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S U M M A R Y  
In an E-SCAN DC resistivity experiment a large amount of common source 
pole-pole potential data from many sources over a pre-designed survey grid are 
collected. The large number of DC potentials and the spatial configuration in which 
they are collected invite the development of new imaging and inversion methods. 
We present three one-pass inversion algorithms. They are based upon the linearized 
equation for the D C  potential under the Born approximation and the assumption 
that the conductivity model consists of perturbations to a uniform background 
conductivity. Two algorithms are presented for imaging and inverting for 2-D 
conductivity models. The first is based upon the theory of charge accumulation in 
the D C  resistivity experiment, in which a sparse representation of the accumulated 
charge densities due to all current sources is recovered so as to image the structural 
boundaries. The second method inverts directly for an approximate conductivity 
model having a minimum structure. Both methods employ linear programming 
techniques. For 3-D problems, a fast algorithm is developed using a convolutional 
representation of the surface pole-pole apparent resistivity. It decomposes the 3-D 
inverse problem into a sequence of 1-D inversions in the wavenumber domain. 
These 1-D problems are independent of eachother and can be solved efficiently. The 
final spatial domain conductivity model is obtained by inverse Fourier transforming. 
Despite the Born approximation, this algorithm seems to work for large conductivity 
contrasts and a certain amount of near-surface variation in conductivity. All 
algorithms are tested on synthetic data but we also present results from the 3-D 
inversion applied to field data. 
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INTRODUCTION 

In a typical E-SCAN DC resistivity experiment, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-100 electrodes are planted according to a pre-designed grid over the target 
area. Each electrode is used as a current electrode, and when activated, the potentials are measured at the remaining 
electrodes. The typical E-SCAN data set therefore consists of multiple groups of common source pole-pole potentials with the 
total number of data being -10 000. The large number of measured potentials, and the grid arrangement on which those data 
were collected, offer new opportunities for the development of processing and inversion algorithms. In this paper we present 
some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof these techniques. 

Our emphasis is on one-pass algorithms whose output may be of sufficient quality to answer a specific geologic question. 
The output may be a structural image or it may be a first approximation to the true subsurface distribution of conductivity. 
Although such a result cannot be considered an acceptable model in that it reproduces the field observations after being input 
to a rigorous forward modelling, i t  may contain the necessary information to define the existence or non-existence of a 
conductive target or to determine an approximate depth of burial or geometric attitude of the body. As such it is useful. In 
addition, the approximate inversion result can be used as the input conductivity for a more rigorous iterative inversion, or the 
approximate inverse mapping itself can be iteratively used to find a model which provides an acceptable fit to the data. These 
attributes have motivated our research on approximate inverse mappings. 

The techniques developed here depend upon the dimension of the presumed conductivity model. Geo-electrical structures 
are always 3-D but if there is a preferred strike direction and if the bodies are sufficiently elongated, then interpretations based 
upon 2-D equations may be valid. We present two approximate mappings that make explicit use of 2-D geometry. The first 
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mapping is based upon a physical understanding of charge density in DC resistivity problems (e.g. Alfano 1959; Kaufman 1985; 
Li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Oldenburg 1990). Charge is accumulated at  an interface separating regions of differing conductivity and the relationship 
between the accumulated charge and the measured potentials is governed by Coulomb's equation. This is a linear relationship 
and hence invites the use of a linear inverse method to recover the subsurface charge from the measured potentials. Potentials 
from each current location can be inverted to  provide an image of the subsurface charge accumulation and various images can 
be combined to provide the locations of the conductivity contrasts. The technique has the possibility for outlining the shape of 
the body. 

Rather than combining results from individual inversions, the 2-D problem can be reformulated so that potentials from 
multiple current electrodes are inverted simultaneously. The output is a conductivity structure rather than a charge 
accumulation image. As such, it is more closely affiliated to an inversion than to  an image. This has an advantage, but the 
sacrifice made is in the increased computations required. 

Most often, however, a 3-D solution is required. Although the 2-D approximate methods are potentially extendable into a 
higher dimension, the increased computations can make the problem intractable on present-day workstations. For the 3-D 
problem, we propose an alternative method which explicitly uses the array of E-SCAN data. Field data are Fourier 
transformed and a sequence of 1-D linear inverse problems is solved in the wavenumber domain. The wavenumber inversions 
are inverse Fourier transformed to yield the approximation to the true 3-D conductivity structure. 

Our paper proceeds by developing the basic approximate equation which linearly relates the measured surface potential 
data to the subsurface conductivity. The equation is based upon the Born approximation. Variations of this equation are used 
in all of our imaging and inversion algorithms. W e  next develop our algorithms and apply them to synthetic data sets. The first 
2-D algorithm developed outputs an image of the major charge accumulation; the second algorithm generates an approximate 
2-D conductivity. The remainder of the paper is concerned with the 3-D problem. The results of applying the 3-D inverse 
mapping to synthetic data and to a set of E-SCAN field data are given. 

BORN EQUATION F O R  DC RESPONSES 

Let u(r) be the conductivity structure in a lower half-space V whose upper surface is flat. The potential on the surface resulting 
from a point source of strength I placed on the surface can be expressed as (e.g. Snyder 1976; Li & Oldenburg 1991) 

where r, and rc,bs are the source and observation point respectively, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus = u(rs). We choose a Cartesian coordinate system 
with origin at the surface and z positive down. The integral in equation (1) represents the secondary potential which contains 
all the information about conductivity anomalies and is denoted by 

Let the conductivity be represented by a(r) = u(,p(r). Here a,, is the conductivity of a uniform background and p(r) is a 
dimensionless function of spatial position r. Substituting into (2) yields 

Equation (3) is basically Coulomb's equation with the volumetric charge density (scaled by 2 ~ ~ )  represented by the 
numerator. The charge density is non-zero whenever there is a component of the electric field parallel to the gradient of the 
conductivity. It is positive when the current flows from a conductive to a resistive region; otherwise, it is negative. 

The potential q ( c )  is not known, but if the deviation of the conductivity from the background is small over the entire 
model, and if the surface conductivity is equal to a,, (thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, = a,)), we can apply the Born approximation by replacing rp(r) in 
equation (3) with the primary potential 

We obtain 

This is a Fredholm equation of the first kind with the conductivity perturbation In p(r) as the unknown function. Physically, 
equation (4) approximates the actual secondary potential by considering only the charge accumulation arising from the primary 
field. The internal interaction of the accumulated charges is neglected. 
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Figure 1. The comparison of the true and the Born approximation potentials over 2-D and 3-D prisms are shown in panels (b) and (c) 
respectively. The two prisms have the identical cross-sections, as shown in panel (a), and are embedded in a uniform half-space of 0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS m '. 
The conductivity contrast between the prism and the half-space is 10. The solid lines are the true secondary potentials. The dashed lines 
represent the potentials from the Born approximation. Curves labelled C and R correspond to conductive and resistive prisms respectively. 

Because equation (4) is basic to our algorithms it is important to have some feeling for its validity. We attempt to quantify 
this for a simple geologic situation in which a conductive or resistive prism is buried in a half-space. The geologic model and 
electrode geometry is shown in Fig. l(a). The true secondary potentials and those evaluated from (4) are given in Fig. l(b) for 
a 2-D prism and in Fig. l(c) for a 3-D prism. Generally the shape of the Born potential is very similar to that of the true 
potential but the amplitude can be significantly different. The Born potentials are greater than the true potentials for a resistive 
prism and smaller than the true potential for a conductive prism. Amplitude discrepancies of 30 per cent are noted. There are 
also sign differences. For a conductive 2-D prism the true secondary potential is entirely negative but the Born solution shows a 
positive side lobe. Interaction between charges reduces the positive charge on the far side of the prism and keeps the potential 
negative. Overall, however, the agreement between the true and Born potentials is quite good. In fact, the correspondence for 
the 3-D conductive prism is excellent. This provides optimism that analyses carried out using equation (4) will yield useful 
results. 

APPROXIMATE 2-D IMAGING A N D  INVERSION 

In the case where the anomaly due to a geological structure has a preferred strike and it is sufficiently elongated, the 2-D 
approximation may be valid. Even though the Born approximation may be somewhat more inaccurate for the 2-D models 
compared to a 3-D model, from a computational viewpoint there are benefits to using a 2-D formalism if it is possible. For a 
2-D structure, p(r) = p(x,  2). Substituting this into equation (3) and recognizing that terms involving p(r) are independent of 
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variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, we can carry out the integration with respect to y and obtain 

where cobs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x,,,,, yob5, 0), r5 = ( x ? ,  y,, 0) and the kernel function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, is 

Performing the integration for the special case y, = yc,hs yields 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 

where 

and E and K are the complete elliptic integrals of the first and the second kind, respectively. We remark that the integral for a 
kernel in the general case of ys#yoh, can be carried out. However, our experiences have shown that the addition of the 
corresponding off-line potentials does not improve the final result due to the approximations involved. 

The term involving p(x ,  z) in equation (5) can be written as 

I V In p ( x ,  2) - q s  
c(x, 2) = - - 

4nzu, 17s 

where qs = ( x  - xs ,  z) is the projection on the x-z plane of the vector from the source to a given subsurface point. Equation 
(5) can then be written as 

where g(x,  z; x, ,  xobs) = qsg, is the new kernel function. The function c(x, z) behaves like a charge density: it is non-zero 
whenever there is a component of qs parallel to the conductivity gradient V lnp(r ) .  It vanishes identically away from any 
boundary of the conductivity structure. Thus, if c(x, z) can be properly recovered, the boundary of 2-D subsurface structures 
would have been located. This leads us to the formulation of charge density imaging. 

E Q U I V A L E N T  C H A R G E  D E N S I T Y  FORMULATION 

Equation (7) is a linear functional relating the equivalent charge density c(x, z) t o  the secondary potential. As such, secondary 
potentials recorded at a number of locations X,hsr and arising from a fixed source at  x, ,  can be inverted to recover an estimate 
of c(x, z). Given that physical charge accumulated at  the boundaries between blocks of different conductivities, it follows that 
an algorithm which is effective in delineating the locations of that charge can generate important information about the 
structure. 

We accomplish this imaging by setting up a linear inverse problem. We first discretize a cross-section of the earth into 
mx x m, rectangular cells. In each cell c ( x ,  z) is assumcd to be constant. Equation (7) becomes 

m, mz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
qt= C A ~ ~ c ~ ~ ~  i = 1, . . . , n 

j = l  k = l  

where Q J ~  is the datum at location X& n is the number of the data available, and Afk is the integral of ith kernel function over 
jkth cell AJk,  

A f k  = I,,k g(xr X s ,  xkhs )  dz.  

The number of data is generally far fewer than the number of cells and hence equation (8) is an undetermined system. 
Equivalently, the solution is non-unique. To obtain a particular solution, we seek a ‘simple’ charge density which can explain 
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the observed secondary potential data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOur measure of simplicity is defined by the weighted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  norm of the charge density. We 
d o  not fit the data exactly but rather introduce a misfit variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, for each data equation and permit a total misfit bounded by a 
prescribed value. Thus the minimization problem becomes 

where 6, is the estimated standard deviation of the error associated with ith datum, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is a fit parameter which controls the 
fit to the data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArzm is the expected value of the total misfit assuming Gaussian distribution of noise. wlk is a set of weighting 
coefficients which ultimately determine the type of model which is obtained. We are free to choose any weighting function. We 
have specified 

w/k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (Zk  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzp?/,. 

The first part is introduced to overcome the natural decay of the kernel function with the depth and the second part to 
compensate the decay of the primary field with the distance. The minimization of the above problem is solved using standard 
linear programming methods (e.g. Murty 1983). This choice suits our need for finding a sparse representation of the charge 
density. 

When a current is input to the ground the physical charge density depends upon the source position relative to the 
conductivity anomaly. The charge density c,/ found above reflects this relationship. The result of the above inversion only 
provides with us a partial image of the boundary. However, the field from a different current source position illuminates the 
boundary in a different way. By inverting for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(x, 2) from many different source positions using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), a relatively complete 
image of the boundary is obtained. 

Taking the advantage of the E-SCAN data set, we can form many sets of common source potential data. Each set can be 
inverted to yield a part of the boundary image. When all the partial images are combined, they give a rather complete picture. 
Fig. 2 shows the result obtained by inverting synthetic data generated from a simple prism buried in a uniform half-space. 
Seven sets of secondary potential data corresponding to different source locations, shown in Fig. 2(a), are used in the 
inversion. Fig. 2(b) is the combined image. The top and the bottom boundary of the prism are correctly imaged. The 
pseudo-charge density also has the correct sign. It is negative at the top where the current flows into the conductive body and is 
positive a t  the bottom where the current flows out of the prism. Figs 2(c)-(f) show some results from different individual 
inversions. They clearly show the different parts of the boundary imaged by the potentials from the different source locations. 

From the viewpoint of physics, this approach is very appealing. The charge accumulation on the boundary is a physical 
reality in the DC experiment and any attempt to recover it is valuable. As illustrated in the above example, it has worked 
satisfactorily for imaging simple structures. However, for a closed body in a uniform half-space, the sum of the charge 
accumulated on the boundary is zero. So the secondary potential is primarily the field of dipolar and higher order sources. The 
recovery of the true charge distribution from such fields is difficult and the solution can be highly non-unique. 

Because the subsurface charge density depends upon the source position, there is no single distribution of charges which is 
compatible with all the data. Therefore, in the recovery of the secondary charge density, each inversion uses a single current 
field. Results from several such individual inversions form a composite image as the final result. A more stable approach would 
be to invert for a single model using all the data simultaneously. This leads us to the direct formulation to recover a 
conductivity image. 

CONDUCTIVITY FORMULATION FOR 2-D STRUCTURE 

Equation (5) presents a linear relationship between the gradients of In p(r) and the secondary potential. By forming a linear 
inverse problem to  recover In p(r) directly, we can simultaneously invert data from many different current locations and 
thereby greatly reduce the non-uniqueness. We adopt the same type of discretization as in the charge imaging. The 
conductivity section is divided into rn, X rn, cells each of which is specified by a constant value of In p. The model for the 
inverse problem then becomes 

m,k =In ( p l k ) ,  

Under these assumptions, the gradient becomes discrete. d In p / d x  is non-zero only on the vertical interfaces between cells and 
d In p / d z  is non-zero only on the horizontal interfaces, 

j = 1 ,  . . . , m,, k = 1, . . . , m,. 

d l n p  

3 X  
-- - ( m / k - m , _ l , k ) S ( x - x , ) ,  ( x , z ) ~ r ' ; ~ ,  j = 1 ,  . . . ,  m,+l k = l ,  . . . ,  m,, 
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Figure 2. Imaging subsurface structure using charge density. Panel (a) shows the secondary potentials corresponding to the labelled source 
locations over a 2-D conductive prism buried in a uniform half-space. Panel (b) is the composite of the individually recovered charge density 
images corresponding to seven sources located from -300 to 300 m in equal spacing. The light region represents the negative charge density 
and the dark region the positive charge density. The solid line in the image indicates the boundary of the 2-D prism. Panels (c)-(f) are images 
corresponding to sources at 0, 100, 200, and 300 m, respectively. 

where r;k and rfk denote the vertical and horizontal interfaces respectively. When the index j equals 0 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, + 1, or index k 
equals 0 or m, + 1, the model parameter m,k is taken to be the background value, which is zero. 

Substituting the gradient functions into (5) yields a discrete data equation of the form 

mr m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q:=C mJky;,, i = l ,  . . . ,  n,  

j = 1  k = l  
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where 

We choose to minimize an objective function composed of a combination of the I ,  norm of the model and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  norm of 
the gradient. 

The weighting coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwlk, w t  and wfk are introduced to control the relative importance of a particular cell in the objective 
function based on the cell size and depth. The parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y takes on a value in 10, 11 and determines the relative importance 
between model and gradient. Mathematically, the second part is a measure of the variation in the model in the sense of I ,  
norm. When cr approaches unity, the inversion produces a smallest model without much restriction on the variation. As cr 
approaches zero, the inversion produces a minimum-variation model (Dosso & Oldenburg 1989). 

The minimization problem can be solved using standard methods. Variables which can acquire both positive and negative 
values are replaced by the difference of two positive values. Misfit parameters are also introduced, as they were in the 
equivalent charge imaging, so that the final data are fit only to within a global tolerance. In addition, an upper and lower 
bound can also be imposed on the model elements as constraints. The kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyfk is computed numerically. It can be shown that 
the kernel y:k is symmetric for interchanging source and receiver locations. Therefore, for every pair of electrodes in the 
E-SCAN data, only one datum entry is required as the DC potential satisfies the reciprocity. 

To illustrate the above algorithms, a set of secondary potential data from a synthetic model is inverted. The model consists 
of a conductive prism and a resistive prism buried in a uniform half-space (see Fig. 3b). The half-space conductivity is 
1 mS m-'. The conductivities of the two prisms are 4 and 0.25 mS m-I, respectively. A set of E-SCAN data is generated over a 
traverse of 21 grid points. Fig. 3(a) shows the corresponding apparent conductivity pseudo-section. 200 secondary potentials 
corresponding to this pseudo-section are used in the inversion. The model section is divided into 300 cells with thickness 
increasing with the depth. An upper bound of 10 for the conductivity contrast is imposed on the solution. Fig. 3(c) shows the 
result of a minimum variation type model with (Y = 0.9. The conductive prism is defined reasonably well. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo is the top of the 
resistive prism. The poorer recovery of the bottom of the resistive prism is due to  the fact that the Born approximation differs 
more from the true potential in the case of resistive prisms. However, for the purpose of imaging the structure, the algorithm 
has worked satisfactorily. 

APPROXIMATE 3-D INVERSION 

In principle, the techniques used in 2-D analyses can be extended to  3-D conductivities. In practice however, the large number 
of model elements and data result in a large matrix to be inverted and this makes the approaches impractical. We choose to 
develop a different methodology motivated by the existence of E-SCAN data. 

Applying the vector identity V - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(qa) = VV - a + V q  - a, for an arbitrary scalar 11, and an arbitrary vector a, to the 
integrand in (4) yields 

With the aid of Gauss's theorem the last integral in the above equation can be expressed as 

where S represents the entire boundary of the lower half-space with outward normal vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii. The contribution to p from the 
flat upper surface of the half-space is zero because 

V-.h=() 

there. Along the remaining boundaries, 

V - - f i m -  as Ir[+m, 

1 

Ir - r s l  

1 1 1 

lr-rohsl I r -  rsl 

and hence the boundary integral vanishes there. Thus B is identically zero 
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Figure 3. Imaging subsurface conductivity. The synthetic model shown in panel (b) consists of a conductive (4 rnS rn- I )  and a resistive 2-D 
prism (0.25 mS m-') in a uniform half-space of 1 rnS m- ' .  200 secondary potential data on the surface are used in the inversion. Panel (a) is the 
corresponding apparent conductivity pseudo-section. Panel (c) is the recovered conductivity model. The upper grey scale is for panel (a) and 
the lower grey scale is for panels (b) and (c). The scale is in log,,, u. 
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Applying the same vector identity to the first integral in (12) yields 

The second term in (13) vanishes identically since 

and In p(rJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 because it has been assumed that the surface conductivity is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo. Thus we obtain the following expression for 
the secondary potential on the surface: 

Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) is a Fredholm equation of the first kind relating the secondary potential to the perturbation of logarithmic 
conductivity. The equation is similar to that presented by Boerner & West (1989) which was derived using an integral equation 
for the potential on the boundary of an isolated inhomogeneity with constant conductivity. 

E-SCAN data are generally acquired in a regular grid. As such, it is convenient to explicitly consider data generated from 
pole-pole arrays with fixed separations and orientations. As in Fig. 4, let ro be the mid-point of the array, and let 21 be the 
vector pointing from source electrode to potential electrode. Then 

r, = ro - I, 

Substituting into (14) and transforming to apparent resistivities yields 

r6,b5 = ro + I 

where I = 11). Noticing that ro = (x, y ,  0) and I = ( I , ,  I.", O), we recognize that equation (15) involves a convolution operation in 
the x-y domain. Thus the surface pole-pole apparent resistivity can be expressed as 

pa(ro; 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP() + P ( ~  in ~ ( r )  @ @ g(r; 1) dz ,  r 
where p(, = l /uo,  the symbol @ '23 denotes the 2-D convolution operation and g(r, I) is the kernel function 

Equation (16) relates the surface pole-pole apparent resistivity data from a fixed array configuration to the subsurface 
conductivity structure. It is noticed that the anomalous part of the apparent resistivity is a depth integral of the conductivity 
perturbation convolved with a kernel in the x-y domain. 

Define the Fourier transform over the infinite plane and its inverse transform as (Bracewell 1978) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dx dy, %;iV(p ,  q ) ]  =- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I f ( p ,  q)e'Pxc'qy d P 4. 4Jc2 -m -_ 

Taking the 2-D Fourier transform of equation (16) and applying the convolution theorem yields 

Cj(p, q )  = [ f i ( p ,  q ,  z ) g j ( p ,  q,  2) dz, i = 1, . . . , nl ,  

Figure 4. Geometry of the surface pole-pole array is specified by a vector 21 pointing from the source location r, to observation robs. r, is the 
mid-point of the array, where the apparent resistivity is recorded. 
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where (p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq )  are transform variables representing the wavenumber in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -  and y-directions and 

C,(pt 4 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s x y [ P a ( r o ;  - 11, i = 1, ni, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i ( ~ ,  q, 2) = % , b ~ ( r ) I ,  & ( p ,  q, Z )  = E,,[g(r; It)], j = 1, ni. 

The index j identifies the jth pole-pole array. In an E-SCAN data set, many different pole-pole arrays exist; each is specified 
by a unique separation and orientation of the current and potential electrodes. We denote the number of distinct pole-pole 
arrays by n,. 

Equation (18) is a Fredholm integral equation of the first kind. The data Z,(p, q )  and model f i ( p ,  q, z) are complex 
because they are the Fourier transforms of arbitrary real functions. The kernels, however, are real. This results because of the 
symmetry of (17) about the origin. At each wavenumber, equation (18) shows that there are nl constraints upon the model 
r?i(p, q, z). Linear inverse theory can therefore be used to recover e f p ,  q, z) as a function of the depth z (Backus & Gilbert 
1967; Oldenburg 1984). Completing this inversion at all wavenumbers yields the model f i ( p ,  q, z). The 3-D spatial distribution 
of the conductivity is obtained by performing an inverse 2-D Fourier transform in the horizontal directions at sampled depths. 

The implementation of the above inversion method requires that a background conductivity be estimated, that pole-pole 
apparent resistivity data maps corresponding to different separations and directions are gathered and interpolated to a common 
grid so they can be Fourier transformed, that kernel functions are evaluated, and 1-D inversion problems are solved. We 
consider these aspects next. 

Data 

The data required for the 1-D inversions are generated by applying a 2-D spatial Fourier transform to the quantity (pa - pa)/po 
for each electrode configuration. This requires a reliable estimate of the background resistivity po. Experiments with both 
synthetic and field data sets show that the mean value of the apparent resistivity data, i.e., the best fitting half-space model, 
provides such an estimate. It works well especially for structures with localized inhomogeneities or where the conductivity is 
distributed about a regional value. 

This process also requires that the initial E-SCAN field data be interpolated and extrapolated. The procedure is best 
explained by using Fig. 5. An E-SCAN survey is generally carried out over a regular grid. A basic grid is shown by the solid 
lines in Fig. 5. Each node in that grid would have been occupied by a current or potential electrode as the survey data are 
collected. Suppose that a data map is desired for 4 = (Ax /2 ,  Ay). This pole-pole configuration is given by the arrows in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 
The apparent resistivity for each electrode pair having this orientation can be evaluated and assigned to the mid-point between 
these two electrodes. The solid dots indicate the locations at which apparent resistivities can be evaluated for this particular 
electrode pair. Notice that this area activated by the solid dots is smaller than the initial survey area. The size of the activated 
area decreases as (I1 increases. 

We have not yet specified a domain on which the inversion is to be carried out. We now select the x-y limits of the 
domain to be a rectangle which is larger than the initial survey area and contains the initial survey at its centre. Typically, as 
illustrated in Fig. 5, the distance between the survey grid and the boundaries of 
the maximum values of 1, and 1, in the x -  

extended 
region 

the inversion domain have been set equal to 
and y-directions respectively. 

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo assigned 

E-SCAN 
survey grid 

available data points 

Figure 5. Specification of the data map. The intersections of solid lines indicate the E-SCAN grid points. The potential data are acquired over 
all grid points but the pole-pole apparent resistivity is defined only in a smaller area. One possible array configuration is shown by the arrows 
in the diagram, which point from the source to the potential location. The apparent resistivity data for this array can be formed only on the 
locations indicated by solid dors. This activated area is smaller than the survey area and decreases as )I) increases. To generate a data map 
suitable for inversion, a mathematical area is defined by extending the original E-SCAN survey region half of the maximum array separation in 
x -  and y-directions. 
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The remaining step is to define a rectangular grid on the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f  the inversion model domain. Because some data maps 

(for example that shown in Fig. 5 )  yield data at locations mid-way between the nodes of the survey grid, it is reasonable to 
select a spatial discretization for the Fourier transform grid which is half of the field survey grid spacing. We generally use this. 
With this choice of gridding there will be many points on the inversion grid that are not defined directly by values from the 
survey grid. Both interpolation and extrapolation are required. Interpolation inside an activated area (e.g. within the rectangle 
generated by the solid dots in Fig. 5 )  is not difficult but extrapolation is always dangerous. In order to avoid the introduction of 
extraneous artifacts and also ensure that the data to be Fourier transformed are zero around the edges, we specify the apparent 
resistivity around the boundary of the inversion grid to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,,, the background resistivity. The evaluation of apparent 
resistivities at all nodes on the inversion grid can now be obtained by interpolating a data set consisting of the interior activated 
points and the outside boundary points. We apply an interpolator consisting of a combination of Laplaciari and cubic spline 
components to In p;,. After interpolation. the percentage anomaly (pi ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- pl,)/pl, is calculated and Fourier transformed to 
generate the data actually used in the inversion. 

Kernel function 

Equation (17) gives the expression for the kernel function in the spatial domain. For illustration, Fig. 6 shows three slices 
through the spatial kernel function, g(r; I ) ,  for a given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. The distance between the electrodes is SO m and the depth slices are at 
z = 1, 20, and 40 m respectively. At  shallow depths the character of the kernel function is dominated by two large dipole-like 
features which are directly beneath the current and potential electrodes. These features become singularities as z -+ 0. At 
greater depths these peaks become smoother and spread out horizontally. We note, however, that for shallow depths, (e.g. 
z = 1 and 20m in Fig. 6) the spatial kernel function has an inner region of opposite sign. These observations are all in 
agreement with our understanding of the pole-pole DC resistivity experiment. For a given separation, the array is sensitive to 
smaller changes in the conductivity structure from a shallow region but it responds only to a broader average of conductivity 
structure at  deeper regions. The positive region agrees with the fact that the array has a negative response to relatively shallow 
anomalies, for instance, it measures a resistive anomaly over a shallow conductor (e.g. Li & Oldenburg 1991). 

The kernels g ( p ,  q ,  z )  needed in the 1-D inversion require that (17) be spatially Fourier transformed. We have not been 
able to obtain an analytic solution and therefore have calculated these numerically. Our approach is to evaluate each 3-D 
kernel at  a specified set of depths ( z l ,  . . . , z,,) and then Fourier transform each depth slice. The results are combined to yield a 
discretized kernel g ( p ,  q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzk) ( k  = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl).  This discrete representation is interpolated to provide a continuous representation of 
each kernel. 

The spatial Fourier transforms of the slices shown in Fig. 6 are given in Fig. 7. The Fourier transform at shallow depth is 
characterized by numerous oscillations and large bandwidth. For greater depths, the transforms die out more rapidly with 
increasing wavenumber. At  any wavenumber, these plots provide three point evaluations of g ( p ,  q, z ) .  The complete kernels 
g j ( p ,  q,  z )  corresponding to ( p ,  q )  = (0.012, 0) are shown in Fig. 8. Kernel functions corresponding to small 11,1 have more 
structure and amplitude toward the surface than do  those pertaining to larger offsets. Kernel functions for large 
source-receiver separation decay more slowly with depth. This complies with the fact that a larger separation array has a 
greater depth of penetration. We note also that the kernels are smooth functions of depth. Since the array separations are 
increasing linearly, the kernels for large offsets become similar. Effectively there is little new information provided by kernel-8 
that is not already in kernel-7. That is, the kernels associated with the two largest offsets are almost linearly dependent for this 
particular choice of ( p ,  4). The smoothness and lack of structure exhibited by the kernels also adds insight into the nature of 
the inversion results. We would not expect for example that these kernels could provide any vertical resolution about the 
conductivity below depths of about 200 m. 

For a fixed array separation, the dominating portion of the kernel function shifts towards the surface as the wavenumber 
increases. We can characterize this by the median depth of the absolute area under the kernel function. At  zero wavenumber 
this median depth is in fact the effective depth of pole-pole array defined by Edwards (1977). The decrease of this depth with 
the increase of wavenumber indicates that Edwards’ effective depth sets an upper bound on the depth of investigation. It 
becomes smaller as the lateral resolution requirement increases. For the same reason, the recovered conductivity model 
becomes smoother as depth increases. 

Inversion 

With the data and kernel functions evaluated in the wavenumber domain, we now turn attention to the solution of the inverse 
problem. According to (18), at each wavenumber ( p ,  q )  we need to invert a Fredholm equation of the first kind to recover a 
complex model * ( p ,  q ,  z ) .  There exits an infinite number of models which adequately reproduce the n, complex and 
inaccurate data e, ( j  = 1, n/). Our inversion will be formulated to generate a model with ‘minimum’ structure with respect to 
the background conductivity. 

The mathematical development of the approximate 3-D inversion made use of the Born approximation. That 
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Figure 6. Spatial domain kernel function corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( / x ,  I , )  = (25, 0) at depths z = 1, 20, 40 m respectively. 

approximation is valid when the conductivity differs only slightly from the half-space value. For consistencv. i t  is thprpfnrp 

r p r r ~ n n ~ h l ~  +n on-....+-. - -,.->----' 'A . .  . . .  . .., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---I--. .....-.. u b v I ~ ~ ~ ~  aa ULLIC as possiole mom this background model. We construct such 
a 3-D conductivity model by finding perturbations to a base model defined by the estimated half-space conductivity uo, the 
reciprocal of po used in the data reduction. We therefore seek a model which minimizes 

where w ( z )  is an arbitrary positive weighting function. Using Parseval's theorem, (19) can be written as 
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Figure 7. Wavenumber domain kernel function corresponding to I =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(25.0) at the depth of 1 ,  20, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40m. These three slices are the 2-D 
Fourier transforms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the spatial kernels in Fig. 6 .  They providc three point evaluations on the kernel corresponding to the given 1 used in the 
I-D inversion at all wavenumbers. The complete kernel is obtained by evaluating all depth slices. 
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Figure 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of kernels at wavenumber ( p ,  4) = (0.012, 0) for arrays in the x-direction, i.e., I = ( lx ,  0). The curves correspond to arrays with 
Ix ranging from 25 to 200 m in equal increments of 25 m. 

In this form, we observe that the total objective function is a sum of positive quantities. The objective function is effectively 
decoupled and the total objective function is minimized by minimizing the integral of the square of f i ( p ,  q,  z )  at each 
wavenumber. W e  are now in a position to specify the 1-D inversion. 

A t  each wavenumber our data equations (18) have the form 

e, = j-: ~ p ,  q,  z ) g I ( p ,  q ,  z )  dz ,  

where Zj and f i (p ,  q,  2) are complex and g,(p, q,  z )  are real. The model and kernels are assumed to  reside in a Hilbert space 
4 of complex functions defined on the region (0 ,  zmaX) where z,,, is some maximum depth of interest and is sufficiently great 
so that all kernel functions have negligible amplitude by that depth. If g and 6 are any two functions in A, then their inner 
product is given by 

i = 1, . . . , n,, 

zmax 

(g,  6)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(z)g(z)k*(z) dz 

where the * denotes complex conjugate. The norm on At is defined by 

T h e  data provide only n, constraints upon the model and hence % ( p ,  q,  z )  cannot be obtained unambiguously from them. 
There are, in fact, infinitely many models which fit the data exactly (e.g. Backus & Gilbert 1967). Given that the data are also 
inaccurate, we choose to find that particular model which minimizes 

where 8 is a Lagrange multiplier and f y ( z )  = g I ( z ) / w ( z ) .  The minimization is straightforward. Any function f i  E A can be 
written as f i  = fill + f i  where f i  E A" = asp {g;} and AtL is the complement of All. It is clear that f i  does not contribute to 
the data misfit but it will contribute to the model norm. As such, a minimization of Q(6) demands that 

where aI are coefficients to be determined. Substituting into (23) and writing the objective function in a matrix/vector notation 
yields 

+(riii) = aHra + W ' ( e  - ra)H(e - ra)  (25) 

where H denotes complex conjugate transpose and r is a real symmetric positive definite inner product matrix with elements 

rtI = 1ra" w g x p ,  q,  Z)g ,yp ,  q ,  2) dz 

and a = (al, . . . , an,)T, e = ( C l ,  . . . , I?,,)'. Perturbing the coefficient a in equation (25) and using a variational principle to 
carry out the minimization yields 

ra  - 8-'rH(e - ra)  = 0. 
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Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr is positive definite and symmetric this may be written as 

(r + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81)a = e .  (26) 

The solution of (26) is most easily obtained by writing r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARART, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is a diagonal matrix containing the eigenvalues 
in descending order, A = diag ( A l ,  . . . , A,,), and R is a unitary matrix composed of corresponding eigenvectors R = 

( r l , .  . . , r,,). The solution of (26) is then given by 

a = R ( h  + 18)p'R"e. (27) 

The major difficulty in carrying out the inversion is specifying the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 for each I-D inversion. If the data errors were 
Gaussian, independent with zero mean and known standard deviation there would be no problem. The procedure would be to 
first normalize each data equation by the standard deviation of the datum and then adjust H until a desired misfit value is 
reached. A desired misfit might be %[x'] = n,. 

The errors in our inversion d o  not comply with the simple Gaussian assumption. In addition to measurement errors on the 
initial potential data, we have several other major sources of errors. Errors are introduced into the data by the extrapolation of 
the known data to f i l l  the mathematical area in which the inversion is carried out; errors exist in the model representation 
associated with the I-D Fredholm equation which is inexact due to the Born approximation; errors are introduced into both 
data and model by incorrect estimation of the background conductivity uO. Therefore, our data are biased and non-Gaussian in 
realistic problems. Nevertheless, we have attempted to incorporate a Gaussian type strategy as much as possible. 

Our approach has been to first estimate an approximate error for each datum. These will be interpreted either as 
approximate standard deviations or at least used as a relative weighting for the different data to be inverted. The estimation of 
the errors are obtained in the following manner. The errors on initial apparent resistivity data in each map are converted to the 
variance of wavenumber domain datum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZJ(p,  4) .  Since the initial data errors are assumed Gaussian, zero mean and 
uncorrelated and the Fourier transform kernel has a unit amplitude, this variance is equal to the sum of the variance of the 
initial error. This error is then scaled by the ratio of the total area to activated area. In the estimation of the initial error, an 
upper and lower bound on the possible error are imposed. The lower bound is especially useful for those data with small 
magnitude. 

We have used the above errors in three ways. In the first we have accepted these values as valid standard deviations, 
normalized the data equations by these standard deviations and chosen 8 so that the chi-squared misfit was equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,. 

In the second method we use the estimated standard deviations as relative weightings for the data equations but chose 8 in 
accordance with its effect on the model norm. The model norm increases monotonically as 8 decreases and is easily evaluated 
in the spectral domain. Using the decomposition of r, we can define a set of rotated basis function (Parker 1977), 

" 
V i ( Z )  = c qi&nh q1 21, 

j = 1  

where 5; is the j th element of eigenvector ri. Vi(z) 's  form an orthogonal set, i.e., 

where 6, is the Kronecker delta. Then the regularized solution is given by 

where 2; is the ith element of the rotated data vector C = RTe. It follows from the orthogonality of ~ , ( z ) ' s  that 

The curve 1)fi11' ( 8 )  is usually smooth and often characterized by a near-vertical slope for small 8, near-zero slope for 
large 8. The value of 8 corresponding to the onset of rapid norm increase, or the value of 8 where the tangent to the curve has 
a given slope k (e.g. k = -1.0) can serve as estimates for 8 used in the inversion. Without referring to the data misfit, this 
approach is somewhat arbitrary in the choice of the slope k within this permissible small range. Therefore, when choosing 8 
based upon a slope criterion, the value of the slope k is best chosen by incorporating a global misfit as done in conjunction with 
using a single value for 8 as presented next. 

Our third approach is an attempt to find a single value of 8 that is used to regularize all 1-D inversions. A given value of 8 
will generate a model from which predicted Born data can be calculated. The total chi-squared misfit, evaluated only for the 
original field data is given by 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApz, and p:, are observed and predicted apparent resistivity values, respectively, b, is the estimated error of each datum 
and n,  is the total number of the apparent resistivity data used in the inversion, which are available directly from the initial 
survey. It should be noted that this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 is the misfit for the approximate equation, it is not a true misfit. Carrying out the 
inversion for a number of values of 8 yields a curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ' ( 0 )  which can be interrogated to estimate an optimum value or to find 
that 8 which corresponds to an expected x2. This approach has the advantage that the regularization is controlled exactly by 
misfit to the original data. It does require that the inversion be carried out a number of times but that poses no computational 
difficulties. The CPU time needed for all 1-D inversions is only a small fraction of that used for computing the kernel functions. 
Once the  kernels are computed, they can be stored and additional inversions can be carried out efficiently. 

Synthetic examples show that the first and third approaches tend to over-damp the solution at higher wavenumbers and 
the resulting model is dominated by a few low wavenumber components. The second method avoids this problem and produces 
a better model. W e  generally use this approach. 

Table 1. Parameters of the five-prism model. 
x-dimension y-dimension z-dimension Conductivity 

Prism (m) (m) (m) (mS/m) 
s 1  225-325 225-325 0-40 10.0 
s2  275-675 375-475 0-40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.0 
s 3  325-675 626-675 0-40 0.5 
B1 275-625 275-375 50-250 0.5 
B2 375-475 475-675 75-275 10.0 

Examples 

To illustrate the algorithm, we present the inversion results for a synthetic and a field data set. The synthetic data set is 
generated over a 21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 21 grid of 50 m spacing for a model consisting of five prisms buried in a uniform half-space. Table 1 lists 
the model parameters. The perspective view of the model layout is shown in Fig. 9. Prisms B1 and B2 are the buried targets. 
Prisms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS1, S2, and S3 simulate near surface variations in the conductivity. The apparent resistivity maps in both x-  and 
y-directions with separations ranging from 1 to 8 grid spacings and in xy- and yx-diagonal directions with separations from 1 to 
5 grid spacings are gathered. A total of 26 data maps are used in the inversion (i.e., there are 26 complex data for each 1-D 
inversion in the wavenumber domain). No a priori information except the background conductivity is given. Fig. 10 is the 
comparison of the true and recovered model in a section at x = 450 m which cuts through the four major prisms. Figs 11 and 12 
show the comparison at  two different depths. Geometrically, the definition of the surface prisms is excellent. The image 
becomes less sharp as the depth increases. The magnitude of the recovered anomaly decreases with the depth. In general, the 
conductivity of the surface blocks is overestimated while that of the deeper ones is underestimated. Because of the loss of 
resolution and magnitude at the depth, the bottom of the buried prisms is poorly defined. Instead, there is a smooth transition 
from the  anomaly to the background. The loss of resolution is due to the limited bandwidth of the data and the fact that the 
kernel function in the wavenumber domain decays more rapidly with depth at  higher wavenumbers. The loss of amplitude is 
due to  the nature of smallest model construction, where a ridge regression parameter is used to regularize the solution. Overall 
the recovered model appears as a depth varying filtered version of the true model. All anomalies are well resolved. Despite the 
influence of the surface conductivity variations, the buried prisms are clearly defined. 

It is noteworthy that three conductivity blocks with high contrasts extend to  the surface. This is apparently in violation of 

Figure 9. The perspective view of the synthetic model consisting of five prisms embedded in a uniform half-space of 1 .0 mS m- ' .  The surface 
prisms S1 (5.0 mS m -  I ) ,  S2 (10.0 mS m .  I )  and S3 (0.5 mS m -  ') simulate the near surface variations in the conductivity. The B1 (0.5 mS m- ' )  
and 8 2  (10.0 mS m- I )  are the buried targets. 
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the assumption that the surface conductivity be constant and the conductivity deviation is small. Even with such violations in 
the model, the algorithm still recovers the model reasonably well. This shows that the algorithm is quite robust. 

As a second example, we have inverted a set of field data. The data are collected from an E-SCAN survey designed to 
assist exploration for certain types of epithermal deposits. Epithermal deposits typically occur in the region with well-developed 
fracture and fault systems. Existing faults or fractures act as feeders of hot fluid which alters the host rock and deposits 
minerals. Ore  deposits are often associated with silicifications with depth ‘roots’, which tend to produce resistive anomalies in 
the DC resistivity experiments. Therefore, the E-SCAN survey is employed in this area in an attempt to map such silicification 
zones and fault structures. 

The original data were taken over a 32 X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 grid with 91.44 m spacing. 26 pole-pole apparent resistivity maps in x- and y -  

and diagonal directions are gathered for the inversion. A value of 18 Q m is estimated for the background resistivity. As an 
illustration, Fig. 13 shows one cross-section from the inverted conductivity model. The section is taken from the conductivity 
model directly beneath the original area of field experiment. Similar to the synthetic example, the recovered conductivity 
model has many structural details at  shallow depth but becomes increasingly smooth at greater depth. 

The model exhibits clear definitions of conductive and resistive units. The large resistive feature (near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 1800 m) may 
conform with the general pattern of silicified structures in epithermal deposits, which frequently expand upward near the 
surface to  become cone-like or mushroom-shaped. Ideally, this 3-D conductivity model should be compared with known 
geologic information to verify its validity. Although five major lithologic units have been identified in this region, their 
geo-electric properties are still uncertain. No borehole information is available for such verification. Thus we can mainly assess 
the result from the viewpoint of algorithm performance. The RMS misfit to the observed data by the best fitting half-space 
model is 57 per cent. The resultant conductivity model from the inversion reduces the misfit to 28 per cent. This indicates that 
the algorithm has taken a first step towards producing an acceptable model. Due to  the nature of the algorithm, there is little 
chance that large-scale spurious structures will be introduced. These facts suggest that the observed features in the inversion 
image may reflect true large-scale conductivity variations. 
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Figure 13. One slice from the conductivity model (b) recovered by inverting a field data set and the apparent conductivity pseudo-section (a) in 
the same section (scale in log,,, 0). 

DISCUSSION 

Three different algorithms have been developed to image or invert the subsurface conductivity structures. All algorithms are 
based upon the Born approximations of the DC potential responses and the explicit use of E-SCAN data set. It has been 
shown that the Born approximation provides a reasonable representation of the true potential, especially in 3-D cases. Thus it 
is viable to image or invert for subsurface structures using such an approximation. 

For 2-D models, the first approach is to image the boundary of subsurface structures using the accumulated charge density. 
The secondary potential is produced by the accumulated charges on the subsurface boundaries and consequently the recovery 
of the charge density effectively images these boundaries. Linear programming techniques are employed to invert the 
secondary potentials for a sparse representation of the charge density due to each of the current sources. The composite of 
these images yields a relatively complete image for simple subsurface structures. The algorithm has worked satisfactorily for 
simple models. However, the difficulty lies in combining a final result from several independent inversions. This can be 
unstable. 

To overcome the difficulties encountered in the charge density imaging, a direct formulation is developed which inverts 
approximately for simple 2-D conductivity structures. The algorithm also employs linear programming techniques for the 
inverse solution. An approximate conductivity model is constructed which satisfies all the available data. The method works 
well for relatively simple structures. For smallest I ,  model construction, the algorithm is verv efficient. As the component of 
variation increases, the algorithm becomes slower due to the linear programming solution. Because of the approximations 
involved, the semiquantitative result mostly serves as an image representation of the model. In general, the approximation is 
severe in the 2-D cases, especially with the complicated structures where the total field deviates greatly from the background 
field. Consequently, the inversion by this approach may be less appealing in practice. 

For 3-D models, an approximate inversion algorithm has been developed based upon the integral equation for surface 
pole-pole apparent resistivity data. The algorithm is designed to work for general 3-D models composed of perturbations to a 
background conductivity. Synthetic examples show that it can handle fairly large conductivity contrasts and, to a certain 
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degree, surface variations. The approach we have taken has some general implications. The algorithm can be viewed from 
different aspects. By applying a linear operator (2-D Fourier transform) to the basic data equation, the 3-D inverse problem is 
broken into a set of independent 1-D inverse problems. Each 1-D problem can be solved easily and efficiently. This results in 
an algorithm which is much more efficient than solving the original problem directly. From the view point of inversion, this 
approach also has merits. The Fourier transform separates the large-scale features (low-wavenumber components) and 
small-scale features (high-wavenumber components) in the data. Features of different scales are fit by finding the model 
components of corresponding scales. Thus the horizontal variability in the conductivity can be easily controlled by the largest 
wavenumber included in the inversion. This process makes the inversion very stable. 

The success with synthetic models, and the geologic reasonableness of the result from the 3-D algorithm applied to field 
data, provide a base for optimism for the approximate inversion. The next step of the research will be to input the recovered 
conductivity model into a full 3-D forward modelling algorithm to quantify the misfit between observed and predicted data. 
The approximate inverse mapping can then be incorporated into an iterative algorithm to yield a quantitative and rigorous 
solution to the 3-D resistivity problem. 
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