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Abstract—The efficient implementation of positioning algo-
rithms is investigated for Global Positioning System (GPS) and
Differential GPS (DGPS). This is particularly important for
smart phones with battery limitations. With the help of the
information from base stations, Assisted GPS (AGPS) and DGPS
can do the positioning more efficiently and more precisely than
GPS. In order to do the positioning, the pseudoranges between
the receiver and the satellites are required. The most commonly
used algorithm for position computation from pseudoranges is
non-linear Least Squares (LS) method. Linearization is done
to convert the non-linear system of equations into an iterative
procedure, which requires the solution of a linear system of
equations in each iteration, i.e. linear LS method is applied
iteratively. CORDIC-based approximate rotations are used while
computing the QR decomposition for solving the LS problem
in each iteration. By choosing accuracy of the approximation,
e.g. with a chosen number of optimal CORDIC angles per
rotation, the LS computation can be simplified. The accuracy
of the positioning results is compared for various numbers of
required iterations and various approximation accuracies using
real GPS data. The results show that very coarse approximations
are sufficient for a reasonable positioning accuracy. Therefore,
the presented method reduces the computational complexity
significantly and is highly suitable for hardware implementation.

Keywords-Global Positioning System (GPS), Differential GPS
(DGPS), Least Squares (LS), QR Decomposition (QRD), Co-
ordinate Rotation Digital Computer (CORDIC), approximation
methods

I. INTRODUCTION

Location Based Services (LBS) [1] [2] [3] [4] are wireless
’mobile content’ services which are used to provide location-
specific information to mobile users moving from location
to location. They utilize the ability to make use of the
geographical position of the mobile device. Currently, GPS-
based techniques [5] [6], network positioning methods [7] as
well as other positioning methods [8] [9] are commonly used
location estimation methods for LBS.

As a result of the freely available satellite positioning
parameters, the GPS system has been widely adopted. Building
GPS devices in commercially available cell phones has been
achieved by mobile device providers, such that the number
of cell phones equipped with GPS functionality has rapidly
grown in the last few years.

The next generation of cell phones, usually named smart-
phones, have integrated lots of functionalities, e.g. big mem-
ory, fast processors, mobile network access (GSM, UMTS,
LTE), bluetooth, GPS. Therefore, power constraints become
more and more important for these devices. In terms of

positioning, wireless carriers can communicate location in-
formation to the receiver via the cellular network, such that
Assisted GPS (AGPS) [10] and DGPS [11] can be used
to achieve the positioning faster, at a higher precision and
with a lower power consumption than GPS. This improves
performance and decreases battery strain. It can be expected
that in most application scenarios where a connection from
cell phone to the base stations is available, stand-alone GPS
will disappear.

In order to do the positioning, an initial set of pseu-
doranges between the receiver and the satellites is needed.
Non-linear LS is the most common method to determine
the receiver’s position from the pseudoranges. Usually, lin-
earization is done to convert the non-linear problem into an
iterative algorithm, which requires the solution of an over-
determined system of linear equations in each iteration step
itr (itr = 1, 2, · · · , itrmax), i.e. linear LS method is
applied in each iteration step itr. For solving the linear
LS problems in each iteration step an iterative version of
the QR decomposition (QRD) [12] is applied in this paper.
Instead of annihilating the lower diagonal elements during
the QRD, CORDIC-based approximate rotations are used. By
choosing the accuracy of the approximation, e.g. by choosing
itg (itg = 1, 2, · · · , itgmax) optimal CORDIC angles per
rotation, the LS computation can be simplified. However, we
only obtain an approximate solution to the LS problem, whose
accuracy depends on itg. The accuracy of the positioning
results of GPS and DGPS methods is compared for varying
numbers of iterations of the positioning algorithms and varying
numbers of iterations of the iterative QRD using real GPS data.
The results show that very coarse approximations are sufficient
for obtaining a reasonable position estimate. Therefore, the
presented methods reduce the computational complexity and
the required power consumption significantly.

The remainder of this paper is organized as follows. GPS
and DGPS positioning are introduced in Sec. II resulting in
an algorithm, which requires the solution of LS problems
in each iteration. For solving these LS problems an iterated
version of the QRD is presented in Sec. III using CORDIC-
based approximate rotations. The trade-off between iteration
of the positioning method and iteration of the iterative QRD is
investigated in Sec. IV, where experimental results are given
using real GPS data. The paper finishes with a conclusion and
an outlook to the future work in Sec. V.



Fig. 1. Pseudoranges: the distance from satellites to GPS receiver

II. GPS POSITIONING

The whole GPS positioning procedure includes three tasks:
acquisition, tracking and positioning [13]. The acquisition
searches for satellites and gets their positions. It gives rough
estimates of signal parameters. Tracking keeps track of these
parameters as the signal properties change over time. After
tracking, the navigation data can be extracted and pseudor-
anges (measured distance from satellites to GPS receiver) can
be computed. The final task of the receiver is to compute the
user position.

The GPS satellites’ arrangement ensures that every point
on our planet is in contact with at least six satellites at all
times. Each satellite k continuously broadcasts a digital radio
signal that includes its position (Xk, Y k, Zk) and its time tk.
Onboard atomic clocks ensure an accurate time to a billionth
of a second. The radio signal of a satellite spreads with
c = 3 ∗ 108m

s in universe, the velocity of light in vacuum.
GPS receivers measure the time delay τk of the signal from
each satellite k to the receiver, so τk = t− tk, where t is time
of receiver. The measurement of t in the receiver is not very
accurate (as compared to the satellite time tk). Furthermore
the speed of the radio signal from the satellites is smaller
than c because of ionosphere and troposphere. Therefore
the measured distance from the satellite to the receiver P k,
measured by P k = τk · c, is a rough distance estimate
called ’Pseudorange’ (see Fig. 1). The receiver simultaneously
collects these measurements from at least four satellites and
processes them to solve for position and time measurement
error.

A. Observation Equation

The most commonly used algorithm for position compu-
tation from pseudoranges is based on the LS method. This
method is used to find the receiver position from pseudoranges
to four or more satellites.

The basic observation equation for the pseudorange P k is

P k = ρk + c(dt− dtk) + T k + `k + ek. (1)

ρk is the geometrical range between satellite k and receiver,

Fig. 2. Observed pseudoranges Pk and geometrical pseudoranges ρk

which can be computed as:

ρk =
√

(Xk −X)2 + (Y k − Y )2 + (Zk − Z)2 (2)

where (X, Y, Z) is the position of receiver (see Fig. 2). dt
denotes the receiver clock offset and dtk is the satellite clock
offset. From the ephemerides, which also include information
on the satellite clock offset dtk, the position of the satellite
(Xk, Y k, Zk) can be computed. T k is the tropospheric
error and `k is the ionospheric error. These two errors are
computed from a priori models, whose coefficients are part of
the broadcast ephemerids. ek is the observation error of the
pseudorange. Therefore, Eq. 1 contains four unknowns X,Y, Z
and dt. The error terms are minimized by using the LS method.

(2) is nonlinear with respect to the receiver position
(X, Y, Z), therefore the nonlinear term in (2):

f(X, Y, Z) =
√

(Xk −X)2 + (Y k − Y )2 + (Zk − Z)2
(3)

is linearized. Starting from an initial position for the receiver
(X1, Y1, Z1), the position estimate is improved iteratively.
The center of the Earth (0, 0, 0) can be chosen as the
initial point, if no a-priori-information (as e.g. from AGPS)
is available. Let itr be the number of the iterations (itr =
1, 2, · · · , itrmax). The increments ∆Xitr, ∆Yitr, ∆Zitr
update the receiver coordinates as follows:

Xitr+1 = Xitr + ∆Xitr,

Yitr+1 = Yitr + ∆Yitr, (4)
Zitr+1 = Zitr + ∆Zitr.

The Taylor expansion of f(Xitr+∆Xitr, Yitr+∆Yitr, Zitr+
∆Zitr) is

f(Xitr+1, Yitr+1, Zitr+1) = f(Xitr, Yitr, Zitr) (5)

+
∂f(Xitr, Yitr, Zitr)

∂Xitr
∆Xitr

+
∂f(Xitr, Yitr, Zitr)

∂Yitr
∆Yitr

+
∂f(Xitr, Yitr, Zitr)

∂Zitr
∆Zitr



(5) includes only first-order terms, and the partial derivatives
are

∂f(Xitr, Yitr, Zitr)
∂Xitr

= −X
k −Xitr

ρkitr
∂f(Xitr, Yitr, Zitr)

∂Yitr
= −Y

k − Yitr
ρkitr

∂f(Xitr, Yitr, Zitr)
∂Zitr

= −Z
k − Zitr
ρkitr

Let ρkitr =
√

(Xk −Xitr)2 + (Y k − Yitr)2 + (Zk − Zitr)2
be the range computed from the satellite position
(Xk, Y k, Zk) to the approximate receiver position
(Xitr, Yitr, Zitr), so the first-order linearized observation
equation becomes

P kitr = ρkitr −
Xk −Xitr

ρkitr
∆Xitr −

Y k − Yitr
ρkitr

∆Yitr

−Z
k − Zitr
ρkitr

∆Zitr + c(dtitr − dtk) + T kitr + `kitr + ekitr. (6)

where dtitr is the estimated clock error for iteration itr at the
receiver.

B. Applying Least-Squares Method

(6) can be rewritten as

[
−X

k−Xitr

ρk
itr

− Y k−Yitr

ρk
itr

− Zk−Zitr

ρk
itr

+ 1
]

∆Xitr

∆Yitr
∆Zitr
cdtitr


= P kitr − ρkitr + cdtk − T kitr − `kitr − ekitr. (7)

A unique solution can not be found from a single equation.
Therefore m ≥ 4 satellites are required to form a system of
linear equations (usually m ≥ 6 satellites are available). Let
bkitr = P kitr − ρkitr + cdtk − T kitr − `kitr − ekitr and bitr =
[b1itr, b

2
itr, · · · , bmitr]T . Then we obtain the LS problem:

minxitr ||Aitrxitr − bitr||2, (8)

where

Aitr =



−X
1−Xitr

ρ1itr
−Y

1−Yitr

ρ1itr
−Z

1−Zitr

ρ1itr
1

−X
2−Xitr

ρ2itr
−Y

2−Yitr

ρ2itr
−Z

2−Zitr

ρ2itr
1

−X
3−Xitr

ρ3itr
−Y

3−Yitr

ρ3itr
−Z

3−Zitr

ρ3itr
1

...
...

...
...

−X
m−Xitr

ρm
itr

−Y
m−Yitr

ρm
itr

−Z
m−Zitr

ρm
itr

1


and xitr = [∆Xitr ∆Yitr ∆Zitr cdtitr]T . The solution
∆Xitr, ∆Yitr, ∆Zitr has to be added to the approxi-
mate receiver position to get the next approximate posi-
tion as in (4). These iterations continue until the solution
∆Xitr, ∆Yitr, ∆Zitr is at meter level.

For solving (8) we need to find x̂itr which minimizes
the length of the error vector êitr = bitr − Aitrx̂itr with
||eitr||2 = (bitr − Aitrxitr)T (bitr − Aitrxitr) the sum of

Fig. 3. Differential GPS positioning

squares of the m separate errors. Minimizing this quadratic
gives the normal equations

AT
itrAitrx̂itr = AT

itrbitr ⇒ x̂itr = (AT
itrAitr)−1AT

itrbitr
(9)

and the error vector is

êitr = bitr −Aitrx̂itr. (10)

There are various algorithms for solving LS problems [14]. In
the subsequent section, we use the QRD by Givens rotations.

C. Differential GPS

Stand-alone GPS will disappear in smartphones, since the
wireless carriers can communicate information to the receiver.
DGPS is introduced briefly here. It can do the positioning
faster, more precisely and with lower power consumption.
This improves performance and decreases battery strain. In
DGPS method, the accuracy of GPS calculation is increased by
simultaneously taking GPS observation at two locations (see
Fig. 3), which have identical geometric dilution of precision.
Then, the correction of pseudoranges at unknown location is
done by using the measured-pseudorange-errors at the known
position (reference receiver). The connection from cell phone
to the base stations is usually available and the position of base
station is known. Base station with known coordinates can
be used as a reference receiver. Usually DGPS is applied for
obtaining very accurate position estimates. However, if GPS
position accuracy is sufficient, we can also apply DGPS in
order to simplify the implementation of the receiver (hardware
or software). In Sec. IV we will show experimental results,
which support this argument. The algorithms used for GPS
positioning can also be applied for DGPS. More details can
be found in [11] [15].

III. ITERATIVE SOLUTION OF LS

In each iteration of the positioning algorithm a LS problem
must be computed. Since the pseudoranges are subject to
measurement errors and the convergence (number of required
iterations) of the algorithm depends on the accuracy of these
LS solutions, it is worthwhile to investigate the use of an
iterative LS solver and the trade-off between the number



of iterations of the positioning method and the number of
iterations of the iterative LS solver.

The iterative version of the QR decomposition (QRD)
presented in [12] is used for the iterative solution of (8), since
it is well suited for hardware implementation, suitable for the
adaption to measurement errors (pseudoranges), and yields a
solution vector which converges linearly to the exact solution.
Here we will briefly review this iterative QRD.

The QR decomposition of a m×n matrix A = Q ·R can be
computed by applying a sequence of Givens rotations G(φij)
(φij = arctan(aij/ajj)) to the matrix such that the matrix
entries below the diagonal of A are annihilated, i.e. generate
a′ij = 0 for

(i, j) = {(2, 1)(3, 1) . . . (m, 1)(3, 2) . . . (m, 2) (11)
. . . (n+ 1, n) . . . (m,n)}.

The resulting matrix is upper triangular and denoted by R. The
product of all required Givens rotations forms the orthogonal

matrix QT =
n∏
j=1

m∏
i=j+1

G(φij) such that

minw‖Ax− b‖2 = minx‖Rx−QTb‖2 (12)

and the solution x can be computed by back substitution.
One iteration of the iterative version of the QRD works

exactly like the QRD but instead of using exact rotations
G(φij) that annihilate aij (a′ij = 0) CORDIC–based ap-
proximate rotations are used resulting in |a′ij | = |d||aij |
with 0 ≤ |d| < 1. The CORDIC–based approximate Givens
rotations are computed by determining the shift value `,
` ∈ {0, 1, 2, . . . , w} (w wordlength) corresponding to the
CORDIC angle φij(`) = arctan 2−` which is closest to the
exact rotation angle φij . Instead of annihilating the matrix
elements during the course of the QRD an approximate
rotation will only reduce the matrix elements by the maximal
factor possible with itg specific CORDIC angles φij(`). This
CORDIC–based approximate rotation is applied to the QRD
for solving LS problems. Since the matrix elements below
the diagonal are no longer annihilated the QRD procedure
using CORDIC–based approximate rotations must iteratively
be applied until the matrix is ultimately upper triangular. One
obtains iterative versions of the QRD distinguished by itg,
which determines the accuracy of the approximation of the
rotations.

Defining the lower diagonal quantity for iteration itg:

S(itg) =
n∑
j=1

m∑
i=j+1

(
a
(itg)
ij

)2

(13)

the above algorithm guarantees

lim
itg→∞

S(itg) → 0

which is equivalent to

lim
itg→∞

A(itg) → R and lim
itg→∞

QT (itg) → QT

When we apply this method to the LS problems, which must
be solved for positioning in (8), very few steps, i.e. itg � w,

of the CORDIC–based approximate rotation are sufficient to
obtain similar results as using exact rotations. This yields a
significant reduction in computational complexity by itg/w
(we will show in the following section for real GPS data
that even itg = 1 gives reasonable results). Furthermore, this
method only requiring shift and add operations is very well
suited for hardware implementation.

IV. EXPERIMENTAL RESULTS

A. GPS raw data collection

For GPS positioning, a SiGe GN3S Sampler v2 is used to
capture the raw GPS data, which are low level signal data (raw
intermediate frequency samples) being delivered by the GPS
satellite network and processed by the SiGe radio front end
[16]. Each GPS satellite continuously broadcasts a navigation
message at a rate of 50 bits per second.

For DGPS positioning, raw GPS data are captured at two
measurement points with distance about 500 meters simul-
taneously. At each measurement point, one SiGe GN3S is
used. Then, the satellites’ positions and the measured pseudo-
ranges can be obtained, which are required for the positioning
method.

The obtained raw GPS data at each measurement point
includes information of m = 7 satellites with matched pseu-
doranges. 78 raw GPS data records are gained. Afterwards
position calculation is done for both GPS and DGPS for
various numbers of required iterations itr (see Sec. II) and
various approximation accuracies itg (see Sec. III).

B. Experimental results

Before looking at the experimental results, we note, that
our GPS raw data are worse than the data from standard
GPS receivers. We have also turned off correction algorithms
(troposphere correction, ionosphere correction and satellite

TABLE I
MEAN VALUE OF POSITION-ACCURACY RESULTS (IN METER) BY GPS

AND DGPS WITH EXACT LS METHOD AND CORDIC-BASED
APPROXIMATE ROTATIONS

itr itg GPS-itr GPS-itg DGPS-itr DGPS-itg

2

1

1241.4

1282.8

1275.2

1368.8
2 1256.6 1280.6
3 1246.1 1280.4
8 1241.4 1275.2
9 1241.4 1275.2

3

1

38.484

85.756

12.582

19.432
2 47.744 16.208
3 39.020 12.605
8 38.484 12.582
9 38.484 12.582

4

1

32.472

81.495

8.385

16.762
2 35.452 11.245
3 32.985 9.353
8 32.472 8.385
9 32.472 8.385

5

1

32.472

81.495

8.385

16.762
2 35.452 11.245
3 32.985 9.353
8 32.472 8.385
9 32.472 8.385
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Fig. 4. Positioning results (in meter) with GPS method

correction). This was done in order to emphasize that even
under these circumstances, DGPS can provide an accuracy
comparable to standard GPS. Therefore, of course the accuracy
of GPS will be much worse than we expect from GPS
receivers. However this demonstrates that in future smart-
phones using DGPS (whenever there is a connection to a base
station), it is possible to reduce the requirements significantly
(specification of front end, computational effort).

The mean values of the positioning results for the 78
measurements are presented in Tab. I. The calculated positions
are compared with the exact positions (known coordinates at
the measure points from land surveying office in Bochum
Germany) and the accuracy of the positioning results of GPS
and DGPS methods for varying itr and itg is compared.
The number of required iterations itr is at least two. The
second column itg in Tab. I is the approximation accuracy
in QRD. Fig. 4 and Fig. 5 show the position estimates of GPS
positioning. Fig. 6 and Fig. 7 show these results of DGPS
positioning.

1) Results of GPS method: In Tab. I the 3rd column
GPS − itr is the accuracy of GPS positioning with exact
LS method and the 4th column GPS− itg is the accuracy of
GPS positioning using QRD with CORDIC-based approximate
rotations for solving LS problems. The results show that with
the increasing number of iterations in QRD, the accuracy of
GPS − itg also increases. If itg ≥ 8, the accuracy of the
exact LS method is achieved. Especially, if itr is big enough,
e.g. itr ≥ 3, only two iterations in QRD itg = 2 is required
to compute the position with reasonable positioning accuracy,
which means very coarse approximations are sufficient.

The position estimates of 78 measurements are shown in
Fig. 4. GPS position with exact LS (black circles), its mean
value (black cross), GPS position using iterative QRD with
itg = 1 (blue stars), its mean value (blue cross), GPS position
using iterative QRD with itg = 3 (green squares), its mean
value (green cross) and the exact position (red cross) are shown
in the figure. All the position results are considered as accuracy
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Fig. 5. Enlarged positioning results (in meter) with GPS method

of position, i.e. the position estimates subtracted by the exact
position (so the exact position is set to (0, 0)).

Fig. 5 is an enlarged part of Fig. 4. It is obvious to notice
that GPS position using QRD with itg = 3 (the green squares)
are more closer to GPS position with exact LS (black circles)
than GPS position using QRD with itg = 1 (blue stars). If
the number of iterations in QRD increases, i.e itg increases,
the position results will become more and more similar to the
results of exact LS. The mean value of itg = 3 is almost the
same as the mean value of exact LS (green cross is almost at
the same position as black cross in Fig. 5).

2) Results of DGPS method: In Tab. I the 5th column
DGPS − itr is the accuracy of DGPS positioning with
exact LS method and the 6th column DGPS − itg is the
accuracy of DGPS positioning using QRD with CORDIC-
based approximate rotations for solving LS problems. The
results show that with the increasing number of iterations in
QRD, the accuracy of DGPS− itg also increases. If itg ≥ 8,
the accuracy of the exact LS method is achieved. Especially,
if itr is big enough, e.g. itr ≥ 3, only one iteration in QRD
itg = 1 is required to compute the position with reasonable
positioning accuracy, which means very coarse approximations
are again sufficient in DGPS positioning.

Fig. 7 is an enlarged part of Fig. 6. It is also obvious to
notice that DGPS position using QRD with itg = 3 (the green
squares) are closer to DGPS position using exact LS (black
circles) than DGPS position using QRD with itg = 1 (blue
stars). If the number of iterations itg in QRD increases, the
position results will become more and more similar to the
results of exact LS. The mean value of itg = 3 is almost the
same as the mean value of exact LS (green cross is almost at
the same position as black cross in Fig. 7).

Finally, we notice that even for low-cost front ends, turned-
off correction procedures and small itg, the accuracy of DGPS
is about 10m (i.e. what we usually expect from high-end GPS
receivers). Therefore the presented DGPS − itg method is
suitable for LBS using very small itg. Furthermore it is even
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possible to adapt the positioning accuracy by choosing itr and
itg.

V. CONCLUSION

An iterative LS approach and an iterative version of the
QRD using CORDIC-based approximate rotation are applied
to position computation. The accuracy of the positioning
results of GPS and DGPS methods is compared for various
numbers of required iterations itr and various approximation
accuracies itg of CORDIC-based approximate rotations by
using real GPS data. It is shown that a significant reduction
concerning computational complexity and hardware require-
ments can be obtained. Furthermore, this method only requir-
ing shift and add operations is very well suited for hardware
implementation.

The presented method is very efficient for the implementa-
tion of the standard triangulation method based on non-linear
LS. In future work we apply this idea to recursive computa-
tions of the position estimates using Orthogonal DGPS [17]
and Kalman Filter based recursive GPS algorithms [18]. In the
first case no iterative LS method is required for positioning
which leads to further reduction of the computational effort
and the power consumption. In the second case using the
square root version of the Kalman filter [19] QRD can be
applied and the required approximation accuracy (number of
itg) can be investigated to obtain desired position accuracy.
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