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Abstract 

We present a class of approximate inference algorithms for graphical 
models of the QMR-DT type. We give convergence rates for these al
gorithms and for the Jaakkola and Jordan (1999) algorithm, and verify 

these theoretical predictions empirically. We also present empirical re

sults on the difficult QMR-DT network problem, obtaining performance 

of the new algorithms roughly comparable to the Jaakkola and Jordan 

algorithm. 

1 Introduction 

The graphical models formalism provides an appealing framework for the design and anal
ysis of network-based learning and inference systems. The formalism endows graphs with 

a joint probability distribution and interprets most queries of interest as marginal or con

ditional probabilities under this joint. For a fixed model one is generally interested in the 
conditional probability of an output given an input (for prediction), or an input conditional 
on the output (for diagnosis or control). During learning the focus is usually on the like

lihood (a marginal probability), on the conditional probability of unobserved nodes given 

observed nodes (e.g., for an EM or gradient-based algorithm), or on the conditional proba

bility of the parameters given the observed data (in a Bayesian setting). 

In all of these cases the key computational operation is that of marginalization. There are 
several methods available for computing marginal probabilities in graphical models, most 

of which involve some form of message-passing on the graph. Exact methods, while viable 

in many interesting cases (involving sparse graphs), are infeasible in the dense graphs that 
we consider in the current paper. A number of approximation methods have evolved to treat 
such cases; these include search-based methods, loopy propagation, stochastic sampling, 

and variational methods. 

Variational methods, the focus of the current paper, have been applied successfully to a 

number of large-scale inference problems. In particular, Jaakkola and Jordan (1999) de
veloped a variational inference method for the QMR-DT network, a benchmark network 

involving over 4,000 nodes (see below). The variational method provided accurate ap

proximation to posterior probabilities within a second of computer time. For this difficult 
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inference problem exact methods are entirely infeasible (see below), loopy propagation 

does not converge to correct posteriors (Murphy, Weiss, & Jordan, 1999), and stochastic 

sampling methods are slow and unreliable (Jaakkola & Jordan, 1999). 

A significant step forward in the understanding of variational inference was made by Kearns 

and Saul (1998), who used large deviation techniques to analyze the convergence rate of 

a simplified variational inference algorithm. Imposing conditions on the magnitude of the 

weights in the network, they established a 0 ( Jlog N / N) rate of convergence for the error 

of their algorithm, where N is the fan-in. 

In the current paper we utilize techniques similar to those of Kearns and Saul to derive a 

new set of variational inference algorithms with rates that are faster than 0 ( Jlog N / N). 
Our techniques also allow us to analyze the convergence rate of the Jaakkola and Jordan 
(1999) algorithm. We test these algorithms on an idealized problem and verify that our 

analysis correctly predicts their rates of convergence. We then apply these algorithms to 

the difficult the QMR-DT network problem. 

2 Background 

2.1 The QMR-DT network 

The QMR-DT (Quick Medical Reference, Decision-Theoretic) network is a bipartite graph 

with approximately 600 top-level nodes di representing diseases and approximately 4000 

lower-level nodes Ii representing findings (observed symptoms). All nodes are binary
valued. Each disease is given a prior probability P(d i = 1), obtained from archival data, 

and each finding is parameterized as a "noisy-OR" model: 

P(h = lid) = 1- e-(lio-L:jE"i (lijd j , 

where 7T'i is the set of parent diseases for finding h and where the parameters Oij are 

obtained from assessments by medical experts (see Shwe, et aI., 1991). 

Letting Zi = OiQ + I:jE1l'i Oijdj , we have the following expression for the likelihood I : 

(1) 

where the sum is a sum across the approximately 2600 configurations of the diseases. Note 

that the second product, a product over the negative findings, factorizes across the diseases 

dj ; these factors can be absorbed into the priors P (dj ) and have no significant effect on the 
complexity of inference. It is the positive findings which couple the diseases and prevent 

the sum from being distributed across the product. 

Generic exact algorithms such as the junction tree algorithm scale exponentially in the 
size of the maximal clique in a moralized, triangulated graph. Jaakkola and Jordan (1999) 
found cliques of more than 150 nodes in QMR-DT; this rules out the junction tree algo

rithm. Heckerman (1989) discovered a factorization specific to QMR-DT that reduces the 
complexity substantially; however the resulting algorithm still scales exponentially in the 

number of positive findings and is only feasible for a small subset of the benchmark cases. 

I In this expression, the factors P( dj) are the probabilities associated with the (parent-less) disease 

nodes, the factors (1 - e - Zi) are the probabilities of the (child) finding nodes that are observed to be 

in their positive state, and the factors e -Zi are the probabilities of the negative findings. The resulting 

product is the joint probability P(f, d), which is marginalized to obtain the likelihood P(f). 
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2.2 The Jaakkola and Jordan (JJ) algorithm 

Jaakkola and Jordan (1999) proposed a variational algorithm for approximate inference in 
the QMR-DT setting. Briefly, their approach is to make use of the following variational 
inequality: 

where Ci is a deterministic function of Ai. This inequality holds for arbitrary values of 

the free "variational parameter" Ai. Substituting these variational upper bounds for the 

probabilities of positive findings in Eq. (1), one obtains a factorizable upper bound on the 

likelihood. Because of the factorizability, the sum across diseases can be distributed across 

the joint probability, yielding a product of sums rather than a sum of products. One then 

minimizes the resulting expression with respect to the variational parameters to obtain the 
tightest possible variational bound. 

2.3 The Kearns and Saul (KS) algorithm 

A simplified variational algorithm was proposed by Kearns and Saul (1998), whose main 

goal was the theoretical analysis of the rates of convergence for variational algorithms. In 
their approach, the local conditional probability for the finding Ii is approximated by its 

value at a point a small distance Ci above or below (depending on whether upper or lower 

bounds are desired) the mean input E[Zi]. This yields a variational algorithm in which the 

values Ci are the variational parameters to be optimized. Under the assumption that the 

weights Oij are bounded in magnitude by T / N, where T is a constant and N is the number 

of parent ("disease") nodes, Kearns and Saul showed that the error in likelihood for their 

algorithm converges at a rate of O( Vlog N / N). 

3 Algorithms based on local expansions 

Inspired by Kearns and Saul (1998), we describe the design of approximation algorithms 

for QMR-DT obtained by expansions around the mean input to the finding nodes. Rather 
than using point approximations as in the Kearns-Saul (KS) algorithm, we make use of 
Taylor expansions. (See also Plefka (1982), and Barber and van de Laar (1999) for other 

perturbational techniques.) 

Consider a generalized QMR-DT architecture in which the noisy-OR model is replaced by a 

general function 'IjJ( z) : R -t [0, 1] having uniformly bounded derivatives, i.e., \'IjJ(i) (z) \ :::; 

B i . Define F(Zl, . .. , ZK) = rr~l ('IjJ(zi))fi rr~l (1 - 'IjJ(Zd)l-fi so that the likelihood 

can be written as 

P(f) = E{z;}[F(Zl"" ,ZK)]. (2) 

Also define /-ti = E[Zi] = Ow + 2:7=1 OijP(dj = 1). 

A simple mean-field-like approximation can be obtained by evaluating F at the mean values 

P(f) ~ F(/-t1, ... ,/-tK). (3) 

We refer to this approximation as "MF(O)." 

Expanding the function F to second order, and defining (i = Zi - /-ti, we have: 

r 
K 1 K K 

P(f) E{fi} F(jl) + L Fi1 (J1)(i 1 + 21 .L L Fid2 (J1)Eh (i2 + 
L 11 =1 11 =112=1 

(4) 
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where the subscripts on F represent derivatives. Dropping the remainder term and bringing 
the expectation inside, we have the "MF(2)" approximation: 

1 K K 

P(f) ~ F(il) + 2 L L Fili2(Jt)E[EilEi2] 

i 1 =1 i2=1 

More generally, we obtain a "MF(i)" approximation by carrying out a Taylor expansion to 

i-th order. 

3.1 Analysis 

In this section, we give two theorems establishing convergence rates for the MF( i) family 

of algorithms and for the Jaakkola and Jordan algorithm. As in Kearns and Saul (1998), 
our results are obtained under the assumption that the weights are of magnitude at most 

O(lIN) (recall that N is the number of disease nodes). For large N, this assumption of 

"weak interactions" implies that each Zi will be close to its mean value with high probability 
(by the law of large numbers), and thereby gives justification to the use of local expansions 

for the probabilities of the findings. 

Due to space constraints, the detailed proofs of the theorems given in this section are de

ferred to the long version of this paper, and we will instead only sketch the intuitions for 

the proofs here. 

Theorem 1 Let K (the number offindings) be fixed, and suppose IfJij I :::; ~ for all i, j for 

some fixed constantT. Then the absolute error of the MF(k) approximation is 0 (N(!:!1)/2) 

for k odd and 0 (N(k72+1) ) for k even. 

Proof intuition. First consider the case of odd k. Since IfJij I :::; ~, the quantity Ei = Zi -

J-Li = 2: j fJij (dj - E[ dj ]) is like an average of N random variables, and hence has standard 

deviation on the order 11m. Since MF(k) matches F up to the k-th order derivatives, we 

find that when we take a Taylor expansion ofMF(k)'s error, the leading non-zero term is the 

k + 1-st order term, which contains quantities such as 10:+1. Now because Ei has standard 

deviation on the order 11m, it is unsurprising that E[E:+l] is on the order 1IN(k+l)/2, 
which gives the error of MF(k) for odd k. 

For k even, the leading non-zero term in the Taylor expansion of the error is a k + 1-st order 

term with quantities such as 10:+1. But if we think of Ei as converging (via a central limit 

theorem effect) to a symmetric distribution, then since symmetric distributions have small 

odd central moments, E[ 10:+1] would be small. This means that for k even, we may look to 

the order k + 2 term for the error, which leads to MF(k) having the the same big-O error as 

MF(k + 1). Note this is also consistent with how MF(O) and MF(l) always give the same 
estimates and hence have the same absolute error. 0 

A theorem may also be proved for the convergence rate of the Jaakkola and Jordan (JJ) 

algorithm. For simplicity, we state it here only for noisy-OR networks. 2 A closely related 
result also holds for sigmoid networks with suitably modified assumptions; see the full 

paper. 

Theorem 2 Let K befixed, and suppose 'Ij;(z) = 1-e-z is the noisy-ORfunction. Suppose 

further that 0 :::; fJij :::; ~ for all i, j for some fixed constant T, and that J-Li ~ J-Lmin for all 

i, for some fixed J-Lmin > O. Then the absolute error of the JJ approximation is 0 (~ ). 

2Note in any case that 11 can be applied only when 1/J is log-concave, such as in noisy-OR networks 

(where incidentally all weights are non-negative). 
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The condition of some Pmin lowerbounding the Pi'S ensures that the findings are not too 

unlikely; for it to hold, it is sufficient that there be bias ("leak") nodes in the network with 

weights bounded away from zero. 

Proof intuition. Neglecting negative findings, (which as discussed do not need to be han

dled variationally,) this result is proved for a "simplified" version of the JJ algorithm, that 

always chooses the variational parameters so that for each i, the exponential upperbound 

on '1/J(Zi) is tangent to '1/J at Zi = Pi. (The "normal" version of JJ can have error no worse 

than this simplified one.) Taking a Tay lor expansion again of the approximation's error, we 

find that since the upperbound has matched zeroth and first derivatives with F, the error is 

a second order term with quantities such as f.t . As discussed in the MF(k) proof outline, 

this quantity has expectation on the order 1jN, and hence JJ's error is O(ljN). 0 

To summarize our results in the most useful cases, we find that MF(O) has a convergence 

rate of O(ljN) , both MF(2) and MF(3) have rates of O(ljN2) , and JJ has a convergence 

rate of O(ljN). 

4 Simulation results 

4.1 Artificial networks 

We carried out a set of simulations that were intended to verify the theoretical results pre

sented in the previous section. We used bipartite noisy-OR networks, with full connectivity 

between layers and with the weights ()ij chosen uniformly in (0, 2jN). The number N of 

top-level ("disease") nodes ranged from 10 to 1000. Priors on the disease nodes were 

chosen uniformly in (0,1). 

The results are shown in Figure 1 for one and five positive findings (similar results where 

obtained for additional positive findings). 

100r--_ ____ ~---- --___. 

-... _--_._- --... 
--..... _--... -. 

10·' -- - - - - - __ _ 
10·' ....•. ...... .... . .. . ............... ... .. .... 

w 10' 
th 

1t 

10 100 

#diseases 

1000 10 100 

#diseases 

1000 

Figure 1: Absolute error in likelihood (averaged over many randomly generated networks) as a func
tion of the number of disease nodes for various algorithms. The short-dashed lines are the KS upper 
and lower bounds (these curves overlap in the left panel), the long-dashed line is the 11 algorithm and 
the solid lines are MF(O), MF(2) and MF(3) (the latter two curves overlap in the right panel). 

The results are entirely consistent with the theoretical analysis, showing nearly exactly the 

expected slopes of -112, -1 and -2 on a loglog plot. 3 Moreover, the asymptotic results are 

3The anomalous behavior of the KS lower bound in the second panel is due to the fact that the 
algorithm generally finds a vacuous lower bound of 0 in this case, which yields an error which is 
essentially constant as a function of the number of diseases. 



538 A. Y. Ng and M. 1. Jordan 

also predictive of overall performance: the MF(2) and MF(3) algorithms perform best in 

all cases, MF(O) and JJ are roughly equivalent, and KS is the least accurate. 

4.2 QMR-DT network 

We now present results for the QMR-DT network, in particular for the four benchmark 

CPC cases studied by Jaakkola and Jordan (1999). These cases all have fewer than 20 

positive findings; thus it is possible to run the Heckerman (1989) "Quickscore" algorithm 

to obtain the true likelihood. 

Case 16 Case 32 
10' ''' '0' 
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, , 
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Figure 2: Results for CPC cases 16 and 32, for different numbers of exactly treated findings. The 

horizontal line is the true likelihood, the dashed line is J1's estimate, and the lower solid line is 

MF(3)'s estimate. 
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Figure 3: Results for CPC cases 34 and 46. Same legend as above. 

In Jaakkola and Jordan (1999), a hybrid methodology was proposed in which only a portion 

of the findings were treated approximately ; exact methods were used to treat the remaining 

findings . Using this hybrid methodology, Figures 2 and 3 show the results of running JJ 
and MF(3) on these four cases.4 

4These experiments were run using a version of the 11 algorithm that optimizes the variational 

parameters just once without any findings treated exactly, and then uses these fixed values of the 

parameters thereafter. The order in which findings are chosen to be treated exactly is based on 11's 
estimates, as described in Jaakkola and Jordan (1999). Missing points in the graphs for cases 16 and 
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The results show the MF algorithm yielding results that are comparable with the JJ algo
rithm. 

5 Conclusions and extension to multilayer networks 

This paper has presented a class of approximate inference algorithms for graphical models 

of the QMR-DT type, supplied a theoretical analysis of convergence rates, verified the rates 

empirically, and presented promising empirical results for the difficult QMR-DT problem. 

Although the focus of this paper has been two-layer networks, the MF(k) family of al

gorithms can also be extended to multilayer networks. For example, consider a 3-layer 

network with nodes bi being parents of nodes di being parents of nodes Ii. To approximate 
Pr[J] using (say) MF(2), we first write Pr[J] as an expectation of a function (F) of the 

Zi'S, and approximate this function via a second-order Taylor expansion. To calculate the 

expectation of the Taylor approximation, we need to calculate terms in the expansion such 
as E[d i ], E[didj ] and E[dn When di had no parents, these quantities were easily derived in 

terms of the disease prior probabilities. Now, they instead depend on the joint distribution 

of d i and dj , which we use our two-layer version of MF(k), applied to the first two (b i and 
di ) layers of the network, to approximate. It is important future work to carefully study the 
performance of this algorithm in the multilayer setting. 
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