay the
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C*-subalgebra of A generated by some approximate identity
for A . Then M(AO) is the idealizer of A, in M(A)
ice., M(Ap) = {x € M(A): xAy + Ax C A3 .

Proof. Let I denote the idealizer of A, in M(A) and
let [e}‘] be the approximate identity for A which gene-
rates Ao . We shall apply 3.1.3. C(learly AO is an

ideal in I . Suppose x € I and XAy = {0} . Then

xe = 0 for all A, so x=0. Let BO denote the to-
pology on M(A) generated by the seminorms x =+ |xy|| and
x # |lyxll for x e M(A) and y € A, . From [51, Cor. 2.3]
we have that B = BO . Since I is B-closed, it is B-com=-
plete. Thus I is Bgy-complete. Hence, by 3.1.3, I is

canonically isomorphic with M(Aj) .

The question of necessary and sufficlent conditions on
a C*-algebra A in order that the unit ball of M(A) be
B-compact is an interesting one, raised by Collins [7] in
the commutative case. We answer the question in general in

the next theorem,
3.2.9 THEOREM, Let A be a C*¥-algebra. Then M(A) has a

B-compact unit ball iff A = (ZA,\)O where each A is a

finite-dimensional C*-algebra,
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Proof. First, suppose that A = (EAA)O where each N
is a finite-dimensional C¥*-algebra. Since the unit ball
in M(A) is B-complete, it suffices to show it is B-to-
tally bounded. Tet a = (a;) € A and assume, without
loss of generality, that Jla]| <1 . Since each A is
finite~dimensional, it has an identity, i.e., M(A,)‘) = A)J
Hence M(A) = I = {a € m:a= (a.h) and

sup lla)‘ll < + «} , with pointwise operations [59]. Let

€ >0 and choose a finite set \q,°«*,A  so that

Sup lla‘hl|<s . For each 1<i<n, let Si be a
MR

finite set in the unit ball of A)‘ so that if x ¢ AX
i i
and ||x[j <1, then min ||s-x|| < e . Suppose
SES,

1
x=(x)eMA) and [Ix| <1 . Iet y; €8, so that
"X)‘i -yl <e. et y=(y,) € M(A) where Vi, = V1
and ¥, =0 if A £ (\;)] 5 . Note that [[(y-x)af < e
and {la(y-x)|} < € . Since the set of all such elements y
is a finite set depending only on a and € , the unit
ball of M(A) is B-totally bounded.

Conversely, suppose the unit ball of M(A) is B-to-
tally bounded, Let S denote the unit ball in A . Then
S is B-totally bounded so that aS and Sa are norm to-
tally bounded (hence, norm relatively compact) for each

aedA. By [17T, p. 991 A is dual, i.e., A= (ZA,)\)O
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where each A)\ is the algebra LCHX of compact operators
on the Hilbert space H)‘ . We shall show that H"L is fi-
nite~dimensional for each X . From 3.1.12, M(A)L) =
B(H,) . since M(A) = IB(H) , it is clear that the unit
ball in B(H)L) is compact in the strict topology defined
by A = LCH, , for each X . By 3.2.6 we get that Hy
is finite-dimensional for each A 3 hence A = LCH)\ is

finite-dimensional also.

3,2,10 DEFINITION, ILet E Dbe a locally convex space and
E! its adjoint. Recall that E is sald to be (DF) (the
terminology is due to Grothendieck) if it has a countable
base for bounded sets and the union of a countable number
of equicontinuous sets in E' is again equicontinuous,
provided it is bounded in the strong topology on E' . An
equivalent formulation is that E has a countable base
for bounded sets and any countable intersection of closed
absolutely convex zero neighborhoods in E which absorbs
bounded sets of E 1is a zero neighborhood. If E is com-
plete, we need only check that this intersection absorbs
points [45, p. 67]. Since M(A)B has a countable base of
bounded sets and is complete, it is (DF) if each count-
able intersection of closed absolutely convex zero neigh-

borhoods which absorbs points of M(A) is8 a zero neigh-
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borhood.

For the case Cy(S) , Collins and Dorroh [8] say
that C*(S)B has (WDF) if each uniformly bounded real
sequence in Cy(S) has an upper bound in Cy(8) . They
point out that this is equivalent to requiring that each
countable intersection of zero neighborhoods of type
v, ={fe cx(8):]|fal] < 1), for some a € Cy(8) which
absorbs points of C*(S) , be a B zero neighborhood.

We use this idea to define property (WDF) for M(A)B .

3.2.11 DEFINITION. ILet A be a C¥-algebra, M(A)‘3 has
(WDF) if, for each Hermitian sequence {a’n}:;l in A,
©

V= NV, absorbs points of M(A) implies V is a B
n=1

zero neighborhood in M(A) , where V, = {x € M(A):ljxa | <1
ana e <1 .

Collins and Dorroh asked whether the properties (DF)
and (WDF) are equivalent for C"*(S)B after first showing
that (DF) was at least as strong as (WDF) ., Summers
[54] answered the question in the affirmative for c&(s)a
and we have the generalization of his result to the noncom-

mutative case.
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3.2,12 THEOREM, Let A be a C*-algebra., Then the fol~
lowing are equivalent:
(1) u(a) is (DF) 5
(2) Mu(A) is (WDF) ;
(3) £7(A) = C*(N:A) is an essential A-module under both
left and right action.

Proof. (1) implies (2) is clear. To show (2) % (3), let
[ex} be an approximate identity in A , Suppose
a={a)y s € 47(A) , i.e., {ay)y ; is a uniformly bounded
sequence in A . Tet V = {x ¢ M(A): I]xanll <1 and

P
||anx[| <1} and V=N Note that V is closed ab-

1"=1Vn .
solutely convex and absorbs points of M(A) . By the as-
sumption that A has property (WDF) , we get that V is
a B zero neighborhood. Note that Y ;\' I in the striect
topology, where I denotes the identity in M(4) . Hence

g1, so that 7\2)\0 implies e, - I €V, i,e.,

A
||(ex - I)anll <1 and nan(ex -I)l €1 for all n . Hence
for A 21y flea, - anﬂ <1 and ’iuanex -alll <1 for all
n . Thus Lm(A) is an essential left A-module and an es-
sential right A-module since a was an arbitrary sequence
in 2%(a) .

To prove (3) % (1), let us assume that £7(4) is es-

©

sential, Let H= U Hn be a subset of the unit sphere in
n=1
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M(A)é and each H, be equicontinuous. We must show that
E is equicontinuous., By examining D, C. Taylor's proof
[59] of his criterion for B-equicontinuity, we see that
©

T a={al

g € 47(A) , llall <8, so that

0
{x € M(4): Hxanﬂ <1 and ||a.nx|| <1} € H . Thus

me UnPc U xemn@a): |zl <1 ana faxlc 1.
n=1 n=1
From [45, p. 36] we have that {x € M(A): [[xa.n|| <1 and
||anx|l < l}o = the B-weak-* closure of the set sum
¢}

fx e M(a): lxa ] 2137 + {x & M(8): lax) <230 . Iet &
and 52 denote the topologies on M(A) given by right and
left multiplications, respectively, by elements of A .,
Teylor [59] has shown that M(A)y = M(A)é = M(a), . By

1 2
Alaoglu's Theorem [145] applied to M(A)B B

1

{x € M{4): [Ixann < l}o is B-weak-* compact in M(A)é .
By Alaoglu's Theorem applied to M(A)B B
2

{x € M(4): Ilaan < l}o is PB-weak-* compact in M(A)é .
Thus the set sum [x € M(A): |[xall < 1]O + {x € M(4):

]]anxll < l}o is B-weak-* compact and hence B-weak-* closed
as a subset of M(A);3 . Our next step is to calculate

{x € M(A): lianxll < l](J end  {x e M(A): |lxa ]l < 13° . For
£ e M(A)' and b e M(A) let £-b(x) = £(bx) and b-£(x) =
f(xb) for x € M(A) and note that f<b and Db-f e M(A)'

L}
also, Also note that if b e A f+<b and b.f € M(A)a .

87
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We see that {f.a.;: f ¢ M(A)' and |If}} < 1}S

{x € M(A): llanxll < 1}O . Suppose £ € {x e M(A): \lanxl\ < 1}0.
Then |f(x)| < ||a.nx|| for all x € M(A) . Define a linear
functional g on anM(A) by g(anx) =f(x) . Then g

is well defined and |lg| <1, so g extends to h e M(A)'
such that |lhll <1 . If x e M(4), hoan(x) = h(anx) =
g(a,x) = f(x) . Hence h.a) = f so that

(feas £ e M(A)', £ <13 = (x e M(A): axl <110, si-
milarly, {a,-f: £ ¢ M(a)', gl €13 = {x e M(4): Hxa.nH < 1}0.
Thus HE {a-f + gea: Ifl <1, llgl <1, n=1,23,---] .
We now show that H is B-equicontinuous. Since zw(A) is
essential, by assumption, we can write a, = ac, and

a, = b,d with flal <2, Nall <1, fleyl €10 for all n,
and Ilbnll < 10 for all n . By Taylor's criterion [59] we
must show that [[(I - e )<h-(I - )l 3 O uniformly for

h € H (where (e)\?, is an approximate identity for A and

I denotes the identity in M(A)} . Since a typical h € H
is of form ac,+f + g-b,d, where |Iflj <1, flgfl <1,

ch]] <10, |l <10, this is clear. This concludes the
proof of 3.2.12.

Our next results concern separability of M(A)E .

3.2,13 PROPOSITION, If A is norm separable, then M(A)B
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1is separable,

Proof. A is B dense in M(A) and B is weaker than

the norm topology on M(A) .

Next we specialize to the case that A = CO(S) .
Todd [60] shows that if § 1s o compact then (}*(S)B
is separable iff § is metrizable. He makes the following

conjectures

3.2.14 CONJECTURE (TODD), C*(S is separable iff § is
8

separable and metrizable.

We give a counterexample to this conjecture by exhi-
biting an uncountable discrete space S such that z“’(s)a
is separable. Noting that CO(S) is not separable for
this space S , we see that the ‘motions of norm separabi~
lity of A and B separability of M(A) are not equiva-

lent, even in the commutative case.

3.2.15 THEOREM. Let I denote the unit interval with the
discrete topology. Then le(I)ﬂ is separable.

Proof. Let £ € 47(I), € >0, and ge Cy(I) , 820 .
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Choose a finite set 0=i0<i,<---<in=l in T

S0 that [x € I: g(x) } ————— } € {ig =51} .

2zl + S

llel

Let O = T4 < ry < vee & ry = 1l be rational numbers so
that s < 15 < T for 1< j<n-1. Choose rational

n .
numbers {qklk=0 s0 that lqk - f(lk)l < @ 5 0<k<n .

Define a function h on I by the formula
g if r <x< o0 <k < n-l
h(x) =
q, if x =1
Check that |[lg(h-f)|| < € . Since the set of all such h

is countable, LQ(I)S is separable.

3.2.16 PROPOSITION, If C*(S)B is separable, each open

¢ compact subset is separable and metrizable.

Proof. Let X E S be open and o compact and {fi} a
countable f-dense subset, which we may assume to be closed
under complex conjugation, Let @ be a nonnegative func-
tion in CO(S) such that {x ¢ S: #(x) >0} = X . For

f € 0*(8) , let R(f) denote the restriction of f to X.
Consider {R(Q’fi)g;l and note that R(#f;) € Cy(X) for
each i >1 . This set separates points of Cy(X) so the

algebra it generates is dense in CO(X) by the Stone-~
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Weierstrass Theorem. Hence CO(X) is norm separable and
so  C(X*) (X* = the one-point compactification of X)

is separable, By a well~known result for compact Haus-
dorff space, X* is metrizable and second countable.

Hence X is metrizable and separable.

3.2.17 PROPOSITION., Let S be paracompact and locally
compact. C*(S)B is separable iff S 1is metrizable and
the cardinality of S 1is less than or equal to that of

the continuum,

Proof. (Collins has shown that C*(S)B is separable only
if the cardinality of S 1is less than or equal that of
the continuum, Since S is paracompact, if C*(s)B is
separable, by 1.1 and 3.2,16, S is a topological sum of
metrizable spaces. Hence S 1is metrizable.

Conversely, suppose that S 1is metrizable and the
cardinality condition (above) on § is satisfied. Then
S has a decomposition into < C o compact subspaces
(C = the cardinality of the continuum), Using the fact
that Cy(X) 1is separable if X is separable and metrizable,
we can do a construction suggested by the lw(I)a result

to show that C*(S)B is separable, We leave the details

to the reader.
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Results 3,2.,16 - 3,2,18 are probably known, for si=-
milar results appear in a preprint by W. H., Summers [56].
Results 3.2.16 ~ 3.2.17 were obtained independently by
the author. The next result was obtained by the author

and Dr. Robert Wheeler during a conversation,

3.2.18 THEOREM. For a locally compact space S , the
following are equivalent:

(1) C*(S)B is separable;

(2) the topology on S is stronger than a separable
metrizable topology on S ;

(3) (c¢(8),¢ - Op) is separable where C(8) is the alge-

bra of all continuous functions on S .

Proof. We need only show (1) « (3) as Warner in [64]
showed (2) e (3). Suppose that C*(S)a is separable and
let {fi]:=l be a countable f-dense subset of C*(8) .
Let € >0, K a compact subset of S, and g > O € C(8).
Let M = sup g(x) and h(x) = f(x) if x<m

xeK M otherwise
Then h € C*(S) and g(x) = h(x) for x € K. Let
Z e CO(S) such that @ =1 on K . Then for some i > 1,
h(t;- el < e, i.e., sup |I£;(x) - £(x)| < € . Hence
[fi}:=1 "is ¢ - Op demse in ¢(s) » i.e., ©€(8) 1is sepa-

92
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rable for the C - Op topology.

Conversely, suppose that {fi}n.::l is a sequence of
nonnegative functions dense in C(S)+ = {f e ¢(8):f >0
on S} with the compact-open topology. We show that
C*(S)+ is B separable. For a nonnegative real number
a and a real function f in C(8) , let f A a be the
function defined by the equation f A a(x) = £(x) if

f(x) <a and f A a(x) = a otherwlse. Then it is clear
) @

that the doubly-indexed sequence (£, Am} ., ~

is a
countable B-dense subset of C¥(S) .
Our next result is a genefalization of a result of

collins [7] concerning nuclearity [25,49] of M(A)B .

3.2.19 THEOREM. M(A)a is nuclear iff A is finite-di-

mensional,

Proof, If A is finite-dimensional, M(A) = A and B
is the norm topology. Since finite-dimensional spaces are
well-known o be nuclear, there is no problem with this
half of the theorem,

Suppose, on the other hand, that M(A)s is nuclear.
Then the unit ball in M(A) is B compact since closed
and bounded sets in nuclear spaces are compact. By 3.2.9,

A= (2 AA)O » where each Ak is a finite-dimensional
AeA
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C*-algebra. Thus M(A) = I A (confer 3.2.9). We use
a.r;other property of nuclea);*els\paces to show that A is
finite. In nuclear spaces unconditionally convergent se-
quences are absolutely convergent [49,25]., Suppose that
A is infinite and choose an infinite sequence {Ai}?::l
of distinct elements from A ., Let ey denote the iden-

tity element in A)‘ and let el,'l be the element of
n
M(A) = T which has value e_ in the A_-th co-ordi-
re AAx n n

nate and zero in the other co-ordinates. Iet x ¢ A =
(28,) be such that x(h) = z :nal:(h) =0 if

©
Iy ;Ai {xn}n=l . Then ni:l"xer'lﬂ = nzli =+ @ 50 that
[er'xJ:=l is not an absolutely summeble sequence in M(A)B'
We will contradict nuclearity of M(A)ﬁ ‘by showing that
[er") is unconditionally convergent, i,e., that every re-
arrangement converges. Let x = (xx) €A, e€>0, and
T=0 eatlgll 2€} . Let F={n: n is an integer and
)‘n eT} . If Fo is a finite subset of the set of posi-
tive integers and F N Fy = {(#) , then

flx = elll = sup lix, el <suplix, | <e.
neFo n neFo )‘n n nEFO )‘n

Hence (e!} , 1is unconditionally convergent. Since
M(A)B is nuclear, A must be finite and therefore A is

finite-dimensional.
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The following theorem relates the existence of a

countable approximate identity for A with metrizability

of a kappa topology on A .

3,2.20 THEOREM. ILet [e)\})\a\ be a canonical bounded
approximate identity for a C¥-algebra A , If A with
'cheb corresponding kappa topology is metrizable, then there
is a countable subset I\O of A such that [eX: A€ xo}
is an approximate identity for A . Hence by 2.7.10,
every approximate identity for A has a countable subset

which is also an approximate identity for A .

Proof. Suppose that the kappa topology corresponding to
{el] is metrizable, Since {eh] is canonical and the
kappa topology has a countable base at zero, & a sequence
A < >~2 < «»+ in A so that the sets

v, = (x € M(a): lee)\nll < % and l]e)\nx\l <iy, for
n=1,2,3,°+*, form a decreasing base at zero for the
kappa topology. We shall show that {exn]2=l is an ap-
proximate identity for M(A) . It suffices to show that
the sequence e, -~ I ?1 0 in the kappa topology, where I
is the identity 1":zn M(A) . Fix a positive integer n . If

m >n then Ay >XA, so that (e)\m - I)e)‘n =0=

95
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=e (e -I)., Hence e, -TI €V, for m>n . Since
Ay xm )‘m n

{Vn};=l forms a neighborhood base at zero for the kappa

topology on M(A) 2 & - I a 0 in the kappa topology.
n

The next few remarks are only 2 beginning of our at-
tempts to answer the interesting question: For a locally
compact S8 , when does every regular, bounded Borel mea-
sure have compact support? This is the same as asking
when is (C*(S)a)' = (Cc*(8),C - Op)', since
(c*(s),C - Op)' = {u € M(S): the support of W is com-
pact}.

3.2.21 REMARK. If (C*(8)g)' = (C*(S),C - Op)', then S

is countably compact. For if (xn}:=l cs,

©
1 . .
U= nfl ?— 6(xn) e M(S) , and so by assumption it has

compact support (if =x € § 8(x) denotes the point mass
at the point x). Since {xn}:;l is contained in the sup-
port of p , [J&l}:;:l is relatively compact. Thus if S
is realcompact [23] or metacompact [19,28] and

M(8) = (C*(8),C - Op)' , then S is compact. As another
example, assume that M(S) = (C*(8),C - Op)' and S has
a base for ¢ compact subsets consisting of open and closed

o compact subsets, Then 8 1is sham compact for each
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o compact subset is contained in a clopen ¢ compact sub-

set, Hach of these clopen subsets of S , being a closed
subset of a countably compact space, is countably compact
and so compact., Also if CO(S) has a well-behaved bounded
approximate identity and M(S) = (C¥(8), ¢ - Op)', then S is
compact by 2.5.1.

3.2.22 PROPOSITION. Suppose S 1is a locally separable
locally compact topological space (each poi:qt has a sepa-
rable neighborhood)., Then M(S) = (C*(S),C - Op)!' 4iff

S 1is sham compact.

Proof, If S8 is sham compact, B and the compact-open
topologies agree on C*(8) [63], so that the equality
(C*(8),C - Op)' is clear.

Conversely, suppose that M(S) = (G*(S),C - Op)' and
that K is a compact subset of S . The local separability
condition on S implies that K 1is separable. Let
[xn}:;:l € S be a countable dense subset and let
[T Zﬁ(xn) (see 3.2.21), Then M € M(S) and K is con-
tained in the support of u . Hence if X & S 1is o compact,

«
and X = U where € 8 is compact and u_ € M(S)
A %, n

has X, contained in its support, then & 1is a sequence

@
Y «© —
of positive numbers (cn]n=l so that u = nzlcnun e M(S)
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and has support containing X . Hence X is relatively

compact and S 1is therefore sham compact.

Our next result is a generalization of a result in
[10] which states that if there is a bounded projection
from C*(S) onto Co(8) , then S must be pseudocompact,
A result similar to ours has been obtained by A. J. Lazar

and D. C. Taylor [32].

3.2.23 DEFINITION. Let A be a C*-algebra. Then A has
property @ if there does not exist a sequence

{apdn q S A so that:

(1) a, =a.%, ||an|| =1 for n>1;

(2) ay3, =0 for n#mnm; .

(3) The partial sums of the '!series'' I A a form a
1 B R

Cauchy sequence in the strict topology for each

L= () €t

3.2.24 THEOREM [24]. Let S be a locally compact space.
Then S 1s pseudocompact iff CO(S) has property Q .

3.2.25 THEOREM., Suppose A 1s a C¥-algebra and there is

a bounded projection of M(A) onto A, Then A has

property Q .
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Proof, ILet P denote the bounded projection of M(A4)
onto A . Suppose that A does not have property Q
and let {a,} €A be a sequence satisfying (1) - (3) of
®
«
3.2.23. For A= (h) €4”, let T() = I At (the
B-limit in M(A)) . Then T:£” + M(A) . Note that

P
IO < I For [ sl = max Dl <, ane

the unit ball in M(A) is B-closed.

By comsidering the commutative C*-algebra generated
by [an}:=l and using the Hahn-Banach theorem, construct
a sequence {ﬂn}§=1 S A' so that ||¢n|| =1 and
#(2,2) =1 for u>1. For xeA, let 5(x) de-
note the sequence whose n-th co-ordinate is ﬂn(xan) .
Since llxann + 0 S(x) e ¢q - DNote that Is <1 and that
S is linear. Finally, note that SoPoT projects A
onto eq s in violation of a well-known theorem of Phillips.

This contradiction shows that A must have property @ .

Our next result is motivated by a result of Rotman

and Finney [20].

3.2.26 DEFINITION, Let A be a ring and X, an A-module.
X 1is said to be projective 1f, whenever Y and Z are
A-modules, f:X + Y an A-module homomorphism, and g:Z = ¥

a surjective A-module homomorphism, there exists h:X = Z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

so that f = goh .

Finney and Rotmen show that CC(S) is a projective
¢(8)-module (C(S) is the set of all continuous functions
on §8) iff S is paracompact. We asked the analogous

question for (*(8) and CO(S) .

3.2.27 LEMMA, Suppose that CO(S) is a projective

C*(S) module, Then S is sham compact,

Proof. From Proposition 3.1, page 132, of Homological
Algebra by Henri Cartan and Samuel Eilenberg, we have that
there is a set B and (*(S)-module homomorphisms

®g: CO(S) + C*¥(S) VB € B and a family {fB:B € B} € Cpn(8)
so that for g € Cy(8)

(1) cpﬁ(g) = 0 for all but finitely many 8 € B 3 and

(2) &= echos(g)fB . ‘

Since Cq(8) = C4(8)+Cy(8) by 1,12, each g actually
maps into CO(S) . Let XE S be ¢ compact and g >0 in
cO(S) so that g is strictly positive on X . Let
By & B be finite so that B;/BO = cps(g) = 0 . Then
g = BEBO% (8)fg = BfBofecos(g) = B«EEBOcpa(fBg) = szogch(fB) .

Hence I @,(fg) =1 on X . But I o (fy) € C,(8)
BeBOp B) BeBOB B ° ’
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so0 X is relatively compact. Therefore § is sham com-

pact.

3.2.28 THEOREM, co(s) is a projective C*(S) module iff

S 1is compact.

Proof. By 3.2.27, S is sham compact. Hence C*(S) = C(S)
and CC(S) = Cy(8) [63]. Thus cc(s) is a projective
C(8) module and so S5 is paracompact by the Rotman-Finney

result. A sham compact paracompact space is compact.

3.2.29 THEOREM, M(A)S is semireflexive iff A is a dual
C*-algebra [17, p. 99].

We need a lemma from general topology.

3.2.30 LEMMA. Let X be a regular (and Hausdorff) topolo-
gical space and F & dense subspace of X , X is compact

if every net in F has a cluster point in X .

Proof, Suppecse X 1is not compact and let Y be an open
cover of X without a finite subcover. By regularity, con-
struct another % of X so that the closures of the sets

in % refines Y . Note that no finite subset of %
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covers F ., Let H denote the set whose elements are fi-
nite unions of sets in % ., For each set h in H , let
X, € F\n . Then the net [xh:h € H} , with H ordered
by set inclusion, cannot have a cluster point in X .

This contradicts the supposition that X is not compact.

Proof of 3.2.29, First we need some notation. Let {By }
be a family of normed algebras or vector spaces., By
(sz)l we denote the set (b = (bh) € IIZBA:% "bxl[ < + »}
with pointwise operations. By EBL we denote the set
{b = (b)‘) € IIB)‘: s;\xp ||b1|| < + »} with pointwise opera-
tions.

If A is dual, A= (EA}‘)O where 4 is the alge-
bra of compact operators on the Hilbert space Hx .
M(A) = ZB(H,) and M(A)y = (Z&); amd (M(A)g)' =
= ((zAy);)' = £A) = EB(H) = M(A) since the second dual

Then

(bidua.‘L) of the algebra of compact operators on H)L is
B(H)k) [16,17]. If we note that the strong topology on
M(A)é equals the norm topology on (ZA;)]_ » the argument
for the first assertion of 3.,2.29 is complete.

Conversely, assume that M(A)B is semireflexive, To
show that A is dual, it suffices [17, p. 99] to show that
aS and Sa are relatively weakly compact for each a € 4 ,

where S denotes the unit ball of A . By 3.2,30, it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

enough to prove that each net in aS (or Sa) has a
weak cluster point in A ., Let {xu} be a net in S and
a € A, 'Since M(A)B is semireflexive, the unit ball in
M(A) is c(M(A),M(A)é) compact. Hence & x, € M(A) so
that ({x,} clusters o(M(A)B, M(A)é) to x, . We shall
prove that {axu} clusters weakly to axy . Let f e A
and g be a Hahn-Banach extension of f +to M(A) . Then
g-a € M(A)‘; so that {g-a(xy - x5)} clusters to zero,
i.e., f{glaxy - axm)} clusters to zero., Hence

{f(axy - axo)} clusters to zero, Thus (a.xa} clusters
weakly to axy as claimed and aS (and similarly Sa)
are relatively weakly compact. This concludes the proof

of 3.2.29.

E. McCharen [34%] has shown that if

I(A) = {x € A'': XA + Ax A} , then I(A) =A'' iff A
is dual. Also she has shown that M(A) and I(A) are
canonically isomorphic., Since M(A)é' is isomorphic to
A'' , there is a natural imbedding of M(A) into A'!
By checking out Arens Multiplication [34] on A'' , we
see that the image of M(A) under this imbedding is con-
tained in I(A) . If M(A)‘3 is semireflexive, then the
image of M(A) in A'' is all of A'!' , Since I(A)
contains the image of M(A) , as noted above, I(A) = A'!
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so that A is dual by her result., Hence her theorem im-
plies ours, On the other hand, our theorem implies hers.
For if A is dual, by our theorem, the image of M(A)
{under the canonical imbedding into A'') = A'' , Hence
I(A) = A'' since it is squeezed in-between. For the con-
verse, we need to see that I(A) is contained in the ca-
nonical image of M(A) in A'i , Suppose F e I(A) .
Then if a € A and Fa denotes the image of a under
the canonical imbedding into A'!' , write E‘Fa = T(a)
and FaF = Fs(a> . Note that T and S are maps from A
into A . We show that (T,S) ¢ M(A) . Let a,b ¢ A .
Then  Famep) = Fa Fpo) = Fa T % = Fs(a) o = Fs(a)o -
Hence aT(b) = S(a)b since the mep a » F, is one-to-one
on A . Hence (T,8) e M(A) .

We need to check that F(T_,S) =F , 1i,e., that
£((T,8)) = F(f) for all £ € A' (which is isometrically
isomorphic to M(A)é) . Tt suffices to show that
FF, = F(T,S)Fa for all a € A, For then F Fa(f) =
= F(T,S)Fa(f) VEf € A' , hence F(a+f) = F(T,S)(a'f) for
all f € A' , But A' = {a«f:z £ ¢ A' , a € A} [59] so
F="F(,s) -

Let f € A' . Then (F(T,S)Fa)(f) = F(T,S)(a'f) =
£((1,8) (L5R,) = £ ((Lp(aysRp(ay)) = £(T(2)) = Ty () =

(F Fa)(f) . We have, of course, made the identifications

L}
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resulting from imbedding A into M(A). Hence F F, =
= F(T,S)Fa » so F= F(T,S) and the proof that
E. McCharen's result and our 3,2.29 are equivalent is

complete.

3.2.31 DEFINITION, Let A be a locally convex space,

Then A is said to have the approximation property if, for

any zero‘ neighborhood V and totally bounded set B in
A , there is a continuous linear operator S , of finite
rank, on A so that S(x) ~x €V for all x € B [25].
If A 1is a normed space and S can be chosen so that

lisf €1, then A is said to have the metric approxima-

tion property. For more information, see [49].

In 3.2.32 below, 8y and B2 denote the topologies
on M(A) generated by left and right multiplications,

respectively, by elements of A .

3.2.32 THEOREM. Suppose the C*-algebra A has the metric

approximation property. Then M(A)B and M(A)B have
1 2

the approximation property.

Proof., We prove the result for 51 3 the other argument

is similar, Let K be a El totally bounded subset of
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M(A) . By the uniform boundedness principle, K is norm
bounded. Let d = sup ||x| and € > O . Suppose that
a>0¢€¢ A and |]a]|x§_Kl.choose 0PI, 0T
in A4 so that [a-b| < gy and cb =bc =b , Since the
set cK is a norm totally bounded subset of A, there
exists a finite-rank operator T on A such that

T <1 and [ TP(cx) - ex| <% for x € K, Let

S: M(A) # M(A) be the operator defined by the equation
3(x) = T{(ex) for x e M(A) . Note that (S]]l <1 and
that  [b(5(x) = 2)} = Io(S(x) - ex)if = [o(T(ex) - exll <3
for x € K. Hence |a(S(x) - x)| < |(a~b)(8(x) - x)|| +
Ib(s(x) - =)l < (gx)(2a) + § =< .

Since S is clearly of finite rank, we need only ve-
rify that S is continuous on M(A) with the B, topology.
To this end, let x -+ 0B s with [xa} € M(A) . Then
cx, # 0 in norm so ||8(xy )l = IT(ex )i + 0 since T is
norm continuous, Thus S(xa) i Osl since the norm topo-

logy is finer than B, on M(A) .
3.2.33 COROLLARY (Collins-Dorroh [8]). Suppose that S is
locally compact. Then C*(S)B has the approximation pro-

perty.

Proof. It is well-known that C*(X) for X a compact
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Hausdorff space has the metric approximation property
[15,25]. (Co(S) is an ideal in Cy(S*) (S* = the one-
point compactification of 8 ) so Cy(8) has the metric

approximation property by 3.2.34 below. Then apply 3.2.32.

3.2.34 LEMMA, ILet A be a Banach algebra and I an
ideal in A such that I has a bounded approximate iden-

tity. If A has the metric approximation property, then

so-does I .

Proof, Let € >0 and KS I such that XK is totally
bounded. Choose a € I, |la]] <1 so that |ax-x| (—;—

for x € X [9]. Let T:A -+ A be of finite rank such

that [Tl <1 and f7(x) - 2]l <5 for x ¢ K. Define
S:I+ I by S(x) = aT(x) . Hemce [I8(x) - x| < [Is(x) -ax| +
lax-x}] < € for x € K. Therefore I has the metric

approximation property.

SECTION 3. TOPOLOGICAL MEASURE THEORY.

The next topic we take up is our generalization of
topological measure theory. This is an important subject
that was initiated in a classic paper by Varadarajan [62].
The problems have to do with studying certain classes of

linear functionals on C¥(X) where X is a completely re-
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gular space. Many of these results are still very inte-
resting in the case that X 1s locally compact. Topo-
logical measure theory is intimately connected with the
important Mackey problem of Buck [5], mentioned earlier,
We have generalized many of the topological measure theory
results for locally compact spaces to the C*-algebra set-
ting.

The relevant definitions and theorems on topological
measure theory, in the classical case, have been placed in
the preliminary sections of Chapter IV. The reader should
read those sections before he reads any further in Chapter
III, in order to have a perspective for reading our theo-

rems.,

3.3.1 DEFINITION. Let A be a C*-algebra. Suppose {f,]}
is a net in M(A) . Write £ 30 if the following three
conditions are satisfied:

(1) 0<f, I forall a3

() £, <fy for B<as;

(3) £, < O in the strict topology.

3.3.2 REMARK. If A = Cy(8) , we can replace (3) in

3.3.1 by the assumption that f  *+ O pointwise on S, by

Dini's theorem.
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3.3.3 DEFINITION, ILet & be a positive linear functional
on M(A) . Then & is said to be o-additive if for any
sequence {f }  M(A) such that £ 10, &(f )+ 0. @
is called T-additive if for any net (f,} S M(A) such
that faJrO B @(fu) » 0 ., Finally, & is called tight
if % 4is B continuous, For any arbitrary linear functional
& e M(A)' write % = &) - &, + i§3 - 18, , where
§1,§2,§3, and &, are positive linear functionals on
M(A) . This decomposition is unique [17]. & is said to
be g-additive (7-additive, tight) if §1,§2,§3 and §4
are o-additive (T-additive, tight). Iet M_(A) , MT(A)
and Mt(A) denote the c-additive, r-additive, and tight

linear functionals in M(A)' .
3.3.4 PROPOSITION, Mt(A) = M,‘_(A) EMG(A) .

Proof. All we need to prove is that if & is a positive
linear functional in MT(A) , then & ¢ Mt(A) . Choose
an increasing bounded approximate identity [el} for A
satisfying 0 < e <I VA . DNote that I - exlO so that

(T - e)‘) + 0, Let (I- e)\)l/2 denote the positive

square root of I - & s for each A , Then
1/2.
o= (x - e)™2) = sup fl8((T - &)%)l <
l=li<a
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- 1/2,, .. \1/2 1/2 1/2
< "iﬁgli(l &) e ()T < Bl e (T - 6) 2 0
Thus e+ (T - )l = T8+ (1 - ¢)¥21-(1 - )2 <

lg- (T - e)‘)l/Zu ? 0 . Hence & is B continuous, i.e.,

3 e Mt(A) .

In the classical case of topological measure theory
(see Chapter IV), the support of a positive measure W
on a completely regular space is defined as the N{Z:2 cXx
is a zero set and W(Z) = u(X)} . If the support of u
is the empty set, M 1is said to be entirely without sup-
port [30]. The next two theorems develop the analogue of

measures entirely without support.

3.3.5 THEOREM [58]. Iet f e M(A)! . Then f = £, + f2
1

where £ € M(A)g end £, € A* = {g e M(A)': g =0 on A}.

The decomposition is unique. Furthermore, if T is a po-

sitive linear functional, then so are fl and f2 .

3.3.6 DEFINITION., Let A be a C*-algebra. We say that

A is measure compact if MG(A) = Mt(A) . This definition

coincides with that given in Chapter IV for the case

A= gy(s) .

The next result shows that if A 1s not measure com-
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Pact, then the situation is the worst possible, i,e,, there

is an element of MU(A) which annihilates A& .,

3.3.7 THEOREM, Suppose that A 1is not measure compact.
Then there is a nonzero positive linear funciional in

1
M N AT (see 3.3.5).

Proof, By hypothesis, there is a positive linear functional

g in MU(A) but not in Mt(A) . By 3.3.5, write

g =8 + [:3 with =51 and 8 positive linear functionals
1

on M(A4) such that g, ¢ M(A)B = M (&) end g, € a* .

Then g, € MU(A) since g, =g - g and Mt(A) < MU(A) .

The next result is the analogue of the result that
a LindelSf (¢ compact, in the locally compact case) space

is measure compact.

3.3.8 THEOREM. Suppose A has a countable approximate

identity. Then A is measure compact.

Proof., We may assume that A has a bounded approximate
identity {e,} satisfying e <e for n<m and
0<e, £I forall n. If A is not measure compact,

there is a nonzero positive linear functional g in
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M N A* by 3.3.7, Hence g(e,) =0 for all n . But

I-eldo so g(e)) = g(I)=llgll #0 . This contradiction

establishes the result.

A set X 1is said to have measure compact cardinal if

the set X with the discrete topology is measure compact,
i.e., if each countably additive measure defined on all sub-
sets of X which vanishes on points of X 1is identically
zero, The next result is motivated by the result [30] that
a paracompact locally compact space with measure compact

cardinal is measure compact (see 1.1).

3.3.9 THEOREM, Suppose A =(Z AA) where A is a set
AeA
having measure compact cardinal and each Ax is measure

compact. Then A is measure compact.

Proof, Note that M(A) = EM(A,\) . Suppose A is not
AeA

measure compact and that g 1is a nonzero positive linear
functional in M (&) N &% . Note that g =0 on M(4)
(i.e., the canonical image of M(4) in M(A)) . Tet I,

A

denote the identity in M(A,) . Let b" denote the ele-

ment of M(A) whose \-th coordinate is I, and whose
a-th coordinate is zero, for o £ A ., For any subset AO

of A, let u(/\o) =g( T b)‘) . Note that u vanishes
AEA
(]
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on points of A, A straightforward computation shows
that p is o~additive as a measure on A , using the
fact that g € M_(A) . Also u(A) = &(I) #0 . The
existence of W contradicts the assumption that A has

measure compact cardinal, Hence A 1is measure compact.

3.3.10 COROLLARY, ILet S be locally compact and paracom-

pact, Then S is measure compact.

Proof, We must show that co(s) is measure compact (see
Chapter IV)., By 1.1, 8 is a topological sum of © com-
pact spaces 8, so Cp(S) = (zCy(8,))o - ApPly 3.3.9 and
3.3.8.

The concept of well-behaved approximate identity was
discussed before (Chapter II). A reasonable conjecture is
that if A has a well-behaved approximate identity, then
A is measure compact., We prove a special case of this theo-

rem, for algebras having a series approximate identity [3].

A series approximate identity for a C¥-algebra is a family

{fa}uer of projections in A such that, for each a € A,

fla( & £ )a - all # 0 as F runs through the finite subsets
aeF

of T . It is easy to see that the net { I fcn’ F finite

acF
€T} is a well-behaved approximate identity for A, where
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the F's are ordered by inclusion.

3.3.11 THEOREM. Suppose A has a series approximate iden-
tity (ex: A € A} with A having measure compact cardinal.

Then A 1is measure compact.

Proof. We assume A is infinite ; otherwise A has an
identity, A = M(A) and B dis the norm topology so that
A is trivially measure compact. Let F be a nonzero
positive linear functional in M (A) n A . For Ay EA,

define u(A,) = F( £ & ) . We will show that M is a non-
0 )\s/\o)‘

zero o-additive measure defined for all subsets of A which
vanishes on points of A , TLet { An];=1 be a decreasing

collection of subsets of A such that N Ay = (B} . Tet
=1

= I e . The sequence ({x }m in M{A is bounded.
*n A n'n=1

We claim that X % OB 3 it suffices to show that
a .
“eyxnﬂ 20 and llxnev“ 4 0 for any y € A . This is clear

since [eh} consists of orthogonal projections and r°1° /\n
n=1

is empty. Thus u(l\n) = F(xn) % 0 since F € MU(A) and
{x,) is clearly decreasing. Since W(A) = F(I) £ 0, the
existence of W contradicts the assumption that A has

measure compact cardinal.
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3.3.12 LEMMA [6]. Suppose A and B are C*-algebras

and &:A - B is a surjective (onto) *-homomorphism. Then
T F:M(A) » M(B) such thét F is a *-homomorphism extend-
ing & and such that F maps the identity of M(A) onto
the identity of M(B) . FPurthermore, F is continuous
when M(A) and M(B) are given their respective strict

topologies.

3.3.13 THEOREM, Suppose &:A4 = B 1is a surjective
*~-homomorphism and A is measure compact., Then B is

measure compact.

Proof, Suppose g is a positive linear functional in
u (B) n B* . Let F:M(A) » M(B) be the extension of &
whose existence is guaranteed by 3.3,12, ILet

Fi:M(B)' + M(A) denote the adjoint map. Let h = F'(g) .
If ach, hia)= (F(e))(a) = &(F(a)) = g(2(a)) = O
gsince g=0 on B, Suppose [an} €A and aHLO . Then
h(an) = g(F(a,)) #» O since E preserves order, is norm
decreasing and B continuous, Thus h € MG(A) and h =0
on A . Since A is measure compact, h =0 , Let I

A
and I, denote the identity elements in M(A) and M(B)
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respectively. Then 0 = h(I,) = (F'(g))(I,) = &(F(I,)) =
g(Ip) = lgll . Hence g=0 so B is measure compact
since g was an arbitrary positive linear functional in

MG(B) which annihilates B .

3.3.1% COROLLARY. If A and B are *-isomorphic C¥-al-

gebras then A 1is measure compact if and only if B 1is.

3,3.15 COROLLARY, Suppose X and Y are homeomorphic
locally compact topological spaces., Then X 1is measure

compact iff Y is.

3.3.16 COROLLARY. Suppose S 1is a measure compact topo-
logical space and F a closed subset of S . Then F is

measure compact.

Proof. Let R:Cy(8) # Co(F) denote the restriction map.
By 2.3.7, R is surjective. Hence C4(F) is measure

compact.

An important problem in the commutative topological
measure theory is the determination of the Prohorov spaces.
A completely regular space X is called Prohorov (see

Chapter IV) if every weak-* compact subset of the positive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

tight measures on X is uniformly tight [62]. It is
known that locally compact spaces are Prohorov, Our next

result is a generalization of this commutative result,

3.3.17 THEOREM. Suppose K C M(A), is B weak-* compact
and consists of positive linear functionals. Then H is

8 equicontinuous.

Proof. We use the criterion for B equicontinuity in [59].
Note that H is norm bounded. Suppose that {e)\:)\ € A}

is an approximate identity for A such that 0 < Y <1I
YA € A and {e)\} is increasing, ILet € > 0 . Since
I-e)‘-ooa, the sets (F € H: F(I-e)k)<e} form a
p-weak-* open cover of H , The compactness of H implies
that we can choose a finite set [)“i}l::Ll:l from A so that

n
HS U {FeHF(I-e )<e}. Choose Ay in A such
T i=1 i

that Ay >A; » i =1,.+-,n. Then A >\, implies
0I-¢ I-~¢ for 1<ign sothat F(I-¢g)<e¢
i

for all & € H . Hence, letting d)\ denote the positive

square root of I - & , lla, -Feqy | = 6,-F-q (I) = F(I - &) < ¢
2 2

for A 3hg . Tus (T~ e)F (e = faraf) <

lla, I2fa, -F-d,l < € Tor A 2Ay. Thus H is B-equicon-

tinuous by Taylor's criterion [59].
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3.3.18 QUESTION. Our definitions of o-additivity, tight-
ness, and r-additivity for elements of M(A)' were made
in terms of positive functionals. One natural question
that arises is this: suppose F € M(A)' and, for every
sequence f{a;} €A such that al0, F(a,)20. Is F
o-additive, i.e., if we write F = Fl— F2+ iF3- iFu_ where
[Fi}l;:l is a set of positive linear functionals on M(A) ,
is {Fi};l:l S M_(A) . The question is answered affirme-
tively in the commutative case using lattice structure.

A similar question may be asked about r-additive and tight
functionals. It is clear that we need consider only Her-
mitian linear functionals, i.e., functionals which are
real-valued on Hermitian elements. The question for tight

functionals has been answered by D. C. Taylor.

3.3.19 THEOREM,[59]. Suppose A is a C¥-algebra, Then
M(A)é is a Banach space which is isometrically order iso-

morphic to A' .

Our next result generalizes the idea of a measure en-
tirely without support which we discussed in the paragraph
preceding 3.3.5. If B is a van Neumann algebra [16,17]
and f € B' , there is a smallest projection Ef in the

set {P: P is a projection in B and f.P = f} . Ep is
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called the support of f . Suppose we regard A as a
subset of M(A) in the canonical way. M(A)'' is a

von Neumann algebra and any positive linear functional on
M(A) has an extension to M({A)'' that is continuous with
respect to the o(M(A)'',M(4)') topology.

If A= Cy(S) , functionals F € Cy(S)* = M(S) such
that F =0 on A correspond under the mapping defined
in 2,1.1% to measure entirely without support. Iet BS
denote the Stone-Cech compactification of S [28]. Borel
measures on S can be thought of as Borel measures on BS
and Borel measures entirely without support are measures
whose support is contained in BS\S .

Our next result is an analogue of this idea in the

noncommutative case.

3,3,20 THEOREM, Iet F be a positive linear functional on
M(A) and let H denote the o(M(A)'',M(A)')~continuous
extension of F to M(A)''. Let Ey denote the support
of H in M(A)'' and I, denote the principal identity
of A which is the identity of the o(M(A)'',M(A)') clo-
sure of A in M(A)'' . Then F=0 on A iff IpEg = 0.
Proof. Suppose that F =0 on A . Let {e)\} be an in-

creasing, positive approximate identity for A ; Then
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e, ¥ I, o(M(a) 1.M(a)") [48]. sSince H is
o(M(A)'",M(A)") continuous, H(IA) = lim F(eh) =0 . Let

X
I denote the identity in M(A)'' , Then H.(I - I

a) = E

so that I - T, >E;, e, BT, =0.

Conversely, suppose that IE;=0. Then H(IA) =
H-Eg(I;) = H(EgI,) =0 . If a <€ A such that 0 <a and
flal <1, then a<TI, sothat F(a) <H(I,) =0, i.e.,
F=0 on A.

There are many questions suggested by our work on ge-
neralized topological measure theory. What we have presen-
ted here, together with the next result, is only a begin-
ning, As a corollary to the theorem on tensor products be-
low, we have that finite products of locally compact mea-
sure compact spaces are measure compact.

For this result, we need the concept of the C¥-tensor
product of C*-algebras. We sketch the construction and re-

fer the reader to [48] for a more detailed treatment.

3.3.21 DEFINITION., Tet A and B be C*-algebras and

A ® B denote the algebraic tensor product of A and B,
regarded as a set of bilinear forms on A' X B' , Define
involution for '‘'elementary tensors'' a ® b by (a®b)* =

a* ® b* and extend linearly. If (f,g) € A' x B' , let
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n n
£®g( L a;® bi) = ® f(a;)g(b;) . If f and g are po-
i=1 i=1

sitive, £ ® g is positive [48]. The C*~tensor product
of A and B is the completion of A ® B under the norm

N ‘- I®, gk
@y , defined for x € A® B by ay(x) = sup § f@gyy*yxy

f and g are positive linear functionals of norm < 1 on
A and B respectively, and y € A®B such that

eg(y*y) # 0} . From a slightly different viewpoint, if

we let Trf®g denote the representation of A®B associa-
ted with the positive functional £ ® g [17, Par. 2],

then a,(x) = ;;g ||1rf®g(x)“ , where f and g are posi~
tive linear functionals of norm <1 on A and B respec-

tively.

We shall let A ® B denote the C*-tensor product of A
o,
0

and B.

3.3.22 THEOREM. Suppose A and B are measure compact.

Then so is A ® B,
%o

Proof. Regard A as a subset of M(A) and B as a sub-
set of M(B) in the natural way. Suppose that % is a

o-additive positive linear functional on M(A 4 B) and

§ £ 0 . We shall show that 8 #0 on A® B, First, we
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show that M(A gOB) contains naturally imbedded copies of
M(A) and M(B).

Let a' e M(A) and I (a') = (Ia',Ra') where La' is
the linear map on A ® B defined by ILa' (iglai® bi) =

n n
t ® [
izla a; bi , for iflai bi €A®B, and

n n
Ra'( T a; ®b;) = T a;a' ®b, . Ra' and ILa' are well-
i=1 i=1

n
defined. For if X ay ® bi =0 , i.e., represents the
i=1

n
zero form so that I (p(a.)\ll(bi) =0 for all @ ¢ A',
i=1

1

y € B! then Za'ai ® bi = 0 also since if ¢ € A' and
n n

¥ eB', then I o(ata;)¥(b;) = % p(a;)¥(b;) where
i=1 i=1

p=¢ *a', Thus La' is well-defined; similarly, Ra'
is well-defined. We now show that La' and Ra' are
bounded operators on A ® B so that they may be extended
to all of A goB .

First, let us assume that a' € A . TLet ¢ be a po-

sitive linear functional on B . We want to show that

gy (22 2@, )l < lla [T, (Sege0, )

t H_ and H be the Hilbert spaces construc-
Let Hp o By oy P
ted from A,B and A®B by means of the positive func-
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tionals ¢,¥, and o9 ® § . Sakal notes [48, p, 61] that

wa is unitarily equivalent to H ®H (where N

denotes the tensor product of Hilbeit sp‘:ces defined in
Dixmier [16, p. 21]). By making the appropriate identi-
fications, we are able to restrict our attention to the
pre-Hilbert space Acp ® qu where Atp denotes the pre-
Hilbert space constructed from ¢ and A and B\b de-
notes the pre-Hilbert space constructed from ¢ and B .
Let IW and Icp denote the identity operator on Hq, and
Hcp respectively. Then Ilq) ® qy(za'ai ® bi) =

(ncp(a') ® Ill') o (n(p ® n{,(z:ai ®D;)) . Hence

Hn@w(za'ai & b, )ll = lincp ® I, (za'a; @ b.)ll <

Im,(a*) @ T,0l lin, ® B (za, ® v,)i =

Im,(a') © T,1l Mg, (22 @ b))l

The first equality and the last follow because ﬂ@w and
ncp ® n‘v are unitarily equivalent, as goted above.

Qur problem then reduces to computing the norm of the
operator l'lcp(a') ® I\ll on Acp ® B\p . By using 3.2.23
(following this theorem) plus the fact that l'l(p is norm
decreasing, we see that
ERCOCENTY SCOIREN R EY

Thus

“nq:@‘v():a}ai @ b,)ll < flatll “nap@‘k(za‘i ® v,)l
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50 that La' is a bounded linear operator on A ® B of

norm < [la'lj and so extends to A ® B . Similarly, R ,
CLO a
extends to all of A ® B with norm < jla'] .
® <
0

In the above discussion, we assumed that a! € A

Now suppose that a' € M(A) and that {a; is a net in

A such that a; 2 a' in the strict topology. Assume
further that ]la.;“ < lla'll for all o . Then

aO(La,(Eai ® bi)) = aO(Ea'ai ®0b,) =

@ (y*(Z(a'a, )*@b. *) (Tala, ®b. )y
3 i i i : 0< o e A,
E216559) =
ol <2, 0t eax, W <1, o®i(y*y) #0, vy € A3B) .
Suppose y = Ic. ® dj . Since we may regard ¢ as an ele-

J
ment of M(A)E; » inserting 3¢, ® 4; for y in the above

expression and evaluating ¢ ® § , we get that
. t .
ag(Zala; ®b,) = lém og(Eaa; ® b.) . This last fact fol-
lows from the B-continuity of ¢ . Hence ay(L,,Ta®,))<
T
1§m llagll ag(za; ® by) < flarlleg(za; ® by) . Thus HLa‘" <

lat)l for arbitrary a' € M(A) and a similar result holds
for Ra' . By using the fact that % is a cross norm
(ag(x®y) = lxlllisll) we see that {R,,ii = ;I = lla’) .

It is also clear that if x,y € A® B, then XLa'(Y) =

R, (x)y so that by continuity of L,, and R , , we
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get that (Ly,,Ry,) € M(A @aon) .

We may summarize the preceding arguments by saying
that !!1:M(A) - M(A ®QOB) defined by l‘ll(a') = (La"Ra')
is a *-isomorphism into, Similarly we may define a
*-isomorphism I'lg:M(B) ~» M(A ®QOB) with ng(b') =
(T, 15R,,) Tor b' e M(B) where I ,(Za; ®b,) =
Ia; ® b'b,  and Rb,(zai ® bi) = Za; ® b.b' .

We are now ready to prove the theorem. First note
the following fact: if [ax'13 < M(A) and ar" < 0B then
W, (a)) » OB , i.e., in the strict topology on M(4 ®aOB)

defined by A ®u. B . For note that by the uniform bound-
0

edness theorem ["aﬁ"};:l is bounded; thus it suffices to
verify that La;‘ and Ra' converge to zero pointwise as
n
operators on A ® B, This is clear. Similarly if
{v}} €M(B) and bl =+ OB then M,(b!) = O in the strict
topology of M(A &, B) defined by A® B .
0

With these remarks in mind, one sees that the linear
functional &, on M(A) defined by the equation ﬁl(x) =
§(I'll(x)), for x € M(A) , is a non-zero g-additive posi-
tive linear functional, By measure compactness of A ,
qacat so that §(rll(a2)) > 0 . Define a linear func-
tional &, on M(B) by the equation

§2(y) = §(111(a.)n2(y)n_l(a)) and note that &, is nonzero,
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o-additive, and positive, Measure compactness of B then
yields the existence of b ¢ B+ so that
§(nl(a)ﬂ2(b)nl(a)) >0 . 8ince it is easily checked that
M, (a),(0)L (2) = a® @ b , we have that §(a%8 D) > 0,
i.e., & does not apnihilate A® B, Since & is an
arbitrary o-additive linear functional on M(A ®y B) »

it follows that A ®a B is measure compact.
(o]
We We now state and prove the lemma used in this proof.
1

3.3.23 LEMMA. Iet H; and H, be 2 Hilbert spaces and

Hl % I-I2 be the completion of Hl ® H2 with the inner pro-
duct defined for elementary tensors by

< X8 Xy 98 Y2 = < X35¥12< Xpp¥p> with xq,y) € Hy and
X, € Hy . Suppose T e B(Hl) and I, is the identity ope-

® 5,

rator on H2 . Let T® 12 be the operator on Hl

2
defined by T ® I,(Ex;® g;) = EN(x;) ® y; . Then

T ® I, € B(H,® H,) and flr® 1)l <7l so that T extends
to all of Hl ® H2 .

Proof. Let Z:xi ® vi be an element of Hl® H2 . We may
suppose that (yi] is an orthonormal set. Then
2 2
Iz ® Ty(zx® ¥ ) = znx;) © 3,1% = 2lrex)I® <
Izl? sx,12 = I712zx® 5,1% . Hemce [z o I < il as
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claimed.

SECTION 4, STONE-WEIERSTRASS THEOREMS.

The final section of this chapter has to do with a
general Stone-Weierstrass Theorem for the double central-
izer algebra of a C*-algebra., Our results in Section 4
are only partial ones; we have not finished working out
the details of better and more general resulis.

The first proposition is about LCH , the algebra
of compact operators on the Hilbert space H and its

double centralizer algebra B(H) .

3.4.1 PROPOSITION., Let A = ILCH and B be a B closed
*~subalgebra of B(H) which separates the set consisting
of the pure states of A ‘together with the zero functional
on M(A). We will think of the pure states of A as being
pure states of M(A) which are B continuous [59,41,42].
Then B = B(H) .

Proof. From the result Al2 in [17], we have that the
closure of B in the ultrastrong operator topology [16]

is the double commutant [38] of B if we can show that
B-H = {b(x): b € B, x € H} is dense in H . Suppose that
B.H isnot dense in H. Then TheH, |h] =1, so
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that h is orthogonal to B-H . Hence < b(h),h > =0
¥ beB, where !''<>' denotes the inner product in
H ., Thus B does not separate the pure state of B(H)
T+ < T(h),h >, for T e B(H) , from the zero functional.
Sinee this pure state is B-continuous on B(H) , we have
arrived at a contradiction and conclude that B-H is dense
in H.

Next we show that the double commutant of B is
B(H) by showing that the commutant of B consists only
of scalar multiples of the identity ope_rator, i.,e., that
the identity representation of B is irreducible. If
not, there are orthogonal invariant subspaces Hl and H,,

2
Let by € H; and h, e H, sothat [hf =0 =12.

2 2

If TeB, <T(hy-hy), by hy > =< T(h+ hy), by+ by >
so the pure states of B(H) determined by hq - h, and
hy+ h2 are equal on B(H) , since they are equal on B .
Thus hl+ h2 is a multiple of hl— he . This is nonsense
and hence we conclude that the double commutant of B is
B(H) as claimed.

Summarizing the above arguments, we have shown that
B is dense in B(H) with respect to the ultrastrong ope-
rator topology. We now show that (B(H)B)' < (B(H), ultra-
strong operator topology)' which will prove that B = B(H)

by means of the separation theorem for locally convex
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spaces. Let F Dbe a positive linear functional continuous
on B(H) in the strict topology. Using [17, p. 83-84]
we have the existence of sequences {xi};;l from H and
U‘i}:=1 from the positive reals so that IX <+ =,
fx;f =1 for 1 >1 and F(T) = ii)_:olxi< Ix;,%;> for
T € LCH, It is easy to see that this formula for F ac-
tually holds for all T € B(H) . By using the fact that
B 1is the finest locally convex topology agreeing with it-
self on norm bounded sets [59] of M(A) , we see that the
expression for F('I') defines a B continuous linear func-
tional on norm bounded sets of B(H) , hence a B continuous
linear functional on B(H) . Recall that LCH is B dense
in B(H) and our claim follows.

Since the ultrastrong topology is defined by seminorms

o
A+ TAx;,x;> where z:llxi|12 <+ ®, F is clearly ultra-
n=1

strongly continuous on B(H) .

Our next result is related to Glimm's work on the
Stone-Weierstrass Theorem [17]. Since A is an ideal in
M(A) , pure states of A extend to B continuous pure
states of M(A) [59,%1,42]. These are, in fact, exactly
the B continuous pure states of M(a). States of A4 also
extend, uniquely, to states of M(A) which are B continuous,

When we speak of pure states and states of A as elements
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]
of M(A)B , are speaking of these functionals extended
to M(A) so as to preserve B continuity and/or pure-

ness,

3.4,2 LEMMA. Suppose B is a B-closed self-adjoint sub-
algebra of M(A) containing the identity of A and se-
parating the states of A, Then B = M(A) .

Proof. Let B, and M(A)l denote the self-adjoint ele-
ments in B and M(A) , respectively. If B # M(A) ,
then By # M(A):L . DNoting that B, is B-closed, we have,
by duality theory, a real linear functional f which is

B continuous on M(A), so that £ =0 on B, , but f
is not identically zero., Extend f to all of M(A) in
the obvious way and note that the extension, which we shall
denote by g , is a B continuous hermitian (real valued
on hermitian elements of M{A)) functional. Since A4 is
a C¥*-algebra, we may write f = hl— h2 where hl and hz--
are positive linear functionals on A , Extending hl and
hy (uniquely) to B continuous positive linear functionals

py and Py s respectively, on M(A) , we have that

g =Py~ P, . Since &(I) =0, oyl = lIp,ll = pq(T) = p,y(T).
Thus the states 1 Py s Py agree on B , but
llo, o
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not on M(A) . This is a contradiction to the assumption
that B #£ M(A) .

3.%4.3 DEFINITION, Let A be a C¥-algebra, A is called
liminal if the image of A under every irreducible re-

presentation is a subset of the compact operators on the
Hilbert space of the representation. A 1is called anti-
liminal if A contains no nonzero two-sided closed limi-

nal ideal,

3.4%.4% LEMMA., Suppose A 'is a C¥-algebra such that every
state of A 1is a weak-* limit of a net of pure states on
A. If £ is a state in M(A)B' , the £ is a B weak-*

limit of a net of B continuous pure states of M(A) .

Proof. TUsing D. ¢, Taylor's methods [59, Th. 2.1] and
{17, 1.6.10], we may factor f = a.g.a where g is a
B continuous state of M(A) and a € AT . Let {fy} be
a net of B continuous pure states of M(A) so that
£ (x) » g(x) for xeA. Then a-fi-a= a-ga=7
B weak-* on M(4) . We may assume that fa(az) =

1
||s.-fa-a|l #£0 for any o . Let €, = —=p=.
1 2 2 fal )
e £ (a%) » g(a®) = £(I) =1 . Tas Cy(a-f ra) 2T

Then
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B weak-* on M(A) . Note that Cy(a<f -a) is a B con-
tinuous state of M(A) for all & . We need to check
that it is a pure state of M(4) . This is handled by

the next lemma,

3.4.5 LEMMA. Suppose f is a pure state of M(A) and
a € AT such that f(az) =1, Then a-f-a is a pure

state of M(4) also,

Proof. Let I denote the identity in M(A) . Let T be
the canonical irreducible representation defined by f
such that f(a) = < H(b),hy,h,> where hy is the image
of I in the Hilbert space def\ined by £ and ''< , >'!
denotes the inner product in this Hilbert space [17, Sec-
tion 2]. Then a-fea(x) =< Il(x)(!la(ho)) N (ﬂ(a)ho)> .
From [17, 2.5.1], we obtain théf every positive functional
g dominated by a-f-a 1s of the type

g(x) = < l'le(na(hO)) s T(na<h0)) > where T is a positive
operator, of norm < 1 , on the Hilbert space of the re-
presentation and T commutes with all operators in W(M(A)).
Since I is irreducible, T 1is a multiple of the identity
operator, Hence g 1is a multiple of a-.f-a , 1i,e.,

a.f.a is a pure state [17, Section 2].
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3.4,6 THEOREM., Let A be an antiliminal C¥-algebra such
that any two nonzerc two-sided closed ideals of A have
nonzero intersection. Let @ denote the B weak-* clo-
sure of the pure states of A (i.e.,, the B continuous
pure states of M(A)) . If B is a B closed self-adjoint
subalgebra of M(A) containing the identity of M(A) such
that B separates Qn M(A)E' , then B = M(A) .

Proof. From [17, 11.2.4], we have that every state of A
is a o(A',A)-limit of a net of pure states on A . Hence,
by 3.4.4, every state in M(A)sI is a B weak-* limit of a
net of pure states in M(A)BI s i.e., QN M(A)B‘ contains
the states in M(A)p' . By 3.4.2, B=M(a) .

3.4,7 REMARK, If A has the properties of 3.4.6, then so
does M(A) . For if I is an ideal in M(A) and I # 0,
then In 4# {0} .

3,4,8 EXAMPLE. For a separable Hilbert space H ,

A = B(H)/LCH has the properties in the hypothesis of
3.4.6.
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CHAPTER IV
VECTOR-VALUED FUNCTIONS

In this chapter we discuss the basic theory of topo-
logical measure theory along with the recent work of Sen-
tilles which helps make clear the connection between topo-
logical measure theory and the strict topology. We then
present our contributions to the theory in Sections 2 and
3. In Section 4, we compute the double centralizer alge-
bras of two algebras of vector-valued functions. The most
interesting results, in our opinion, are 4,2.3, %.3.2,

4.3.4, %.3.7, 4.3.12, and %.3.13.

SECTION 1. PRELIMINARIES.

We first need to develop some additional measure
theory. A good reference for this is [62]. Let X de-
note a completely regular topological space. The Baire
algebra of X , denoted B:(X) is the smallest algebra
of subsets of X containing the zero-sets of functions in
C*(X) . We use Ba(X) to denote the smallest c-algebra
containing the zero-sets. In this chapter, C¥(X) always

means real-valued continuous functions and all linear spa-
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ces considered are real linear spaces. A positive Baire

measure P on X is a non-negative, finite, positive
real-valued, finitely-additive set function on BZ(X) so
that A& € BZ(X): u(A) = sup (M(Z): 2 S A, Z a zero
set of X]}. A Baire measure is the different of two po-
sitive Baire measures, The collection of all Baire mea~-
sures and positive Baire measures are denoted M(X) and
M+(X) respectively, If m is a Baire measure, the set
functions m (A) = sup (m(B): B CSA,Be B:(X)) , for
AeB,(X), and m () = - inf (m(B): B e B,(X) and
BC A}, for Ae B:(X) s are elements of M+(x) and
m=n"-m . Tet |m}] =w +m . Then |m} eM+(X)
and is called the absolute value of the Baire measure m
M(X) with the norm |mj] = n™(X) + n"(X) is a Banach
space, There is an equivalent definition of M(X) that
is sometimes useful, Let m be a finitely-additive set
function on B,(X) . Then m e M(X) iff (1) Im(a)| < ¢
for some C >0 and all A € B:(X) and (2) for any
AeB,(X) and € >0, there is a zero-set Z S A 5o
that |m(B)} < € for all B C ANZ .

The adjoint of C*(X) can be identified with M(X) .
If & € ¢*(X)' , there is a unique Baire measure m € M(X)
such that #(f) =dem for f € C*(X) . Conversely,

if & is defined by the preceding formula for m € M(X) ,
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then & € M(X) . Furthermore, [|&]] = flnfl . The cor-
respondence is a vector space homomorphism and preserves

order, that is, & is a positive linear functional

(3(£) >0 for £ >0 in C*(X)) iff m e M (X) [62,
Theorem 6].

We shall be particularly interested in three classes
of measures on X ., A Balre measure m is said to be
g-additive if m(Z,) @ O for every sequence {Zn}:___l
oi zero-sets of X such that zn+lS Zn ¥n and
nz, = {#] (we denote this by Z | #) . A measure
m=e M(X) is called T-additive if m(Z ) # O for every
net (Zu.] of zero-sets of X such that z & Zs for
o >B and 0% = {7} (we denote this by Z, { #} . The
measure m € M(X) is called tight if for every € >0,
¥ a compact set K S X so that lml*(X\Ke) <e,
where for EC X |m| (E) = sup {Im|(Z): Z is a zero-set
of X and Z CE} .

If ¢ e 0*(X)', & is called o-additive if
@(fn) + 0 for every sequence {fn}:;l in ¢*(X)} such
that f ., < f, ¥n and £ + 0 pointwise on X (we de~
note this by fn»L 0) . The functional & € C*(X)' is
called v-additive if &(f,) » O for every net (f ] S c*(X)
such that f, < fg for o >B and £+ O pointwise on
X ., Finally, & € c*(X)' 1is called tight if i(fq) = 0
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for every net (f ] contained in the unit ball of C*(X)
such that fa-* 0OC=-0p .

In [62], it is shown that if & e C*(X)' and
m € M(X) such that &(f) = Ifdm , then § is c-additive
(r-additive, tight) iff m is c-additive (r-additive,
tight). Identifying functionals and the corresponding
Baire measures, we denote the class of o-~additive, r-addi-
tive, and tight fucntionals (o-additive, r-additive, and
tight Baire measures) by MO(X) s M (X) , and Mt(X) B
respectively. Note that Mt(X) c M x) © MG(X) .

One of the big problems of topological measure theory
is to determine when M _(X) = M_(X) . This problem is
first mentioned in [62] and has been studied by many
authors. Some good references for the interested reader
are [21, 29, 30, 31, 35-37, 50, 62, 67]. A space X sat-
isfying M (X) = M (X) is called measure compact. If X
is a set, not necessarily with a topology, X 1is said to

have measure compact cardinal if X , equipped with the

discrete topology, is measure compact., The guestion of
whether every set has measure compact cardinal is a deep
question of set theory which is related to the existence of
Ulam measures [23] and the guestion of whether every dis-
crete space is realcompact [23]. For a locally compact

space, Mt(X) = MT(X) [35]; Measure compactness is a to-
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pologlical property, 1,e., if X and Z are homeomorphic
topological space X is measure compact iff Z is .

In Chapter III we spoke of measure compact C*-alge-
bras (see 3,3,6), If X is a locally compact space, X
is measure compact iff MO(X) = Mt(X) . If A is a com-
mutative C*-algebra then A is isometrically *-isomorphic
with the algebra CO(S) for some locally compact Hausdorff
space; it is clear that A 1is measure compact in the sense
of Chapter III, 3.3.6, iff S is measure compact, i.e.,
iff M (S) = M (S) = M (8) . Closed subsets of measure
compact spaces are measure compact. Countably infinite
products of locally compact measure compact spaces are
measure compact [29]. If X is Lindeldf, then X is
measure compact [29]. If X has measure compact cardinal
and X is paracompact, then X is measure compact.

In Section 3 of Chapter III, we prove theorems which
extend most of these results for locally compact X 10 the
non-commutative C*-algebra setting. See, e.g., 3.3.4,
3.3.7, 3.3.8, 3.3.9, 3.3.13, 3.3.22.

F. D, Sentilles and other have extended Buck's strict
topology B to C*(X) for X completely regular (in-
stead of the more restrictive requirement that X be lo-
cally compact); see [21, 22, 27, 50, 55, 61]. In doing so,

connections were established between these new !''striet!!
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topologies and some aspects of topological measure theory.
In our opinion, the best work so far is that in [21] and
[501. We shall describe the work of Sentilles,

The topology BO on C*(X) dis defined to be the
finest locally convex linear topology agreeing with the
compact-open topology on norm bounded sets. Tet BX de~

note the Stone-Cech compactification of X [19] and if

£ e c*(X) , let T denote the unique continuous exten-
sion of f to BX . For each compact set Q S BXN\X ,
let CQ(X) ={fec*(X):F=0 on Q} . Let SQ be the
topology on C*(X) defined by the seminorms £ = |ifhi
for £ e C*(X) and h e CQ(X) . Let B be the intersec-
tion of the topologies BQ , where Q varies through all
compact sets in BX\NX . If we instead allow Qq to vary
through the zero-sets (of continuous functions defined on
BX) contained in BX X , the topology is called El .
TLet p denote the topology of pointwise convergence on
X and C - Op that of uniform convergence on compact
subsets of X and | || the norm topology on C*(X) .
Sentilles shows that P < C-O0p By <B <By <1l |l
and that all these topologies are locally convex and Haus-
dorff. He also shows that C*(X)s is topologically and
isometrically isomorphic with C*(8X\ Q) with the strict

topology defined by Cp(BXNQ) (in Buck's sense), It is
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known that B = BO if X is locally compact [18,51].

Sentilles [50] makes a very important contribution
when he calculates the adjoint spaces of (*(X) endowed
with the topologies SO > B, and Bl . It is this re-
sult which allows him to use the interplay between topo-
logical measure theory technigues and functional analytic
techniques to obtain a deeper understanding of both topo-
logical measure theory and his strict topologies. Sen-
tille? shows that (:*(X)s'O = M (X) » C*(X)';:L = M (X) and
C*(.’X)Is = M.(X) and that X is measure compact iff
El =B . He also proves many other interesting results
which we will list as we need.

In the rest of Chapter IV, except for Section %, we
extend many of the above mentioned results to vector-va-
lued functions.

In what follows E will always denote a real normed
linear space (in most of the results, if not all of them,
£ could be any locally convex space, but we feel that no-
tation is made simpler by restricting ourselves to this case).
Let X denote a completely regular topological space and
let C*(X:E) denote the set of all bounded continuous func-
tions from X to E . C¥(X:E) is a real linear space.

We define the topology By on C*(X:E) to be the

finest locally convex linear topology agreeing with the
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compact-open topology on norm bounded sets, For Q a
compact subset of BXNX , the topology 6Q on  C*(X:E)
is that topology defined by the seminorms f = |hf| ,
where h ¢ CQ(X) and f e C*(X:E) . Then $, and B
are defined as the intersection of topologies BQ s €X-
actly as in the scalar case.

Note that we may restrict ourselves to nonnegative
functions in C, 1in defining the % seminorms and the

Q

resulting topology is Also note that if X is lo-

Bq -
cally compact, then B = BO is the topology defined for
C*(X:E) by Buck in [5] and studied in [66]. That Bo
coincides with Buck's topology in the case X 1is locally
compact follows from [51].

In [50], ﬁo » as defined by Sentilles, is compared
with several other ''strict topologies'' in the literature.
We now define these topologies for C*(X:E) and state the
generalization of Sentilles' theorem to C*(X:E) without
proof, since the proof in [50] goes through, with obvious
modifications. Let w, denote the ‘topology on C*(X:E)
defined by the seminorms f =+ [|hf]] , for f e C*(X:E) ,
where h 1s a bounded real-valued function on X such
that {x:{h(x)| > €} 1is compact for each € > 0 and let
Wy denote the topology on C*(X:E) defined by the semi~

norms f - |hf|| where h is a nonnegative real-valued
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function on X which is bounded and satisfies the condi-
tion that {x € X: h(x) > €} is compact for each € > 0 .
Summers studied W, in the scalar case in [53,55]. Fi-
nally, let m denote the mixed topology y[C - Op,|| |II
on C*(X:E) as defined by Wiweger [68].

4,1,1 THEOREM. (a) BO =m and Bo has a base of neigh-
©

borhoods of the form W(K;,a;) = igl[f: ”f”ki < a;} where

0 < 2y < o and Ki is a compact subset of X , for each

i.

(o) Bog =y =, .

If S 1is locally compact, most of the results for
(.':*(S)B go through for C*(S:E)B , perhaps with the addi-
tional assumption that E is complete (C*(S:E)B is com-
plete iff E is complete). For example, B and ¢ - Op
coincide iff S dis sham compact. The norm topology is B
iff X 1is compact.

Conway in [11] proves an interesting characterization
of C*(s)E as a projective limit of Banach spaces. His
proof extends easily to the case C¥(S:E) . In [11], Con-
way also asks about the Mackey problem for C*(S:E)ﬁ .
Using the main technique in [57] we have the following

th eorem;
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4,1,2 THEOREM. Suppose S is a locally compact Haus-
dorff space and CO(S) has a well-behaved approximate
identity and E is a Banach space., Then C*(S:E) is a

strong Mackey space.

4.1,3 COROLLARY. If S is paracompact and E is a Banach

space, then C*(S:E) is a strong Mackey space.

The following analogue of Sentilles'! theorem relating
the topology of pointwise convergence denoted p , the
compact-open topology denoted C - Op , and the norm and
strict topologies holds. The proof which is similar to

that of Sentilles is omitted.

4.1.% THEOREM. (a) P < C~-O0p <By<By <B, <l || on
C*(X:E) . (b) The topologies C - Op through | | are
all equal iff X is compact. (c¢) If X is locally com~
pact, B =Bj . (d) X is compact iff B is barrelled
[45] iff B is bornological [45] iff B is metrizable
iff B is normable., (e) X is pseudocompact iff 51 is
barrelled iff Bl is bornological iff ﬁl is metrizable

iff Bl is normable,
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SECTION 2, THE STRICT TOPOLOGIES £ AND Bl FOR VECTOR-
VALUED FUNCTIONS.

As in Section 1, let E be a real normed linear space,
X a completely regular space, and C*(X:E) denote the
real linear space of bounded continuous functions from X
to E . When no other topolegy is explicitly mentioned,

C*(X:E) is to be assumed given the norm topology.

4.,2,1 DEFINITION. Let & € C*¥(X:E)' . Then & is said
to be co-additive if for every sequence {fn] & ¢*¥(X) such
that fn&O §(fng) H uwniformly for g in C*(X:E) of
norm < 1 . Similarly, $ is said to be t-additive if,
whenever {f,} 1s a net in C*(X) such that £,40 5
then &(fy,g) 2 O uniformly for g in C*(X:E) of

norm £ 1.

},2.2 REMARK. The definitions in %.2.1 generalize the
usual ones, In order to see this, we need only show that
if g e c*¥(X)' and # is a positive linear functional,
then @ is c-additive (r~additive) in the sense of [62]
implies it is o-additive (r-additive) in the sense of

L.,2.1. This follows immediately from 1,10,

4,2,3 THEOREM., Let @ e C*(X:E)' ., Then (a) # is
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o-additive iff ¢ is B, continuous on C*(X:E) ;

(b) @ is r-additive iff @ is B continuous on C*(X:E).

Proof. {a) Suppose that @ 1is c-additive, We wish to
show that @ e (C*(X:E)Sl)‘ . It clearly suffices to show
that @ € ((’:*(X:E)B )' for an arbitrary zero-set @ con-
tained in BXN\NX . Let Q be a zero-set of BX such
that QS BXNX . Since Q is a compact Gy, CQ(X) hag
a countable approximate identity {hn}:::l satisfying
0<nh <1V and 1-h Y0 on X. Thus

ﬂ((l-en)g) 2 0 uniformly for g in C¥(X:E)' in the na-
tural way, i.e., if g e CQ(X) and @ ¢ C*(X:E)!

g #(h) = P(gh) Yh € C¥(X:E) . With this notation we have
shown that ||en-125 - ¢H 2 0. Thus g eW={p: pe C*X:E)!
and |le*p - p|l » 0}. Clearly W is a Banach space and
an essential left CQ(X) -module in the language of Chapter
I, By 1.12, if P € W , p = a-q where a € CQ(X) and

g € W . Clearly then W& (C*(X:E)SQ)‘ . Thus

g e ((:*(X:E)p )* for each compact zero-set Q S BX\NX ;
Q
hence £ € (C*(X:E)B ).
1
Conversely, suppose that ¢ is ﬂl continuous,

gl <1, €>0, and ({fy} S C*(X) such that
lel €1 ¥n ana £, 0 on X . For feC¥(X), let T
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denote the unique continuous extension of f to BX .
®

Let K= N {teBXx: T (t) ><} . Then X is a compact
n=1 n =2

nonempty subset of BXNX . Since K =

noOn(tepxT (1) >E-%) g 1 t G, and
€ : bl 1s a compac an
nel mel n 2 m )

hence a zero-set of BX . Since g ¢ C*(X:E)é there are
K

are functions 0 <h <1l in CK(X) and ¥ € c*(X:E)'

with |4l <2 so that @ =n-y . Thus [4(£)] = [y(ar)l <
2 |nf]l for all £ e C*(X:E) . Let O = {t e BX: B(f) < £}.
Then O 1is open, K& 0, and BXN\O is compact. Since
0D K, there is an integer N so that {t € BX: Fn(t) >
%} S0 for n>N ., Then if ge C*(X:E) and Jlgfl <1,
18(£,8)1 < 2 lnf gl < 2lbe | <€ for n >N . Hence
ﬁ(fng) =% 0 uniformly for g of norm < 1 in C*(X:E) ,
i.e., # is g~additive.

(b) The proof of this equivalence is similar to that given

in (a) and so is omitted.

SECTION 3. THE TOPOLOGY B, ON C*(X:E).

In this section we characterize the dual space
C*(X:E)éo » show that c*(X:E)ﬁO has the approximation
property if E has the metric approximation property, and
give a vector- valued measure representation for elements

of C*(X:E)ﬁ' , generalizing the work in [66]. We also
0
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extend %.2.3,

4.3.1 DEFINITION. Let F e O*(X:E)'. Then F is said
to be tight if F(ga) =+ 0 for every net {ga} € C*(X:E)
such that flgl <1 Yo and g, = O uniformly on com-

pact subsets of X .

4.3.2 THEOREM, Iet F € C*{X:E)'. The following state-
ments are equivalent:
(1) Fe C*(X:E)sl 5

o
(2) P is tight;
(3) The real linear functional T on C*(X) defined for
£ >0 in C*(X) by the equation T(f) =
sup {F(g): lle(x)ll < £(x) ; ¥x e X, g € C¥(X:E)] and ex-
tended by linearity to all of C¥(X) is tight;
(%) if € >0, ¥ compact K, € X so that if
T e c*(X:E) and |f} <1, then £=0 on K, implies
that |P(f)] < e 3
(5) F(f,g) 2 0 uniformly for g € C*(X:E) of norm g1,
for every met (£ } € ¢*(X) such that flegl €1 Vo and
£, o ¢ - Op.

Proof. (1) = (2) . Suppose F is By, continuous and

g,y + 0 uniformly on compact subsets of X ., Since SO
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agrees with the compact-open topology on norm bounded sub-
sets of C*(X:E) , g, * OBy s hence F(ga) + 0,
(2) = (1). since B, is defined as the finest locally
convex linear topology agreeing with the compact-open to-
pology on norm bounded sets a linear functional F on
C*(X:E) is B, continuous iff its restriction to norm
bounded subsets of (*(X:E) is continuous in the compact-
open topology, i.e., iff F is tight.
(5) = (3). For £ >0 in C*(X) define T(f) =
sup {F(g) : llg(x)ll < £(x), ¥x € X} . We first want to
show that we can extend T to a real linear functional on
¢*(X) . 1In order to establish this, all we need to show
is that T(f+g) = T(f) + T(g) , for f,g >0 in C*(X).
Let h € C¥(X:E) so that |lhf] < f+g . Por x e X

R f(x)h(x
such that f(x) + g(x) >0, define h,(x) = f$x§+g(x)

x)h(x
and hy(x) = %—&H—é—(ﬂ . If £(x) +g(x) =0, let

hy(x) = hy(x) =0 . Tote that hy and hy, € C*(X:E) and

fn,l < £ and oyl <g . Thus F(n) = F(ny) + F(hy) <

T(f) + T(g) . Taking the supremum over all such functions

h, we get T(f+g) < T(f) + T(g) . For the other in-

equality, let € >0 and hq,h, € C*(X:E) with th" <f
3

”h2" <g and 0 F(h) < T(f) <F(h)) +35 and

0 < F(hy) < T(g) < Flhy) +§ . Ten T(£) + T(g) < F(hy) +

El

F(hy) + € = F(hy+ hy) + € S T(f+g) + « . Since € >0 1s

148
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(1) » (4). Suppose F is EO continuous and € > 0 .
By 4.1.1, there is a bounded nonnegative upper semicon-
tinuous function g which vanishes at infinity such that
[P(£)} < llgfi for a1l £ e ¢*(X:E) . If £l <1 and
£=0 on K ={xe€X:g(x)>e€}, then Ir(e)l < e
(%) = (5). Suppose that (%) holds and that
(£} € 0x(x) 5 llrl €1 ana £, * 0 C - Op. We want to
show that F(fag) 2 0 uniformly for g in C*(X:E) of
norm < 1 . Clearly, we may assume that fa >0 Yo and
that [IFl <1 . Let € >0 and let K. be the compact
subset of X given by (4). Choose 0y SO that o > a,
implies "fa"Ke' <e. Let hy =min {f,,€} . Then if
g € C¥(X:E) and lgll <1, |F(feg - byg)i< e for w> o
since f, - hy =0 on K . Thus, for a >a,,

IF(£.8)1 < |F(£8) - Fhyg)] + |F(hye)l < 26 . Hence
F(fyg) 2 O uniformly for g in the unit ball of C*(X:E) .
(3) » (1). Suppose that T is tight. Then, from
Sentilles' result M, = C‘*(X)BlO and 4.1.1, ® a bounded
nonnegative upper semicontinuous function h vanishing at

infinity such that [|T(g)|l < llhgll for all g e Cc*(X) .
Let £ e o*(X:E) . Then |R()| < 2(iel) < Willnl = [zl 5
.therefore F ois so continuous by 4.1.1 again., We have
shown (2) = (1) = (2) and (1) = (¥) = (5) = (3) = (1) , so
the proof of 4,3.2 is complete.
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4,3.3 REMARK. We have the following improvement of 4,2,3,
whose proof is clear if we look at 4.2,3 along with the
proof of (5) = (3) in %.3.2 and make the observation that
(3) = (5) in 4.3.2 is trivial (although we did not prove
4.3.2 this way).

4,3.4 THEOREM, Let F € C*(X:E)' .

(a) The following are equivalent: (1) F is o-additive;
(2) F is B, continuous; (3) if T is defined in terms
of F as in 4.3,2, T is c-additive.

(b) The following are equivalent: (1) F 1s t-additive;
(2) F is B continuous; (3) if T is defined in terms

of F as in 4.3,2, T is r-additive,

The next topic we take up is the approximation pro-
blem in C*(X:E)a (see 3.2.31), where we generalize a
0

result in [21]. The following lemma is well-known.

4,3.5 LEMMA. Let X be a completely regular space, C a
compact subset of X , K a compact subset of C*(X)a
o]
and € >0 . Then ¥ a finite partition of unity (see
n : s s
4.3.6) {gi}i=1 on X and points {ci| 1<ign} in C
so that if P 1is the linear operator on C*(X) defined

n
by the equation Pf(x) = Egi(x)f(ci) , then P is
i=1
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B, continuous, Pl <1, P is of finite rank and

|22 - f“c <e for fekK.

4.3.6 DEFINITION, TLet X be a completely regular space
and (£} S C*(X) such that 0 ¢ fq &1 for each a .
The family [fa} is called a partition of unity on X if
the sets spt £ (see 2.2.3) form a locally finite cover
of X and Z:fu=l on X .

If there is a covering & of X so that spt f, €¢
for each @ € & , then [fa} is called a partition of

unity subordinate to & .

4,3,7 THEOREM, Let E be a normed linear space with the
metric approximation property and X a completely regular
Hausdorff space. Then C*(X:E)ao has the approximation
property.

Proof. Let € >0, @ a ﬁo totally bounded subset of
C*¥(X:E) and h a nonnegati\;e bounded upper semicontinuous
function on X which vanishes at infinity such that
lnif <1 . Since Q is norm bounded, let us assume that Q
is a subset of the unit ball in C*(X:E) .

Let C = {xsh(x) _>_—Z—} . Then C is compact. Note

that D = {f(x)r £ € Q, x € C} 1s a totally bounded subset
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of E . Hence there i1s a finite rank operator T on E,
with |7 <1, such that [T(d) - dfl <§ ¥d € D . Since
T is finite-rank, there is a finite set [qoi: 1<ig<n}c
E' and a finite set {e;: 1 {1 {n} S E so that

n
T(e) = Eg;(e)e; for eeE. Thus T(f(x)) =
i=1
n
= I g;of(x)e; for f e C¥(X:E) . Since the set
i=1

{cpicf: 1<ign, f£eQ) isa ﬁo totally bounded subset
of ¢*(X) , there is, by 4.3.5, a finite-rank operator P
on ¢*(X) with [Pl <1 ., such that P is continucus for
the B, topology on C*(X) and such that

1B(0y02) = (@024 <§ for fe@Q and 1<i<n.
Furthermore, we may assume P given by a formula such as
that in 4,3.5., Let S be the linear operator on C*(X:E)
defined for f € C*(X:E) by the equation Sf(x) =

n
iElP((pief)(x)ei for all x € X . Note that S is B, con-

tinuous and of finite rank. In order to compute 8] , we
write P more explicitly., As in 4.,3,5, let [gjll < J < m}
be a partition of unity on X and {cJ.: 1<jgm}ec so
m
that Pf(x) = T gj(x)f(cj) Yf e C*(X) . If £ e C*(X:E)
J=1
n
and x € X, then Sf(x) = _ElP(cpicf)(x)ei =
1=,

% 6 (x)(0y0(c))ey = E &y () T ogef(e;)e;) =
ge1 9T RN T s R g T

- Eejoamieey) o mus JsrGol < e lin(e(e )l < el

153
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and so |is| <1 .

What remains to be shown is that [|h(Sf - £)|| < e for
£eqQ. If xeXNC, h(x) <5 so that
Inx)(se(x) - 2=l < E)(@lel) <e . 1f x e, then

n n
Isz(e) ~ 20Ol < | E Plogor) (x)ey - F oot (iegll +

+ o)) - f(x)| <F+E=e. Tus if xeC,
In(x)(sf - £)(x)l < e since |hjl <1 . Hence
la¢st-£)ll < € ¥£ € @ and the proof is complete.

Our last results in Section 3 have to do with a vector
measure representation for tight linear functionals on

C*(X:E) .

%,3.8 DEFINITION, Let X be a completely regular space
and E a normed linear space. By M(X:E') we denote the
set of all set functions m defined on B:(X) , with range
in E' , which satisfy the following two conditions:

(a) the measure m(:)e defined for e € E by m(-)e(A) =
=m{A)(e) , A € B;(X) 5 nbelongs to M(X) 3

(b) 2 c>0 so that iflllm(Ai)H < ¢ for every partition
of X into sets X; € B (X) . Iet M_(X:B'), M (X:E') and
M (X:E') denote the set of m € M(X:E') so thet for each

e €E m(-)e €M (X), M(X), and MT(X) , respectively,
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%.3.9 PROPOSITION. Let m € M(X:E') and A € B,(X) .
Let |m|(&) = sup [igiﬂm(Ai)H: (A;} € BL(X) is a perti-
tion of A} . Then |m| e M(X) . If m e M_(X:E')
(My(X:E')) , then |m| e M (X)(M (X)) .

Proof. The proof of the first assertion and the proof of
the assertion that m € M, (X:E') implies |m| M (X) are
straightforward.

Suppose that m ¢ M_(X:E') , A € B, (X) end ecE.
From [62, TH, 18] there is a unique countably additive
(regular) measure m, on Ba(x) which extends m(-)e .
Let m'(4) = me(A) for A€ Ba(X) . By regularity and
uniqueness of extension m' € M(X:E') and |m| = |u'| on
B:(x) . Also m' is countably additive in norm, i.e., if

{An}:=l is a disjoint collection in Ba(X) 5
o P
' - 1 » 0., H s 5
i (nt—_)-l‘%) nflm (%)H 2 Hence by modifying standard

arguments such as [47, TH. 6.2], |m'| is countably addi-

tive, Hence |m| is c-additive.

4.3.10 DEFINITION. Let m € M(X:E') and f € C*(X:E) .

The integral of f with respect to m , denoted [ fam,
x

is the real number r 1if for € > O there is a finite

*
partition P(€) of X into elements of Ba(X) so that
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n *
Ii:.lm(Ai)(f(xi)) -n| <e if {A}] | SB(X) is any
partition of X refining P(e¢) and fxi}r.:;l is any choice

of points such that Xy € Ai for 1 <ign.

4,3.11 IEMMA. Let f£ ¢ C*(X:E) and m € M(X:E') . Then
| ram exists ana [ ram] < [ Itfaln]
X X X

4,3,12 PROPOSITION. Let m € M(X:E') and F(f) ffdm
X

Jm| (X).

If me€ MG(X:E’) or m € Mt(X:E') , then P is g-addi-

for T e C*(X:E) . Then F € C*¥(X:E)! and |7

tive or tight, respectively.

Proof. Apply %.3.11 and %.3.9 plus Sentilles' results [50],
for all assertions but the equality [Pl = Im|(X) . By
4.3.11, it is clear that [IF|| < |m](X)

For the reverse inequality, it suffices to show that
E m(Z Mey) < < ||l + € for every € >0, finite set

{ei}i 1 contained in the unit ball of E , and disjoint
collection [Z:L]l_ of zero~sets such that m(zi)(ei) >0
for 1{i<n.
n n
Suppose that {Zi]i=l and {ei)i=1 are sets as above
and € >0 . For p € M(X), let |u| denote the total

variation of u [47]. Choose disjoint cozero-sets [Di} 5
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3 c . =
1<i<n, sothat Z; €D, and |m(-)e ] (Dp~ Z) <%
and functions (f;7 1 <31 < n} € C*(X) such that
Os_fiSl,lsiSrA,fisl on %, and f, =0 on
X D; . For fe C*(X) and e € E, let f®(x) = f(x)e,

n
Vx € X . Note that f® ¢ C¥(X:E) . Then I m(Z)(e;) =
i=1

I _]‘ £,8e;dm < | 3 J' £i®e dn| + e < |F( E £,@e,)| +
i=1"°z, i=1 *D; i=1

+e<|IFll + €. Hence |[m|(X) <IIFl as claimea.

4,3,13 THEOREM, Suppose F is a tight linear functional
on C*(X:E) . Then & m e M (X:E') so that F(f) =I fam

X
¥V € C*(X:E) .

Proof. For g e C*(X) and e € E, let g®e(x) = g(x)e
¥x € X . Let C*(X)®E denote the linear subspace of
C*(X:E) spanned by all functions g®e for g € C*(X) and
e € E. By using partitions of unity, we see that C*(X)®E
is By-dense in C*(X:E) .

For e e E, let F(f) = F(f%) for all f ¢ C¥(X).
Since F € C*(X:E)BIO > F e C*(X)S'O so by Sentilles re-
sults [50], there is a unique m, € Mt(x) so that Fe(f) =
- Ixfdme Ve e 0*(X) . Note that I ]l = IF ]l < |7lllel

{62, TH. 6]. For A< B (X), let m(A)(e) = my(a) .
Note that m(A) € E' and m(.)e € M (X) VA € B_(X) and
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P
Ye € E . We show that ¢ ]Im(An)H < |Fl , for every par-
n=1

tition {An)§=1 of X into Baire sets, exactly as in the
last part of 4.3.12, Hence m € M (X:E') . Note that
F(£) =I fdm ¥f e C¥(X) ® E . By %.3.12 and B,-denseness
of C*(X) ® E, F(f) = I fam holds Vf € C*(X:E) .

X

SECTION 4. EXAMPLES.

Let E be a C*-algebra, X , a completely regular
k-space [19], and S , a locally compact Hausdorff space.
We shall compute the double centralizer algebras M(C*(X:E))
and M(Co(S:E)) . 1In 4.4.1, C*(X:M(E)e) denotes the set
of all functions f , continuous from X into M(E) with
the strict topology, such that the range of f 1is a B-
bounded (hence, norm bounded) set in M(E) . C*(X:M(E)B)
is a C*-algebra, with [|fll = :23% fe()ll vf e c*(x:M(E)ﬁ) »
since if f£:X - M(E) then £ is in C*(X: M(E)B) iff
fe ¢ C*(X:E) Ve ¢ E .

4.4.1 THEOREM. M(C*(X:E)) = C*(X:M(E)g) and M(Co(S:E)) =
c*(S:M(E)g) -

Proof., We prove only the first assertion, as the second

has a similar proof.

We shall use the criterion in 3.1,13, First, note
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that C*(X:E) is an ideal in c*(X:M(E)B) . For example,
if ge C*(X:M(E)B),f € C*(X:E) , and X compact € X,
choose, by 1,12 and 2.2.18, e ¢ E and h € C¥(X:E) so
that f =eh on K. Then gf =geh on K . Since

ge € C*(X:E) , gf is continuous on X . Hence gf €
C*(X:E) since X is a k-space.

Using the uniform boundedness principle and the fact
that, if f:X 9 M(E) , f e C*(X:M(E)s‘) iff fe € C*(X:E)
Ve € E, we see that C*(X:M(E)B) is complete in the
strict topology defined by C*(X:E) . Since
g € c*(X:M(E)B) satisfies gf = 0 Vf ¢ (*(X:E) only if
g = 0 , we have that C*(X:M(E)B) = M{C*(X:E)) by 3.1.13.

159
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PROBLEMS

1. Determine conditions on S necessary and sufficient
for CO(S) to have a well-behaved approximate iden-
tity. As a start consider metacompact and normal S .
It is possible that the existence of a metacompact,
normal, non-paracompact space S is independent of
the axioms of set theory., This problem seems very
difficult.

2. What does a well-behaved approximate identity for A
(Chapter III) have to do with A being measure com-
pact?

! 3, Finish the vector-measure representative of r-additive
and tight linear functionals in Chapter IV,

4, Does every C*-algebra have a canonical approximate iden-
tity?

5. Consider Question 3.3.18.

160
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