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Approximate Inference for Robust Gaussian
Process Regression

Malte Kuss, Tobias Pfingsten, Lehel Gsafarl E. Rasmussen

Abstract. Gaussian process (GP) priors have been successfully used in non-parametric Bayesian re-
gression and classification models. Inference can be performed analytically only for the regression model
with Gaussian noise. For all other likelihood models inference is intractable and various approximation
techniques have been proposed. In recent yeguectation-propagatio(EP) has been developed as a
general method for approximate inference. This article provides a general summary of how expectation-
propagation can be used for approximate inference in Gaussian process models. Furthermore we present
a case study describing its implementation for a new robust variant of Gaussian process regression. To
gain further insights into the quality of the EP approximation we present experiments in which we com-
pare to results obtained Myarkov chain Monte CarldMCMC) sampling.

1 Introduction — Robustness & Bayesian Regression

To solve a real-world regression problem the analyst should carefully screen the data and use all prior
information at hand in order to choose an appropriate regression model. The model is selected so as to
approximate the beliefs about the data generating process. A mismatch seems unavoidable in practice.
Robust regression methods can be understood as attempts to limit undesired distractions and distortions
that result from this mismatch.

Robust regression is often associated with the notiasudfers which refers to observations that are
in some sense structurally conspicuous. Often the presence of such outliers is attributed to observational
errors, e.g. data processing errors or failures of measuring instruments. Commonly a statistical model is
called robust if it leads to conclusions which are insensitive to the occurrence of such outlier observations.
Note that this implies that an observation can only be called an outlier relative to a given model. As Jaynes
(2003, ch. 21) phrases it: “One seeks data analysis methods thabast which means insensitive to
the exact sampling distribution of errors, as it is often stated, insensitive to the model, @s&é&@n
meaning that large errors in small proportion of the data do not greatly affect the conclusions.”

The Bayesian answer to robust regression, i.e. handling outliers, results automatically from the com-
mon statement that a model should be chosen so as to reflect all the analyst’s beliefs and uncertainties.
So a Bayesian regression model can be considered robust if it explicitly accounts for the potential exis-
tence of outliers. Therefore, unless the analyst has absolutely no doubt that the model he has accounts
for all possible observations—in other words, unless he is certain thatdrer® outliers relative to
that model—he should adjust the model to account explicitly for the potential occurrence of outliers.

A convenient way to reflect this belief is a mixture model. Jaynes (2003, ch. 21) calls it a “two-model
model” being a mixture of a model which accounts for tbgular observations and a second model for
explainingoutliers The “two-model model” will be the line of thought in the remainder of this paper.

Before we go on, we briefly describe inference in the framework of hon-parametric Bayesian regres-
sion. Byinferencewe refer to the process of updating our beliefs according to Bayes' rule, i.e. comput-
ing the posterior from likelihood and prior, integrating the information contained in observed data. In
regression analysis the objective is to make inference related to a latent real-valued fiifietiarhere
x € RP. The non-parametric approach is to put a prigif|61) directly on the space of functions and to



do inference orf. The simplest and most common prior over functions is a Gaussian process, described
in Section 2.

Inference abouy is based on observed samplgs:) = f(x) + ¢ which are corrupted by additive
noise. We assume the noise terio be independent and identically distributed (iid.), leading to the joint
likelihood

N
p(ylf. X, 0:) = Hp(yn‘fm$n792) (1)
n=1
wherey = [y1,...,yn]' denotes the observed outpul§,= [z;,...,xy]  are the corresponding in-

puts, andf,, = f(x, ) are the latent function values. We introduce a set of param@tdtsparameterise
the likelihoodp(y|f, z, 82).1 For non-parametric Bayesian models the posterior ovey fisecomputed
according to Bayes' rule

p(y‘fa Xv 02) pO(f|01)
p(y|X,01,02)

ppost(f|X’y701702) — (2)

where f is a random function and the paramet@isand 8- are considered fixed. The denominator is
the evidence or marginal likelihoodp(D|0+, 62) = p(y| X, 81, 02), which is the normalising constant
of the product of likelihood and prior. Hefe = { X, y} denotes the observed data and we use the slight
abuse of notatiop(D|-) to meamp(y| X, -).

We now describe how we can construct a mixture likelihood—a two-model model—in order to obtain
a robust Bayesian regression model wrt. outlierg.inLet p,.(y,|f», €2) denote a noise model which
describes our beliefs abaggular observations, like the typical error of a measuring instrument. Assume
we cannot deny the potential existence of outliers. For these outliers we believe the distribution of errors
po(yn| fn, O2) to be different. If we user to denote the fraction of outlier observations, we can combine
both models

p(yn|fn702) = (1 - 77) pr(yn‘fmaQ) + 7 po(yn’meQ) .

and obtain a mixture likelihood. In the following we consider the mixture of two Gaussian distributions.
For regular observations we assume a relatively small variarceompared to the varianeg’ of the
outlier distribution. Thus the noise model is

P(Yn|fn,02) = (1 — ) N(yn’fnvag) + WN(yn‘fmo'g) 3)

where@y = [r,02,02] collects the parameters. Assumipgto be Gaussian is a common and often
plausible hypothesis. It seems more questionable to explain the outliers by Gaussian noise with relatively
large variance. If we were certain that this were the case then the Gaussian mixture model would be
correct and we would not call it robust. Generally, if we knew the outlier generating process, the notion
of robustness would vanish. But the notion ofaurtlier involves a large uncertainty about their origin
and distribution. Consequently, using a wide Gaussian distribution,forust be interpreted ashack-
up model explaining observations which are highly unlikely to come fgpm

In the following section we give an introduction to Gaussian process regression and describe why a
direct application of Bayes rule is unfeasible for the proposed mixture noise model. Then we proceed by
describing how the posterior process can be approximated usiegpketation propagatiomethod. For
comparison we describeMarkov chain Monte Carl@pproach to approximate inference in Section 4.
Finally we describe experiments on several data sets in Section 5.

We use#, to refer to parameters of prior distributions aflgl to denote likelihood model parameters (other th3n
throughout the paper. For different models the actual parameterisation can differ.
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Figure 1: Samples from a zero-me@i® using a squared exponential covariance function (5). Figure (b) was generated with
the squared length-scalé® six times larger than the one used in generating Figure (a). We observe tizat be interpreted

as the characteristic length-scale at which the functions vary. Since the particular coordinates are not important, we omit axis
labelling in the figures.

2 Inference in Gaussian Process Models

After specifying a likelihood (1) we have to assign a prior distribution to the latent function values to
implement Bayesian inference. In Bayesian non-parametric regression we consider distributiogs on
collection of function values, the family of these distributions constituting a stochastic process.

As prior over functions we use Gaussian procésB)(priors below. Each input positiom € R”
has an associated random varialflec). A Gaussian process ovgrtechnically means that the joint
distributions of a collectionf = [f(zx1),..., f(zx)]" associated to any input s& is multivariate
Gaussian

p(f1X,01) = N(flp, K) (4)

with meany and covariance matri¥{. A Gaussian process is specified by a mean function)
and a positive-definite covariarfcéunction k(x;, z;]01), such thatk;; = k(x;, z;/61) andp =
[w(z1),...,u(zxN)]". By choosing a covariance function we introdigger-parameteré; to the prior
GP.

Several families of covariance functions are known in the literature, for example, see Abrahamsen
(1997) or Schlkopf and Smola (2002, ch. 2). In the following we use a squared exponential covariance
function of the form
D (2 _x«d))?

k(x,2'|0,) = Ug exp (— Z ) (5)

2
w
d=1 d

N —

where D is the dimension of inpute € RP, o2 is the signal variance an@ = [wy,...,wp]' are
scaling parameters, such tht = 02, w]. The effect of changing the length-scakeson the prior

GPis illustrated in Figure 1. Note that having a scaling parameter for each input dimension allows the
model to adjust the influence of the respective input variables—a concept which Neal (1996, ch. 1) calls
automatic relevance determinati¢ARD).

In GP regression models inference ovéis analytically tractable if the noise is assumed to be Gaus-
sian. We now describe briefly how to obtain the posterior process, which is agisa this can be
considered the conjugate setting. The derivation can be found in many introductory texts, e.g. Williams
(1998), MacKay (2003, ch. 45) or O’'Hagan (1994, 10.48) to mention only three. Nevertheless we repeat
it here to contrast the difficulties that occur for other likelihoods, i.e. more complex noise models like the
Gaussian mixture noise described in the previous section.

The model isy(z) = f(x) + ¢ wheree ~ N(0,02) and on the latent functiofi we put aGP prior
with zero-mean and given covariance function (e.g. (5)). Given the obsé&fweée write the likelihood

2\We use the terms covariance function and kernel function interchangeably.

3



(@) (b) (©)

Figure 2: lllustration of5P regression and the effect of outliers. The dashed line showsithéunction f(x) = sin(z)/z and

the circles mark noisy samples thereof. Figure (a) shows the filGP enodel with Gaussian noise. The posterior process is
represented by its mean (solid line) and four standard deviations (dotted lines). Adding a single outlier (solid blue circle) affects
highly the posterioGP with Gaussian noise — results shown in Figure (b). As before the mean function roughly interpolates
the samples while the uncertainty about the function is increased dramatically. This can be explained as an effect of the inferred
shorter length scale and larger signal varianee?. Figure (c) shows the posteri@P obtained when the noise is modelled as

a mixture of Gaussians. The methods used to generate the Figures are snMLIl and mnMCMC as described in Section 5.

of f

N

p(ylf, X,05) = [ p(ynl f(20), 02) = N(ylf, T0) 6)

n=1

whereIl = 21 is a diagonal matrix withr2 on its diagonal entries an, = o2. According to the
model conditioning the likelihood offi is equivalent to conditioning on the full functigh

The posterior predictive distributiorf the latent function valug, for an arbitrary test location:,
can be computed using standard results for multivariate normal distributions (Mardia et al., 1979, ch. 3).
First we write the joint distribution under ti@P prior po( f, f.), compute the joint posterior distribution
Dpost (s f+|D, ) and marginalisef out to obtainp,,...(f«|D, x.). The posterior predictive distribution
of f. is again GaussialV ( f|pyes (®+), 02, (x)) with the following mean and variance

foos (@) = k() (K+T) 'y (7a)
O (@) = hl@e ) — k() " (K + 1) k() (7b)
wherek(x,) = [k(z1,x.),...,k(xx,z.)]". The posterior predictive distribution ovgy provides

us a notion of thaincertaintyof the model about the prediction, as illustrated in Figure 2. The above
argumentation generalises to an arbitrary set of input locations, meaning that the posterior prgcess on
is again aGP with mean function (7a) and posterior covariance function

Fport (T, ') = k(@) — k(z) T (K + 1) k(') . 8)

So for any set of input locationX , we can compute the posterior predictive distribution of the corre-
sponding function valueg, which is multivariate normaN (£, |u?..., K...)-

So far we have described inference over latent function valies We introduced the parametdts
and@, which were considered fixed. In a full Bayesian setting one should also perform inference over
these parameters. Therefore we have to assign some prior distribut{@as62) and write the posterior

distribution of the parameters as
Poost(01,02|D) o p(D|61, 62) po(61,62) 9)
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wherep(D|04, 02) is the marginal likelihood, as it appeared in the denominator in equation (2). Usually
we are not primarily interested in the posterior distribution of the parameters (9) and therefore could
integrate them out from the joint posteripy...(f«, 01, 02|D, z.) to obtain the predictive distribution
over the function value,...(f«|D, x.). However, the calculations are analytically intractable. As will
be shown in Section 4, this step can be approximated using sampling techniques.

Instead of doing inference, a computationally more attractive procedure is to find maximume-likelihood
estimates fof; andé,. Following themaximum likelihood I[ML-11) scheme, values for the parameters
are found by maximising the evidengéD|6,, 62), see Williams and Rasmussen (1996) or MacKay
(1992) for details. Within th&P framework the logarithm of the evidence is

Inp(D|61,8) = In / af p(ylf,0:) po(F161) (10)

which in the case of Gaussian noise can be computed analytically:
1 1 T 1 N
Inp(D|61, 02) = 3 In [K(61) +I1(62)] — 5Y (K(61) +11(62)) y — 5 In(2) (11)

where the dependencies on the parameters have been made explicit. One can now maximise the log-
evidence inf; and@ to find adequate values for the parameters given the observed data. The optimal
parameters are not analytically computable but standard optimisation techniques, e.g. conjugate gradient,
can be used to find a local maximum.

Gaussian process regression with Gaussian noise combined with ML-Il parameter estimation has
found many successful applications. Computationally the algorithm scal€X:ay and so several
thousand observations can be handled without using further approximations. But changing the likeli-
hood, e.g. for classification or by assuming a different noise model for regression, leads to analytically or
computationally intractable inference problems. In those cases methods for approximate inference have
to be applied.

In the case we consider in this paper, the noise is modelled as a mixture of two Gaussian distributions
(3). The posterior becomes

0 N
ppost(.f|D701702) - p,ZO)|£I 102 H yn’fna r) +7TN(yn‘fm o)] (12&)

n=1
where the evidence is

N

p(Dl01,02)=/dfpo f161) H (1= T) N (Ynlfn, 07) + TN (Y| fr, 020)] - (12b)

This integral is analytically solvable but rewriting it in terms of Gaussian integrals involves a change in
the order of summation and the product. This leads to a combinatorial explosion in the number of terms
and the resulting posterior comes in the form of a mixtur2’ohiormal distributions. Therefore, for real
problems the large number of components makes it computationally intractable and we have to resort
to approximations. Note that the posterior process for the mixture noise model iSGR®aaymore.
In fact it becomes a mixture of Gaussian processespj.e(f«|D, x.) becomes a mixture of Gaussian
distributions which can be multi-modal as illustrated in Figure 3.

Various approximation techniques have been proposed that facilitate the implement&®motiels
for inference tasks in which the posterior cannot be computed analytically. For example in the@&se of
classification Williams and Barber (1998) propose a Laplace approximation, Gibbs and MacKay (2000)
use variational techniques, and Opper and Winther (2000) apply mean field methoGd$? fegression
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Figure 3: Sampled functions from the posterior process @Panodel with Gaussian mixture noise. The data (circles) have
been designed in order to offer multiple alternative hypotheses to explain the data. Accordingly, the model shows uncertainty
about whether the observations in the upper- and/or lower arc should be considéierd Therefore several hypotheses are
mixed which leads to a multimodalilty in the conflicting region. The samples have been generated using MCMC as described
in Section 4.

Neal (1997) describes an MCMC scheme for implementing robust regressionttdisigbuted noise.
In the context of theRelevance Vector Machirfeamework a variational approach has been proposed
for mixture noise models anddistributed noise by Faul and Tipping (2001) and Lawrence and Tipping
(2003) respectively.

In this article we implement and compare two methods for approximate inference fGPthegres-
sion model with mixture noise: an analy@xpectation-propagatioapproximation (Section 3) and a
sampling based approximation usikarkov chain Monte Carldechniques (Section 4).

3 Expectation Propagation for Gaussian Process Models

As described above, for non-Gaussian likelihoods computing the postel@P models becomes in-
tractable. In this section we descrikgpectation propagatiofEP) as a method to approximate the
posterior by a Gaussian distribution. We start with a general description of the method and later exem-
plify its use for the mixture nois&P regression model in combination with ML-1l parameter estimation.

In describing the algorithm we follow Opper and Winther (2000) and Minka (2001).

Expectation propagation aims at minimising the Kullback-Leibler (KL) divergence

KL B IV, A)] = [af (10 (o) (13)
between the posterior distributign...(f) and its Gaussian approximation with meanand covariance
A. The minimum of (13) is taken for a normal distribution that matches the posteriors momeasts,
pPt and A = 2Pt wherepr>t and X denote mean and covariance of the posterior distribgition
For non-Gaussian likelihoods—just as the mixture model—calculation of the moments is not possible.
Expectation propagation approximates those moments.
Starting point of EP is to impose a factorising structure

N

N(flm, A) o< po(£) [] tn(fn) (14)

n=1

on the approximation which resembles the structure of a factorising likelihood times prior. Since the
termst, (f,) depend only on a singlg, Seeger (2003) calls thesite functions. As the approximated
posterior is to be Gaussian, the site functiongave to be quadratic exponentials

tn(foltin, 02, Cn) & C,, exp <—(f"“")2> . (15)

2
202

3This result can be obtained by writing the multivariate normal.as( f|c, 3, A) = exp (a +87f+ fTAf) and using
a Lagrange parameter on the normalisation constraint.



There is no need for the individual sités(f,) to be normalizable, so we do not restrict them to
be distributions. It is sufficient to constrain the resulting covariance matriw be positive-definite,
i.e. N(f|m, A) to be a proper distribution.

For the Gaussian approximation constrained to the form of (14) the mean and covariance are

m¥AL Yy, A®(K 'y (16a)

wherep = (u1, ..., pun) " andE = diag(o?, ..., 0%). The objective is to minimise the KL-divergence
(13)
{p, £} = argmin KL [p,..(f)|IN(f|m, A)]; wherem, A are given by (16a) (16b)
7>

Note that sinced is constrained, it might not be possible to match all elements of the covariance of the
posteriorX >t exactly.

Before we give a formal derivation of the EP algorithm, we provide an intuitive description of how the
approximationV ( f|m, A) is found. Assume we have given all but thth site function such that the
following approximation holds:

HII plwslfi02) ~ po(F) 1) - (17)
J#n J#n

We aim at finding parameters of the remainipguch that the resulting approximation (14) is as close to
the posterior as possible. Trying to matchralland A;; to the moments of the posterior is too ambitious
as we have only two parameteis ando,,. Therefore we restrict ourselves to matching the moments
m,, and A,,,,. This corresponds to finding the parametessando,, such that(f* IN(Flm.A) = = (fF) o

for k = 1,2. Assuming (17) holds we approximate the posterior moments:

<fT]f>Post = (le’/ ffn yn|fna92 PO ELP y]|f]502) (183-)
%Iwwh/#fp%Mﬁzm Lyﬁ (18b)

After calculating the integrals we can match the moments and find the corresponding parameter values
of u, ando,. The EP scheme iteratively updates the site functions in random order until the system
converges. Changing, affects all elements ofr and A globally through (16a). At convergence the
approximate posteriok/( f|m, A) is guaranteed only to match posterior mean and diagonal entries of
the covariance matrix exactly. However, as we imposed the posteriors factorising structure in (14), we
can expect that this leads to a good global approximation in the sense of (13).

3.1 Derivation of Expectation Propagation

While the above description is an attempt to provide an intuition on how EP finds an approximation to
the posterior, in this section we reformulate the derivation given by Opper and Winther (2000). The
derivation of EP comes as a sequence of approximation steps which lead to a set of nonlinear equations
that characterise the optimal paramejerandX for the site terms. If we could find a Gaussian approx-
imation V' ( f|m, A) that matched the first two moments of the posterior distribution exactly we would
have the solution to (16), but due to the structural constraints in (16a) an exact match between moments
might not be possible. Therefore instead of matching the mean and the complete covariance matrix, we
only match meang?>* = (f,,),... and diagonal elemenis:’:* = var( f,,),... Of the covariance matrix.

7



So only the first and second momemﬁ>p05t, k = 1,2 have to be computed. Thgh moment off,
under the posterior distribution is

1 N
k - - k
rdpoe = P(D\Hlﬁz /df Ju polf ]-;[ p(y;lf5,02) (19a)
- l/df Fa 2yl F:02) 0" (fa) (190)
p(D|01,02) ndn BAInisn n

where in (19c) we have grouped and integrated outftfewhich denotesf exceptfor the site variable
fn. We defined theavityfunctiong\"( f,,) according to Opper and Winther (2000). The cavity function
is proportional to the predictive distribution ¢f given all but thenth sample.
Since the definition of\"(f,,) in (19c) includes all likelihood terms exceptyy|f,., #2), computing
the integral is still unfeasible. Therefore we need an approximation to the cavity function. As we
approximate the posterior by a Gaussian distribution we approximate the cavity funetiofa) by
an unnormalised Gaussian distributi@¥ ( f,,) o N(fn]u\n,afn) (for details see Opper and Winther
(2000)). Consequently we can identify

0" (f) = [df" mo(h) [T 1), (20)
Jj#n

The integral only involves quadratic exponentials and we can find analytic expressions for the parameters
of §\"(f,,). We have

) = [ N0 [Tu) (212)

s [dNEOKIN (i E) =N (fulmoAn) (@10

and therefore\/(fnm\n,afn)t(fn) o< N(fn|mn, Anyn) Which we can solve for the parameters of the
approximate cavity function:

1 1\ m 1
2 2 n n
Oy = ( —- 02) and =07, ( - 02> . (22)

n n

In (22) one identifies the covariance matik= (K ! + £71)~! as a link between the equations for
all sites.
The next step in the derivation of EP leads to a set of nonlinear equations that characterise the solution.
Using approximation (20) we state expressions for moment mat¢iiig; sim.a) = (f*)pos fOr k =
0,1,2. The momentgf*) ... of the approximate marginal posterior, including the true likelihood term

z; & / a3 (f) Dyl for 62) (232)
Fu, = Z* Afn fr 0" (fn) P(Ynlfr, 02) (23b)
Foy +Fy, < Z* df £2 3" (fn) P(Ynl f. 02) - (23¢)



must be calculated by solving the one-dimensional integrals. Being able to solve the integrals is crucial
for applying EP. Since\" is Gaussian this can be done analytically for various functional forms of
likelihoodsp(y.|fn, @2). For cases where there is no analytical solution, Seeger (2003, app. C) proposes
calculating the one-dimensional integrals numerically using Gauss-Hermite quadrature.

We now equate these moments with the according mon*(@"mg/(f,m,,n of the approximation in
which the site function replaces the likelihood term:

zi & fa ) (242)
Fuw £ oo [l 120 () 1) (240)
Fg 4 12 L [ 128 () (240)

Using basic Gaussian identities we obtain the following set of coupled nonlinear equations for the pa-
rameter<’,, u, ando,, of the site function:

_ 7;; ; def \n _ (fn — MTL)2

Ch Z. with Zp = /dfn G\"(fn) exp ( 720% (25a)
-1

o2 = (Fg—%l . a\—n?) (25b)

fn = 02 <FU_%1 F., — U\_nQ M\n) . (25¢)

The solutiongu andX form the fixed point of the above set of equations. They can be found by iter-
atively updating the parameters of the individual sites as shown in Algorithm 1. However, convergence
cannot be guaranteed.

Algorithm 1 Expectation Propagation Scheme for Gaussian Process Models
Given: K, y, p(y|f, 82), convergence toleranee
Initialise: A < K and site function parametew;%, Lhn
repeat
for all site functionsz in random ordedo
1. Compute cavity distribution §\"(f,,) = N (falthn; afn) using equations (22).
2. Compute momentsk,:, F,, , Z, andZ}; analytically or by numerical integration.
3. Update the parametersof ¢,,( f,,) according to (25)(a—c).
4. Updatem and A using (16a).
end for
until absolute change i@, o2 and,, smaller thare

In the description of EP we have not restricted ourselves to a particular likelihood function. The algo-
rithm was formulated using the expectations in (23) and update equations (25), whe(g.thfe, 62)
denote the likelihood terms, and the cavity functions are approximated by Gaussians. For many likeli-
hood models these integrals a1, £, and F;,> can be calculated analytically. Thus in order to use
EP for a particular model one has to compute the moments (23) and plug the corresponding terms into
Algorithm 1. In the following we describe how EP can be implemented foiGReegression model
with mixture noise in conjunction with an ML-II parameter estimation.

3.2 Implementing EP for the Gaussian Process Mixture Model

While in the previous section the EP approximation scheme has been described for Gaussian process
models from a rather abstract viewpoint we now concentrate on the implementation. For the mixture

9



noise model we work out all necessary steps in detail and state the according results for other prominent
likelihood functions.

In the above sections we used meganand variance 2 to parametrize the site functions(f,,). This
way, however, not all relevant cases are captured, for example the case of a coyigtant= C,,e°
cannot be represented. The natural parametrisation of the exponential family in contrast to moments
not only encloses the whole set of possible functions but also leads to a very convenient algebra when
handling these function. Seeger (2003) describes the necessary background in detail. In numerical
implementation We therefore switch to these natural parameters o, 2 andr, = o, 2u, so that
tn(fn) = Crexp[— (rnfn ).

Note that in the update equations (25) of the site function parameters we ignored the possibility that
updates lead to an invalid, non-positive definite covariance matrikn a numerical implementation in
those cases one can soften the update accordinge— vo, 2 + (1 — fy)a;i,d choosingy to be just
small enough to obtain a positive definie Each inner loop in Algorithm 1 gives new values to the
parameters of one site term and the covariance matrix can efficiently be updated using rank one updates
on its Cholesky decomposition, see Seeger (2003, app. A) for details.

For notational convenience in the remainder of this section we reparameterise the Gaussian mixture
noise model (3) by setting, = (1—7), 72 = 7, 01 = 0, andoy = o, S0 that we can write everything in
terms of sums. While in the following only a mixture bf= 2 Gaussian distributions will be considered,
note that the equations below also generalise to mixtures of any number of Gaussian distributions.

3.2.1 Computing the Moments

In equations (23) we have left the momeuts, F,, and F, 2 in their integral form. For the mixture
of Gaussians they can be calculated analytlcally usmg the moment generating function (DeGroot and
Schervish, 2002, ch. 4.4), the same procedure applies for many other models. We have

egn J )\)

,/0 —l—a\n

where N\, ., and o%n are, respectively, the normalising constant, mean and variance of the cavity
functiong\"(f,,) and

-1 2
Ini(A) = —5 (U\) + <y> |2t S+ | (26b)
\n 0; aj oy, IV

We obtain the moments as derivatives of the generating function:

M, (\) & / df M G (F) pynlfs B2) = NV Z% (26a)

7 = M) (272)
]\47/1 N\n gn egn 3(0)
Fu = —p = Z = ’ (27b)
27?1/0 —i—a\n
M// N\n s 0 +g, 0)) e97.i(0)
i+, = "= (9500) + 90, 0) . (27¢)

\/ﬂ1 /0' —{—O'\n

These equations constitute all we need to implement EP. For each update step in Algorithm 1 we pick a
site, use equations (27) to compute the moments and solve for the parameters of the site terms according
to equations (25).

10



3.2.2 ML-Il Parameter Estimation

So far we have only described how to find the approximate posterior for §ivand@,. Having found
it, we can also calculate an approximation to the eviden{@®é,, 0,) which allows us to implement
ML-II parameter estimation. The evidence can be approximated using (14) and the terms in (25a). It has
a form corresponding to the one in (11) with likelihoods replaced by site functions, and factors including
Z, andZ? from the EP approximation:

N
Inp(DI61,62) = In [ af po(Fl6) [T rton1:02) (28a)

&

N
in [ df po(£161) I (28b)

N
1 2 1 1 - .
- 2§1nan+;1ncn—21n\z+Ky—2u (Z+K) 'u. (280

The evidence depends on both the hyper-parameters &fRtprior 8, and of the model parametefis.
In our EP implementation for th& P mixture model we optimise the approximate evidence (28b)ayrt.
andé@- using a conjugate gradient scheme. In this optimisation EP is used to compute the approximate
evidence and its gradients for given parameter values.

The gradients of the evidence wrt. the parameters can be calculated analytically as follows. It can be
showrf that at the fixed point approached by EP the derivatives with respect to the site parameters vanish:

0lnp(D|61,02)
8(/J,n,0'n>

This means that when differentiating wé, » we only have to take explicit dependencies into account.
We can therefore neglect changes induced by changiri§,,6>) ando,(6,,60), and give analytic
expressions for the gradient:

=0. (29)

) 1 . .

5o, mp(DI61.02) = — o (1= + K@)+ 1" (S+K(61) ')  (30)
9 0

8—921np(z>|01,92) = %Z::lann(Og) (30b)

Terms appearing in (30a) depend@nonly via site parameter®s andu, and likewise the term in (30b)
is independent of),. For theGP mixture model the gradients (30) result to be

0 1 8K 1 8K
a4 0p(D]01,02) = —5tr Q' — |+ p' (@7 Q " (31a)
00 pia 01

\n gn,'(o)

0 (i) = SN (31b)
O  Zn o U?—I—O’%n

0 N\n (0 ,u\n_yn 2 1
gm0 = X e | (M) L e

J \n

whereQ = K + X. For theGP mixture model EP does not converge for all values of the parameters. In
those cases no evidence can be calculated and we have to resort to a workaround to make the conjugate

“See M. Seeger’s notexpectation Propagation for Exponential Familigem the author’s web page.
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ascent work. When EP fails to converge after a given number of iterations, a low evidence is returned
which makes the optimiser search in other regions of the parameter space.

The presented scheme to link EP and gradient based ML-II optimisation can be conveniently gener-
alised to other likelihood models. Just as the moments (27) can be adapted to new likelihood models, so
can be the gradients (31).

3.2.3 Prediction

Once the ML-II parameters and the normal approximation to the posterior are found, the predictive
distribution of f, corresponding to input locatian, is again a normal distribution. Its moments can be
calculated analogously to the case of Gaussian noise (7) whisneplaced by, andX replacedT.

4 Approximate Inference by Markov Chain Monte Carlo Sampling

In later experiments we are interested in how well the EP technique works for the Gaussian mixture noise
regression model. We therefore describe a Markov chain Monte Carlo implementation which we use for
comparison. We start this section with a short introduction of the general idea of using Markov chain
Monte Carlo (MCMC) methods for approximate Bayesian inference (for details the reader is referred to
Gilks and Richardson (1996) and Neal (1993)). At first, we will use a simplified notation to describe the
basic concepts and later describe our implementation of an MCMC scheme GPilegression model
with mixture noise.

In a nutshell, assume a mod€ID|0) whered € © denotes the parametér@ the parameter space,
andD the observed data. In an inference step we update our beliefs@botlie light of observed data
D according to Bayes rule

p(D|6) po(6)
Poes(O1D) = 0 po ) (32)
Problems arise for most nontrivial models because we are unable to solve the integral in the denominator
and so to obtain the posteripy...(0|D) analytically.

Now the task is to find a method of approximate inference which is computationally feasible yet
adequately accurate. As seen in the previous sections, one approach is to approximate the posterior by
another distribution. Instead, in situations whef@®|6)py(6) can be evaluated we can use MCMC
methods to generate sampl@@ from the posterior distributiom,...(6|D) of the parameters. These
samples can be used for inspection or for approximating expectations of a given fun@ionrt. the
posterior distribution according to

[ 6 16) poal6D) = 1 >~ h6) (33)

whered?) are approximately independent samples from the posterior. In order to generate these samples
a Markov Chain in the parameter space is constructed such that the distribution of the state
is asymptotically identical to the posterior distribution of the parameder§hen the Markov chain
is simulated and its states are interpreted as samplesyroni@|D). The challenge is to construct a
Markov chain properly such that it explores the whole posterior distribution efficiently, in order to obtain
a number of approximately independent sampies, . .., (”) in reasonable time.
The basic technique to construct such a chain isve&opolis-Hastingslgorithm and practically all
MCMC methods are refined versions thereof. tgetlenote the state of the chain at timeln order to

SAlthough we aim at describing the concepts independently of the later application, for the pr@segtession model
one can think 0B = [01, 02].
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find the next state, ;; a candidat&, ; is proposed as a sample fronp@posal distribution;(S;.11|s¢).
The proposal is accepted as the consecutive state of the Markov shain- s;11) if

P(DISt+1) po(St+1) q(st[St41)
p(Dlst) po(st) q(St+1lst) ~a (34)

wherea is a sample from an uniform distribution ¢ 1]. Ignoring the role of; for a moment, the above
algorithm has an intuitive interpretation. The decision wheghey is accepted as next state depends on

the ratio of the target distribution evaluatedat, ands;. If this ratio is larger than one, i.8;1 yields

a higher value, the proposal is always accepted. Otherwise the probability of acceptance is equivalent to
the ratio of values under the posterior.

While simulating the Markov chain, states that occur close-by in the chain are highly dependent. We
therefore subsampe™. ..., 0 from the observed sequensg s,, . .. to obtain samples which are
approximately independent and distributed according to the posterior.

Most refinements of this scheme are directed towards clever proposal distribgtEmghat the
probability of accepting a proposed state is increased—so that the procedure is computationally more
efficient—while the chain is moving around quickly in the support of the target distribution.

4.1 Sampling Scheme for the Gaussian Process Mixture Model

In the remainder of this section we describe our implementation of a MCMC scheme for the mixture
noise GP regression model. Again, |ét; denote the parameters of the covariance function énd
collect the parameters of the noise model. We presyme f(x;) + ¢; wheree; is iid. according to a
mixture of Gaussians. In order to model this we introduce a vector of binary indicator varialies
that

gilci, 02, 0% ~ (1 — ¢))N(0,02) + c;iN(0,02) (35)

70
and @, = [c,02,02]. Soc¢; indicates whethee; is attributed to the noise component with (larger)

rYYrrYo

variances?. This corresponds to the likelihood
N

p(ylf.02) = [T [0 — N (Wil i, 0?) + eiN (yil fi, 02)] - (36)
i=1

Note that in principle there are two possible implementations of MCMC for the Gaussian mixture
model. Either one introduces the indicator varialkles represents the latent function valyésxplicitly
as proposed by Neal (1997).

Again we use a Gaussian process pfigff|6:1) with zero-mean and squared exponential covariance
function (5) so tha®; = 02, w]. Note that we will also make inference over the element;and6s.

We have to specify prior distributions for the parameters of interest—namely the eleménhtarad
0,. Thec; are Bernoulli variableg(c;|w) = Bernoulli(7w) wherer is the fraction of samples attributed
to noise variance2. On 7 we put a beta priopy(|a, 3) = Betda, 8) introducing two more hyper-
parameters. Furthermore we use a log-normal priém w|o2) = N(0, Io2) on the ARD weights of
the covariance function. For the signal varianceas well as for the noise variance$ ando? we use
flat (constant, degenerate) priors. klet= [a, 3, 02 ] denote the hyper-parameters. The inference step is

Poost (101, 02D,4p) o< p(ylf,02) po(f|X,61) po(01|%) po(02(¢) (37)
and we can approximate the marginal distribution over function values by
p(fID,y) = /p(f791792!77,¢) d61d6 (38a)
1 T
~ oy p(fley, 6y D,y) (38b)
t=1
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whered!” ande” are MCMC samples from the posteriay,.. (81, 62|D, ).

To generate these samples we have to construct a Markov chain whose statestvecie?), Og)}
corresponds to the parameters we want to sum over in equation (38b). The Markov chain is constructed
according to theMetropolis-Hastinggprocedure. We now describe how proposal staies are gener-
ated. The implemented sampling scheme iterates bet@dars updates for the indicator variables
and7 andHamiltonian(also known asybrid) Monte Carlo updates fow, o2, 02 anda2. We employ
different sampling techniques to exploit efficiently the structure of the model. Algorithm 2 provides a
schematic overview of the sampling scheme and each step will be described in detail below.

Algorithm 2 MCMC sampling scheme fdBP regression with mixture noise

Given: D, «, 3,02, Numberr and size:, of leapfrog steps for Hamiltonian updates

Initialisation

Sampler from Betda, [3)

Samplec element wise from Bernoullir)

Find initial values forw, o2, o2 ando? (e.g. by maximising the evidence of a model with simple

Gaussian noise and setting « 202)

t—20
for each step of the Markov chain we simuldte

t—t+1

Gibbs sampling of indicator variables

for all ¢; do

Compute
ﬁi _ - p(D|Cl = 1ac\i7o-72'?0-(2)?01) 4 4
p(Dlc; =0,cVi,02,02,61) (1 —7) +p(Dle; = 1,¢\',02,02,01)

Updatec; by a sample from Bernoull;)
end for
Sampler from Betda + |c|, 5+ N — |c|)
Hamiltonian updates
Updated, o2, ando? using Hamiltonian MCMC (see code in MacKay (2003, p. 388))
Save state, = [, 6" 6!)]
end for

First, however, we have to describe how the séatis initialised. We initialiser by a sample from its
prior distribution Betéx, ) and consecutively sampteelement-wise from a Bernoult). Since we
did not specify proper prior distributions fev, o2, 02 ando? we could find initial values by random
samples from a log-normal distribution. Alternatively we can use ML-Il estimates3pr2 andw
from a model with simple Gaussian noise. The initial valuerpfis simply set to2o? afterwards. In
the following we describe how we update the elements of the state—the value of the parameters—in the
Markov chain.

4.1.1 The Gibbs Updates

Gibbs sampling is a common MCMC technique in which the state is updated dimension-wise by sam-
pling from the conditional distributions (in the above notation this would g 0\, D)). The method is
very appealing since the proposed updates are always accepted and no further parameters are introduced
(see again Gilks and Richardson (1996), Neal (1993, ch. 4) or MacKay (2003, ch. 29)). We can use this
method to sample the fraction of outliersand indicator variables. Therefore we have to sample from
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the conditional distribution of; given all values of the other variablgéc;|c\?, 02, o
¢\’ denotes all elements ofexcept for theth. We can decompose this probability

<D|C> Oy 07017 ) (C|¢)
D(DJo?. 02,01, )p(cV |02, 02, 01, D, ) (39)

02,01,D, ) where

(CZ|C\Z’ O, 0,0171) 'lnb)

and observe that(c;|c\?, 81, 02,02, D, ) o p(D|61,02,v)p(c|vp). Sincee; is a binary indicator it is
Bernoulli distributed. The probability of success of this Bernoulli distribution can be computed by
comparingp(D|01, 02,1 )p(c|t) evaluated for; = 1 ande; = 0. Terms independent @f cancel and
we find7; by looking at the ratio

p(Dle; = 1,¢V,02,02,01)
02,01) (1 —7) +p(Dle; = 1,c\i, 0

T =

(40)

p(Dlc; = 0,c\, o 200

I T‘? i ’r‘7 07

which can be interpreted as the relative plausibility of itesample being anutlier given the current
values of all other variables. Technically equation (40) compares the marginal likelihood evaluated for
both values of; weighted by the current value af

The marginal likelihoogh(D|6, 82) can be computed according to (11) where the noise 1d(f,)
becomes a diagonal matrix with entries

I = (1 - ¢;)o7 + o (41)

reflecting the currently assumed noise on the observations respectively. So we carcupdsilg by a
sample from Bernoul(ir; ).
As will be discussed later, a drawback of Gibbs sampling is that variables cannot change in a coordi-
nated way. We userdered overrelaxatioms described by Neal (1998) to improve the mixing behaviour.
The next step in the sampling scheme is a Gibbs update of the mixing propotipa sample from
p(rlc, a, B) = Betda + |c|, 3 + N — |c|) where|c| is the sum over elements of This is a standard
result, since the beta distribution is conjugate to the binomial (see for example, O’'Hagan (1994, ch. 1)).

4.1.2 The Hamiltonian Updates

For updating the part of the state correspondingvtor?, o2 ando? we use Hamiltonian updates
which utilise gradient information of the posterior distribution to propose samples which ardikaetyre
to be accepted. Figuratively speaking, the gradient of the unnormalised (log) posterior distribution shows
the way to high density regions and Hamiltonian MCMC can be understood as a gradient ascent with
added noise (MacKay, 2003, ch. 30).

All we have to compute is the value of the log-evidence (11), whkrg as described in equation (41)
and the value of the log-prior. We also have to provide derivatives of these quantities wrt. the parameters
of interestw, o2, 02 ando?.

Hamiltonian MCMC needs (at least) two additional parameters: the numbeagffogsteps and the
step size(s) (for details on the method see Neal (1993) or MacKay (2003, ch. 30)). Both parameters
determine the speed at which the chain mixes, i.e. the speed at which the chain moves in the support of
the posterior. In the experiments presented in Section 5 we first set the value of the step size. As a rough
rule of thumb: since having a large step size is computationally cheaper than increasing the number of
steps, we first increase the step size until the acceptance rate is d6/f# te 70% before increasing
the number of steps to values such that the expected runtime remains bearable.

4.2 Prediction

Assume we have simulated the chain as described above and observed a segdence of states. We
inspect the convergence and mixing of the chain by plotting the parameters over time and computing the
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autocorrelationgcf) of parameters (see Gilks and Richardson (1996, ch. 8) or Cowles and Carlin (1996)
for practical aspects of monitoring convergence). We also discard the first part of the chain as “burn-in
period” in which the parameters show a clear trend leading them from their initial values into their high
posterior density region. As mentioned above, states close in the chain are likely to be highly dependent.
Therefore we subsample the chain and obtain parameter configur&ﬂﬁ@m@éﬂ] i =1,...,T which

we hope to be a representative sample from their posterior distribution. In order to make predictions for a
test caser, we simply have to average (33) the predictive distributions based on eachiopdrameter
configurations

T
1 i i
p(fil@n D) ~ > p(file., .6}, 6) . (42)
=1

Since for each parameter set the predictive distribution is Gaussian we obtain a mixfug@aofssian

distributions. For paramete&é1 ando( ") the moments ob(f«|x«, D, 05 ), 0(”) can be calculated from

(7) where we have to plug in the mixture noise term (41). The mean of the predictive distribution
p(f«|z«, D) is equal to the mean of tHE predictive means. The variance of the predictive distribution
can be obtained as the variance of the mean predictions plus the mean of the predictive variances.

5 Experiments

In this section we report experiments in order to compare and discuss several regression models and their
performance. We are interested in whether the proposed r@Ristodel leads to improved predictive
performance. We also describe problems which have become apparent in practical implementations of
the algorithms.

Another aspect of interest is to analyse empirically the quality of the EP approximation relative to
approximate inference using MCMC. FGP regression with Gaussian mixture noise we compare the
predictive performance of the EP approximation to the MCMC predictions. Theoretically the MCMC
approach leads to asymptotically correct results as the number of posterior samples increases. But prac-
tically it is difficult to ascertain that the Markov chains converge during simulation and that the obtained
samples are approximately iid. samples from the posterior.

In order to get a better absolute impression of the performance, we will compa&thmodel with
mixture noise to one with simple Gaussian noise. For this model we report results obtained by ML-

Il parameter estimation (see Section 2 or Williams and Rasmussen (1996)) and a MCMC treatment as
described by Neal (1997).

Furthermore we report the performancecegupport vector regressio(SVR) using an RBF kernel
(Schdlkopf and Smola, 2002, ch. 9). This variant of support vector regression is basedeénghasitive
loss function

1y — f(xi)|e = max{0, ly; — f(x;)| — €} (43)

which is summed over afl = 1,..., N training cases. This loss function is zero for residuals smaller
thane and linear in the absolute value of the residual otherwise. In SVR the sum efitisensitive

loss and a regularisation term is minimised. Thi@sensitive loss function is robust—in the sense of
Huber (1981, ch. 7) or Rousseeuw and Leroy (1987, ch. 1)—similar téd.tHess. For details on the
connection between SVR and frequentist robust estimators the reader is referrediko&a@nd Smola

(2002, ch. 9). The RBF kernel used in the experiments is similar to the squared exponential (5) where
o2 = 1 and all elements ofv = 1w have the same value, so that all input dimensions are weighted
equally. This is a clear disadvantage compared to the ARD parameterisation we implemented in the
GP models because the scaling of input variables becomes a sensitive issue. The algorithm has three
parameters, i.e. the insensitivity parametea regularisation parametét, and the widthw of the RBF

kernel. In the experiments we find values for all three parameters by 5-fold cross-validations on the
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training data. We manually refine the parameter grids and repeat the cross-validation procedure until the
performance on the training data stabilises. The performance of the estimated model is reported for a
separate test set.

We will use the following abbreviations to refer to the different models in the comparison:

e OLS - ordinary least squares linear regression (Mardia et al., 1979, ch. 6).

e SVR — support vector regression with amsensitive loss function (Sétkopf and Smola, 2002,
ch. 9). We use the implementation provided by Chang and Lin (2001).

e snMLII — GP regression model with simple Gaussian noise where value®;fandé, are found
by ML-II estimation using conjugate gradient optimisation (Williams and Rasmussen, 1996).

e sNMCMC —GPregression model with simple Gaussian noise where we sahjledd, from their
respective posterior using MCMC (Neal, 1997). We use a wide log-normal prior for the elements
of w while we use constant priors on all other parameters.

e MNEP — expectation propagation approximation of the posterior iiG#heegression model with
mixture noise (Section 3).

e MNMCMC — approximate inference in ti@&P regression model with mixture noise using MCMC
(Section 4).

In the sampling base@P methods snMCMC and mnMCMC we perform approximate inference over
the elements ofl; andf, and so we have to specify prior distributions over their elements respectively.
In order to be as fair as possible we used constant, uniformy(gg) = Betd(1, 1)) or very broad priors

and we believe their influence on the posterior to be negligible relative to the influence of the observed
samples.

For comparing the predictive performance of the various models we repaddheean square error
(RMSE) and thenean absolute errofMAE). In case full predictive distribution is provided we state the
negative log predictive probabilitfNLP) of the test cases. For artificial data sets these measures will be
given for separate test sets, while for real-world datasets a 10-fold cross-testing will be usexl, Let
denote test inputs and the corresponding test targets. Tet mean square errois defined as

N*
1
RMSE(t.. £.) = | 5~ >t — (f7)? (44)
* =1
whereN* denotes the number of test cases. The RMSE can be highly dominated by a few large residuals,
so we also report themean absolute error

.
MAE(t.. £.) = < D ] = (f7) (45)

i=1

in which the influence of a single observation is linear. Gaussian process models provide predictive
distributions for the latent function valugéf . |D, X . ) and including the inferred noise we can compute
p(y.|D, X .). By negative log predictive probabilitwe refer to the average negative logarithmic value

of the predictive distribution

N
1
NLP(t,, X ,, M) = —FZlnp(tﬂM,X*) (46)
* =1
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Figure 4: Three model fits to one of the generated data sets. The dashed line describes the underlyirgfunction and

circles mark the training examples. Figure (a) shows the SVR fit. In Figure (I fHé with a single Gaussian noise model
(snMLI) is plotted. The solid line links the predictive means of the test cases and dotted lines are two standard deviations away.
Figure (c) shows the MCMC fit of the mixture noise model (mNMCMC).

evaluated at the test samples whdredenotes the model. The NLP is a measure of accuracy of the
predictive distribution. For artificially generated data the test tamgedse noise-free function values so
we use the predictive distributign{ f,| M, X ..), while for real world data sets only noisy test targets

are given and we uggy,|M, X,).

5.1 One-dimensional Toy Problem

For illustration purposes, the first set of experiments we report are on artificially generated samples from
the sinc functiony = sin(x)/x + € wheree is distributed according to our model assumptions. We
generatel( training sets of eaclv. = 25 examples. The inputs are uniformly sampled from the
interval[—10, 10]. We compute the function values and subsequently piclofiner samples randomly
per set to which we add Gaussian noise with variamte= 1. To the remainin@0 samples we add
Gaussian noise with variane@ = 10~%. This exactly corresponds to the noise mixture model described
in Section 1. The test set consists/@f = 500 noise free samples of thénc function where the test
inputs are uniformly sampled from the 10, 10] interval.

Running the algorithms on th) training sets it becomes apparent that the sets broadly vatliffin
culty, i.e. we see a large variance in performance over the training sets. Three model fits to one of the
training sets are illustrated in Figure 4. Summarising the performance dif thhaining sets Figure 5
shows box and whisker plots of the RMSE and MAE measures on the test set. The performances vary
widely for different training sets. Screening the model fits for the individual training sets we observe
that even the mixture noise model has large posterior uncertainty about the underlying function in one
case. This one training set is difficult to fit for all the methods in the comparison and is responsible for
the large span of the performance measures. Nevertheless, because we have generated the data accord-
ingly, it comes with no surprise that the noise mixture model outperforms the other models in all three
measures. Comparing mnMCMC and mnEP we obtain slightly better results on average for mmMCMC.
Also the variance of the measure for mnMCMC appears to be smaller.

The simple Gaussian noi§&P models (snMLIl and snMCMC) shows serious difficulties in explaining
the training data. The snMLII optimisations often produces solutions which have large predictive uncer-
tainty while the mean function interpolates the training examples. Note that the optimisation problem is
non-convex and therefore the occurrence of local maxima are a serious problem. For some training sets
the optimisation even leads to estimate®pfand 8, such that all observations are explained as noise
and the mean function of the posteri@P remains zero. Inspecting the parameter sets sampled using
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Figure 5: RMSE and MAE model comparison based on 10 artificially generated data sets francthanction. Figure (a)

shows box and whisker plots of the root mean square errors obtained by the respective methods. The box and whisker plots
illustrate the span, lower quartile, median, and upper quartile. Figure (b) shows box and whisker plots of the mean absolute
errors. Both measures of fit show the same structure. Although the ranges are large it can be said that the noigePmixture
model clearly outperforms SVR and simple Gaussian nGBenodels. OLS results are omitted (average RMSE.39).

MCMC (snMCMC) it becomes apparent that the posterior uncertainty is large, and averaged over this

uncertainty, the models shows poor predictive performance. In comparison, support vector regression
performs relatively well on the data sets. Note that for one-dimensional inputs the covariance function of

the GP model and the kernel in SVR only differ by the signal variance paramétand theGP models

do not profit from their ARD capability.

The mnEP implementation also relies on ML-II parameter estimation. Due to the non-convexity of the
problem the conjugate gradient based optimisation can get stuck in local maxima, so that the parameter
estimates can depend on the starting point. Performing several runs of mnEP from different starting
points we have observed that the algorithm converges to different parameter configurations in some
cases. A practical way of dealing with this problem is to run mnEP several times initialised with different
parameter configurations and to pick the solution showing highest evidence (28b). All results on mnEP
presented in this paper have been obtained by picking the solution that showed highest evidence from
several, i.e. 3to 5, runs of the algorithm. As discussed in Section 3.2.2, convergence of the EP algorithm
is not guaranteed. In some cases, especially for difficult folds, we observe this problem.

The NLP measures for the mixture noi&® models give consistently better values than for simple
Gaussian noise. Among the mixture noise models mnMCMC gives NLP2.11 averaged over the
training sets which is slightly better than mnEP with NEP —2.04. The NLP measures for simple
Gaussian noise models are orders of magnitude larger which again indicates their inability to explain the
data.

For model comparison we relate the average marginal likelihoods obtained by snMLIl and mnEP
on the training data. Lei(D|M) denote the marginal likelihood of modaH on training setD. We
compute the log of thenarginal likelihood ratio(MLR)

p(D|mnEP)
p(D|snMLII)
which averaged over th) training sets in our experiments gives a valué®. Computing the average

MLR per training exampleV/MLR = 2.19 we see that the MLR clearly favours the mnEP model. The
value of the average MLR per training example can be interpreted in a sense that on average each training
example is explained twice as well by the mnEP model than by snMLII. Note that the logMLR value is
equivalent to the log posterior odds ratio when our prior belief in the models is equal (Jaynes, 2003, ch.
20).

logMLR = In < > = Inp(D|mnEP) — In p(D|snMLII) 47)
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5.2 Friedman Data

In this section we report experiments on artificially generated data which are derived from a problem
introduced by Friedman (1991). Givén-dimensional input vectors the function valuef depends on
the first five input dimensions only

f(x) = 10sin(m 21 22) + 20 (3 — 0.5)* + 1024 + 55 , (48)

while the purpose of the remaining input dimensiaegs. . ., x1¢ is only to complicate the problem. We
generatel 0 training sets ofV = 100 examples respectively. The inputsare randomly sampled from

the uniform distribution on the unit hyper-culi@ 1]*°. We then compute the corresponding function
values and add Gaussian noise with zero mean and unit variance. In each training set welfeplace
outputs by samples drawn from a normal distribution with mgaa 15 and variancer? = 9. So we
generateoutliers which are unrelated to the function (48) but are likely to lie in the same range as the
function values. For testing we generate a data sed@j noise-free samples.

In the experiments none of the implementations showed obvious difficulties. As described above,
for mnEP we let the algorithm start with different initial values and picked the solutions with highest
marginal likelihood. The results are presented in Figure 6. The RMSE and MAE measures show that
the GP models with noise mixture perform consistently better than the ones with simple Gaussian noise.
The performance of mnEP and mnMCMC appears to be very similar with a small advantage of the latter
on average. The variances of RMSE and MAE over the training sets are small compareditacthe
problem. This may be explained as a consequence of the larger signal-to-noise ratio and the increased
homogeneity of the different training sets due to larger sample sizeGPhmaodels clearly benefit from
the ARD capability, which allows them to ignore the input dimensions which do not prove to be infor-
mative about the output. The absence of a similar mechanism may explain the rather poor performance
of support vector regression. The NLP measures in Figure 6(c) show that mmnMCMC and mnEP provide
similarly accurate predictive distributions. As one would expectGRemodels with simple Gaussian
noise also exhibit worse NLP values.

Computing the average logMLR (47) over training sets between mnEP and snMLII we obtain a value
of 16.64 which corresponds to an average MLR per training examplé.1if. This affirms that the
mixture noise model explains the data better. The average MLR per example is lower thansfercthe
problem, which can be explained by the smaller fraction of outliers in the training data.

5.3 Boston Housing Data

We now report experiments carried out on Baston housinglata set. These data have been analysed
by Harrison and Rubinfeld (1978) and since then the data-set has become a popular reference problem
in nonlinear regression. The task is to predict the median price of houses in different parts of the Boston
metropolitan area based a8 input variables. The target variable appears to be truncated at $50,000.
For a more detailed description, the reader is referred to Neal (1996, ch. 4.4.2). The data set consists of
N = 506 observations which we normalise to zero mean and unit variance. We then split the data into
10 folds. Since we want to compare to the results given by Neal (1996) we use exactly the same split.
We use al0 fold cross-testing procedure which means that each of the folds is left out once as a test
set, while the remaining nine folds constitute the training data. The experimental results are illustrated
in Figure 7. We state the RMSE and MAE values reported by Neal (1996, ch. 4.4.2) for a two hidden
layer neural network with Gaussian priors on the network weightg-aligtributed additive noise. In the
cited study approximate Bayesian inference is performed over the weights in the neural network using
the Hamiltonian MCMC method.

At first sight theGP models and the Bayesian neural network show similar performance wrt. average
RMSE and MAE. The Bayesian neural network has a slightly lower avgfRNtSE = 2.49) and less

20



2.5
= -
+ 1
- *
2.8f — _
]
~ =3 T - -
26 : : - = - -
ok '
24 —_ :
g 2.2 Fe
z - =
2 T ! + -
' ' '
—_ i 151 '
18 —_ ' +
1.6 — —_
- —_—
14
—_ @ 1+ —_ 5
1.2t I . . . . . . . . . . .
oLs SVM snMLIl snMCMC mnEP mnMCMC oLs SVM snMLII snMCMC mnEP mnMCMC
3—
I snMLI
[ snMCMC
_ImnEP
25— C_—_ImnMCMC

05—

Training set #

Figure 6: Results for RMSE, MAE and NLP on the Friedman data sets. Figure (a) shows box and whisker plots of the root
mean square errors obtained by the respective methods. Figure (b) shows box and whisker plots of the mean absolute errors. In
(c) we show the NLP measures of the test set for the models obtained from the individual training sets.

variance over the folds compared with the l@8&tmodel mMMERRMSE = 2.55). Nevertheless, th&P

models and the Bayesian neural network perform very similarly on average. Support vector regression
gives worse results on average and larger variance over the folds. Other experiments using SVR on the
Boston housing data—in a different experimental setting—can be found wikKegt and Smola (2002,

ch. 9.6) and Stitson et al. (1999). Breaking the results down to the individual folds in Figure 7(c) we
cannot observe a regular pattern anymore.

Inspecting the Markov chains of several MNMCMC simulations we observed that—especially for folds
#5 and #7—the chains had not mixed properly, i.e. the state of the chain did not travel the support of the
posterior evenly but rather infrequently switched between discrete areas. This behaviour indicates the
presence of local modes of the posterior. The Markov chain should switch between the modes and sample
from them proportionally. The indicator variablesppear to be the crucial factor. Recall that for each
state of the chain the indicator variables mark observations which are consiglieds Whether an
observation is likely to be considered an outlier depends on the configuration of the other outliers. One
can think of several configurations of outliers which are plausible under the posterior and so form local
modes of the distribution. Intuitively these local modes can be understood as alternative hypotheses about
which subset of samples apetliersand whichregular samples have to be explained by the model (see
again Figure 3). In order to switch between these hypotheses several indicator variables have to change
their values in a coordinated manner. But the Gibbs updates we use in the mnMCMC sampling scheme
allow the indicators to change one at a time given all the other indicators. This makes a switch between
hypotheses very difficult. Dealing with this problem is difficult and outside the scope of this paper. We
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Figure 7: RMSE, MAE and NLP obtained by 10 fold cross-testing on the Boston housing data set. Figures (a) and (b) give on
overview of the RMSE and MAE measures using box and whisker plots. The values for “Neal NN” are taken from Neal (1996,
p. 134). Figure (c) shows the RMSE for the individual fold. For@fmodels the NLP measures are given in Figure (d).
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believe that this behaviour did not occur in the previous examples because the problems were such that
one hypothesis clearly displaced the alternatives.

For the folds #5 and #7 the model shows uncertainty whether a few training samples with maxi-
mum (truncated) target value should be fitted as regular observations or should be ignored as outliers.
Therefore the model is cautious to predict laggealues for test data which leads to a tendency to un-
derestimate the value for test cases which indeed have maximum target value. This explains the large
RMSE and MAE values for mmMCMC.

The simulation time per training set for mMMCMC was in the order of one night. For mnEP the ML-II
parameter optimisations converged slowly and the runtime per fold was similar to mmMCMC, although
each evaluation of the approximate marginal likelihood using EP took several minutes only.

The fraction of outliersr inferred by mnEP and mnMCMC lies in the range26f — 4% for all folds
and foro2 we obtain values that are an order of magnitude larger #farFor model comparison we
compute the logMLR (47) between mnEP and snMLII which results in a valug.G. The corre-
sponding average MLR per training exampleV&VLR = 1.04. It should be mentioned again that the
value of the marginal likelihood for mnEP (28b) is an approximation. The average ratio of predictive

densities evaluated at the test data
p(D«|/mnEP)

p(D,|snML)
which can be calculated from the NLP values illustrated in Figure 7(d) also favours mnEP. The average
RMSE for snMLII is 2.74 compared t®.55 for mnEP, which is an improvement 6f5%. Note that
the average RMSE for snMCMC 262 which advises caution when attributing the improvement to the
noise model only. Thus we can conclude that the experiments provide some evidence that the mixture
noiseGP model is better suited to explaining the data.

= 1.16 (49)

6 Summary & Conclusions

In applied regression analysis the potential existencautfersin the data can rarely be ruled out with
certainty. In this situation the analyst should choose a model which takes this belief explicitly into
account. As we argued above, one way of doing this is to use a mixture of models which in the simplest
form leads to a “two-model model” approach, combining a modetdgular observations and one for
outliers

In this work we addressed robustness in the conte@®fegression. We proposed the use of a mix-
ture of Gaussian noise model and described why analytic inference in this case becomes intractable. We
then presented and compared two schemes for approximate inference. First expectation propagation ap-
proximation was described in general form @P models and for the mixture noise model in particular.
Second, for comparison we described how Markov chain Monte Carlo sampling can be implemented.
We then compared the performance of the mixture nGiBenodel—or rather the two approximations
thereof—and several other regression techniques on three data sets. In the description of experiments,
some problems of the respective methods were already mentioned. In the remainder we summarise our
conclusions:

e Experiments on artificially generated data show that the mixture i@&ismodel outperforms the
other models in this comparison when outliergjiare present in the training data. The predictive
performance of mMMCMC and mnEP was very similar in our experiments, indicating that the EP
approximation works satisfyingly.

e In terms of RMSE the performance &P models on the Boston housing data set could not be
improved significantly. Since the target variable is thedianof house prices in a given area the
presence of outliers also seems unlikely. Nevertheless a model comparison using marginal likeli-
hood ratios indicates that the experiments provide some evidence in favour of the mixture model
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compared to simple Gaussian noise. There are arguments suggesting that the noise is not Gaussian,
but whether outliers iny are present is unclear. Note that usintpeal covariance function, for
example the squared exponential (BF regression methods are inherently robust wrt. outliers in

x. Unfortunately we could not find reference problemsrion-linearregression with outliers in

the literature.

In the proposed mixture noigeP model the marginal posterior distributign...(f|D) comes in

the form of a mixture of Gaussians. The approximation by a single Gaussian as in EP can be poor
if the posterior is highly multimodal, in which case MCMC sampling is also difficult. Intuitively,

the posterior is highly multimodal if the model can explain the data in various distinct but equally
plausible ways. For simpler outlier-structures this problem might be negligible, since the posterior
can be expected to have a strongly dominant mode.

The proposed mnEP scheme iterates between approximate inference over the latent function and
ML-II estimation of the remaining parameters. Our mnEP implementation suffers from convergence
problems in two ways. The first is that for given parameters EP might not converge. We observed
that its convergence behaviour highly depends on the values of the parameters. Thus in case EP
does not converge we make the gradient ascent search in other regions of the parameter space. The
second problem is inherent to the ML-1l parameter estimation, where our gradient ascent method
can get caught in local maxima. Doing multiple runs of the algorithm on the same data sets the
respective approximated marginal likelihood values, however, provide a reliable indication as to
which solution to choose. Note that For large data §ats> 1000) one could explore sparse EP
approximations to the posterior process following the lines of&aatl Opper (2002).

MCMC sampling in the mixture nois&P model (mMNMCMC) was the computationally most de-
manding method in the comparison. A conceptual advantage is that inference is performed over
the function and the parameté¥s jointly. In mnMCMC problems related to multimodal poste-

rior distributions can be alleviated by running several shorter chains from different initial states in
favour of a single long chain, which in finite simulation can get stuck in a local mode. However,
setting the parameters in the mnMCMC sampling scheme and inspecting the chains requires some
experience.

In summary, the proposed noise mixture model is a practical way of appBfhigegression in situa-

tions in which the potential existence of outliers in the data cannot be ruled out. We exemplified the use
of the EP approximation and compared to MCMC samplin@®regression models for non-standard
likelihoods. This approach should encourage researchers to choose a noise model not for analytical con-
venience but to represent prior beliefs. In a practical problem the prior beliefs might be better reflected
using different noise models, efgdistributions (Lawrence and Tipping, 2003). Performing approximate
inference follows similar schemes to those presented here.

Acknowledgements

MK, LC and CER acknowledge support for this project by the German Research Council (DFG)

through grant RA 1030/1. We thank Dilano@r and Jeremy Hill for helpful comments on the
manuscript.

24



References
P. Abrahamsen. A review of Gaussian random fields and correlation functions. Technical Report 917,
Norwegian Computing Center, Oslo, 1997.

C.-C. Chang and C.-J. Lir.IBSVM: a library for support vector maching2001. Software available at
http://lwww.csie.ntu.edu.tw/"cjlin/libsvm

M. K. Cowles and B. P. Carlin. Markov chain Monte Carlo convergence diagnostics: A comparative
review. Journal of the American Statistical Associatji®1(434):883-904, 1996.

L. Csab and M. Opper. Sparse online Gaussian proceséesral Computationl4(2):641-669, 2002.

M. H. DeGroot and M. J. SchervistProbability and Statistics Addison-Wesley, 2002, third edition,
2002.

A. C. Faul and M. E. Tipping. A variational approach to robust regressionPréceedings of the
International Conference on Artificial Neural Networksges 95-102. Springer, 2001.

J. H. Friedman. Multivariate adaptive regression splifdge Annals of Statistic49(1):1-67, 1991.

M. N. Gibbs and D. J. C. MacKay. Variational Gaussian process classlfi#tE Transactions on Neural
Networks 11(6):1458-1464, 2000.

W. R. Gilks and S. Richardson, editor84arkov Chain Monte Carlo in Practice Chapman & Hall,
London, 1996.

D. Harrison and D. L. Rubinfeld. Hedonic housing prices and the demand for cleadaairnal of
Environmental Economics and Manageméifl):81-102, 1978.

P. J. HuberRobust StatisticsJohn Wiley & Sons, New York, 1981.
E. T. JaynesProbability Theory Cambridge University Press, Cambridge, 2003.

N. D. Lawrence and M. E. Tipping. A variational approach to robust Bayesian interpolatidieural
Networks for Signal Processingages 229-238. IEEE, 2003.

D. J. C. MacKay. Bayesian interpolatioNeural Computation4(3):415-447, 1992.

D. J. C. MacKaylInformation Theory, Inference and Learning Algorithn@&ambridge University Press,
2003.

K. V. Mardia, J. T. Kent, and J. M. Bibbyultivariate Analysis Academic Press, London, 1979.

T. P. Minka. Expectation Propagation for approximate Bayesian infererfeleD thesis, Massachusetts
Institute of Technology, 2001.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-
TR-93-1, Department of Computer Science, University of Toronto, 1993.

R. M. Neal. Bayesian Learning for Neural NetworkSpringer, New York, 1996.

R. M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression and
classification. Technical Report 9702, Department of Statistics, University of Toronto, 1997.

R. M. Neal. Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. In
M. I. Jordan, editorLearning in Graphical Modelspages 205-230. Kluwer Academic Publishers,
Dordecht, 1998.

A. O’Hagan. Bayesian Inferencevolume 2B ofKendall’'s Advanced Theory of Statisticdrnold, Lon-
don, 1994.

M. Opper and O. Winther. Gaussian processes for classification: Mean-field algoritfeusal Com-
putation 12(11):2655-2684, 2000.

25



P. J. Rousseeuw and A. M. LeroRRobust Regression and Outlier Detectialohn Wiley & Sons, New
York, 1987.

M. J. SchervishTheory of StatisticsSpringer, New York, 1997.
B. Sclolkopf and A. J. Smolalearning with KernelsMIT Press, Cambridge, Massachusetts, 2002.

M. SeegerBayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds and Sparse
Approximations PhD thesis, University of Edinburgh, 2003.

M. O. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and J. Weston. Support vector regression
with ANOVA decomposition kernels. In B. Solkopf, J. C. Burges, and A. J. Smola, editgkdyances
in Kernel Methods — Support Vector Learnjrchapter 17, pages 286-291. MIT Press, Cambridge,
Massachusetts, 1999.

C. K. I. Williams. Prediction with Gaussian processes. From linear regression to linear prediction and
beyond. In M. I. Jordan, editotearning in Graphical Modelspages 599—-621. Kluwer Academic
Publishers, Dordecht, 1998.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian procd&dels. Transactions on
Pattern Analysis and Machine Intelligen@9(12):1342—-1351, 1998.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In David S. Touretzky,
Michael C. Mozer, and Michael E. Hasselmo, editokglvances in Neural Information Processing
Systems ages 514-520. MIT Press, 1996.

26



