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Abstract. An approximate algorithm to efficiently solve the k-Closest-Pairs problem on large high-
dimensional data sets is presented. The algorithm runs, for a suitable choice of the input parameters,
in O(d2nk) time, where d is the dimensionality and n is the number of points of the input data set,
and requires linear space in the input size. It performs at most d + 1 iterations. At each iteration a
shifted version of the data set is sequentially scanned according to the order induced on it by the
Hilbert space filling curve and points whose contribution to the solution has already been analyzed
are detected and eliminated. The pruning is lossless, in fact the remaining points along with the
approximate solution found can be used for the computation of the exact solution. If the data set is
entirely pruned, then the algorithm returns the exact solution. We prove that the pruning ability of the
algorithm is related to the nearest neighbor distance distribution of the data set and show that there
exists a class of data sets for which the method, augmented with a final step that applies an exact
method to the reduced data set, calculates the exact solution with the same time requirements.

Although we are able to guarantee a O(d1+1/t ) approximation to the solution, where t ∈
{1, 2, . . . , ∞} identifies the Minkowski (Lt ) metric of interest, experimental results give the exact k

closest pairs for all the large high-dimensional synthetic and real data sets considered and show that
the pruning of the search space is effective. We present a thorough scaling analysis of the algorithm
for in-memory and disk-resident data sets showing that the algorithm scales well in both cases.

Mathematics Subject Classification (2000): 68W25.

Key words: k-Closest-Pairs problem, Space Filling Curves, approximate algorithms.

1. Introduction

In recent years, there has been an increasing interest in finding efficient solutions to
proximity problems in high-dimensional spaces. The k-Closest-Pairs problem is an
example of this class of problems. Given a set D of n points in R

d and an integer
k, 1 � k � n(n − 1)/2, it consists in finding the k closest pairs of point of D
under a given metric. Proximity problems have traditionally been studied in com-
putational geometry but, in the last few years they received considerable attention
in other fields such as statistics [20], pattern recognition [2, 15], spatial databases
[12, 21, 40] and data mining [31]. When the dimension, d, of the search space is
low or it is considered as a constant, very efficient solutions [5, 14, 25, 28, 32, 33] to
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the k-Closest-Pairs problem have been found. However a thorough analysis reveals
that the time requirements of these algorithms depends exponentially on d [29]. As
a consequence, when the dimensionality, d, is a component of the input, the brute
force approach, i.e. computing the distances of all the pairs of points and reporting
the smallest ones, can outperform such methods, even for very small values of
d. Thus, when d grows, the solution of the problem can be very time expensive.
The applications related to the above mentioned fields could require a number of
features of several hundreds. The brute force approach, on the other hand, takes
time quadratic in the size of the data set, which is prohibitive for data sets with
more than hundred thousands of points. The lack of efficient algorithms when the
dimension is high is known as the “curse of dimensionality” [7]. An approach
adopted to overcome this problem is based on being satisfied with an approximate,
but faster, solution, considering that many of the aforementioned applications do
not necessarily require exact solutions [4, 19, 22, 23].

In this paper we present an approximate algorithm to solve the k-Closest-Pairs
problem. The method, named ASP, Approximate k-closest-pairs with SPace-filling
curves, is based on the dimensionality reduction of the space R

d through a space
filling curve, the Hilbert curve, and exploits the order induced on the space R

d by
the Hilbert curve. It performs at most d + 1 sorts and scans of the data set by using
shifted copies of the input data set.

Our approach makes use of a property that allows us to eliminate early those
points whose contribution to the solution has already been analyzed. At each itera-
tion, after the mapping of the d-dimensional points into one dimensional ones, the
points are examined with respect to the order induced by the space filling curve.
By exploring the 2m (m predecessors and m successors) nearest neighbors in the
one-dimensional space of each point p, we are able to determine, among such 2m

points, the true l � 2m nearest neighbors of p in the d-dimensional space and to
establish a lower bound to the distance from p to its (l + 1)-th nearest neighbor.
Such a property allows us to detect the points that do not need to be considered any
more and thus that can be discarded. The pruning of the search space is lossless,
that is the remaining points along with the approximate solution found can be used
for the computation of the exact solution.

The main contributions of this work can be summarized as follows:

• We define a general property related to space-filling curves, that we employ
to solve the k-Closest-Pairs problem, but that can be exploited to solve other
proximity problems.

• We give an approximate algorithm to efficiently solve the k-Closest-Pairs
problem on large, high-dimensional data sets, that performs no more than
d + 1 sorts and scans of the input data set in at most O(d2nk) time, for a
suitable choice of the input parameters, and requires O(dn + k) space (we
note that dn is the size of the input data set).
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• The algorithm is able to eliminate points from the data set after each scan.
The pruning of the search space is lossless, thus the introduced approximate
algorithm could constitute a fast preprocessing step for an exact algorithm.

• Although the algorithm is approximate, and guarantees an O(d1+1/t ) approx-
imation to the solution, if the data set is entirely pruned, then we are able
to state that the returned solution is the exact one. Furthermore, we prove
that the pruning ability of the algorithm is related to the nearest neighbor
distance distribution of the data set and show that there exists a class of data
sets for which it is possible to obtain the exact solution in O(d2nk) time by
augmenting the ASP algorithm with a final step that applies an exact method
(like the brute force) to the pruned data set.

• The experimental results (a) give quickly the exact closest pairs for all the
considered synthetic and real high-dimensional data sets and for different
values of k, (b) confirm that the pruning of the search space is effective, that
is the size of the data set at the end of the algorithm is significantly reduced,
and (c) show that the algorithm outperforms brute force enumeration by some
order of magnitude and that it guarantees a better approximation quality than
related approaches.

• We present a thorough scaling analysis of the algorithm for in-memory and
disk-resident synthetic data sets showing that the algorithm scales well with
the data set size, both in memory and disk-resident, as well as with the dimen-
sion.

This work enhances that presented in [3] by giving detailed proofs of the stated
properties of the algorithm ASP, by extending ASP for not-in-memory data sets,
and by presenting an accurate scaling analysis for in-memory and disk-resident
synthetic data sets.

The paper is organized as follows. The next section gives an overview of space
filling curves. Section 3 gives the definitions and the properties necessary to intro-
duce the method. Section 4 presents the algorithm. Section 5 extends the method
when the data set does not fit in main memory. Section 6 gives an overview of
existing and related approaches for the solution of the k-Closest-Pairs problem.
In Section 7 experimental results on several data sets and a comparison with the
algorithm proposed in [29] are reported.

2. Space Filling Curves

The concept of space-filling curve arose in the 19-th century and is accredited to
Peano [35] who, in 1890, proved the existence of a continuous mapping from the
interval I = [0, 1] onto the square Q = [0, 1]2, thus settling a question posed
almost ten years before about the existence of a curve that passes through every
point of a closed unit square. Curves of this type are called Peano curves or space-
filling curves. More formally,
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Figure 1. The Hilbert space-filling curve.

DEFINITION 2.1. Let Ed denote the d-dimensional Euclidean space. If a map-
ping f : I → Ed , d � 2, is continuous and the image f (I ) of I under f has
positive Jordan content (area for d = 2, volume for d = 3), then f (I ) is called a
space-filling curve.

Peano discovered the first space-filling curve, but it was Hilbert in 1891 who de-
fined a general procedure to generate an entire class of space-filling curves. Hilbert
observed that if the interval I can be mapped continuously onto the square Q then,
after partitioning I into four congruent subintervals and Q into four congruent sub-
squares, each subinterval can be mapped onto one of the sub-squares. Sub-squares
are ordered such that each pair of consecutive sub-squares share a common edge. If
this process is continued ad infinitum, I and Q are partitioned into 22h replicas for
h = 1, 2, 3, . . . . Figure 1 shows the first three steps of this process. Sub-squares
are arranged so that the inclusion relationships and adjacency property are always
preserved.

DEFINITION 2.2. Let D be [0, 1]d and fh : I → D, be a mapping such that
every point x ∈ I is uniquely determined by a sequence of nested closed intervals
(generated by the above defined partitioning) the length of which shrinks to zero
and to this sequence corresponds a unique sequence of nested closed hypercubes,
the diagonal of which shrinks into a point, the image fh(x) of x, then fh(I ) is
called the Hilbert curve [35].

It has been proved that fh(I ) is a space-filling curve. In practical applications
the partitioning process is terminated after h steps to give an approximation of a
space-filling curve of order h. For h � 1 and d � 2 let Hd

h denote the h-th order
approximation of a d-dimensional Hilbert space-filling curve that maps 2hd subin-
tervals of length 1/2hd into 2hd sub-hypercubes whose centre-points are considered
as points in a space of finite granularity. The Hilbert curve, thus, passes through
every point in a d-dimensional space once and once only in a particular order.
This establishes a mapping between values in the interval I and the coordinates
of d-dimensional points. Let p be a d-dimensional point in D. The inverse image
f −1

h (p) of p is called its Hilbert value and is denoted by H(p). Let D be a set
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of n points in D. These points can be sorted according to the order in which the
curve passes through them. We denote by H(D) the set {H(p) | p ∈ D} sorted
with respect to the order relation induced by the Hilbert curve. Given a point p

the predecessor and the successor of p, denoted Hpred(p) and Hsucc(p), in H(D)

are thus the two closest points with respect to the ordering induced by the Hilbert
curve. The m-th predecessor and successor of p are denoted by Hpred(p, m) and
Hsucc(p, m).

Space filling curves have been studied and used in several fields [1, 17, 18, 24,
30, 39]. A useful property of such a mapping is that if two points x1 and x2 from the
unit interval I are close then the corresponding images p = fh(x1) and q = fh(x2)

are close too in the hypercube, D, in particular, if

|x1 − x2| � 2−(h+1)d

then

max{|pi − qi | : 1 � i � d} � 2−h.

The reverse statement, however, is not true because two close points in D can have
non-close inverse images in I . This implies that the reduction of dimensionality
from d to one can provoke the loss of the property of nearness. In order to preserve
the closeness property, approaches based on the rotation and/or translation (shift)
of the hypercube D along the main diagonal with a fixed displacement have been
proposed [29, 37, 39]. Such approaches assure the maintenance of the closeness of
two d-dimensional points, within some factor, when they are transformed into one-
dimensional points. In particular, in [39] it is showed that if we consider the interval
[0, L], where L is a fixed constant and represents the degree of approximation
desired, and a family of hypercubes Dl , 1 � l � L, such that each hypercube Dl is
obtainable by the translation of the hypercube Dl−1 along the main diagonal with
displacements 2−l in each coordinate, then two d-dimensional points that coincide
in all coordinates but one, and for this coordinate the difference does not exceed
2−p, have at least two inverse images whose distance is less than 2−pd , where
p depends on L. A similar approach is described in [29], in this case, however,
the number of shifts depends on the dimension d. Given a data set D and the
d-dimensional vector

v(j) =
(

j

d + 1
, . . . ,

j

d + 1

)
∈ R

d

each point p ∈ D can be translated d + 1 times along the main diagonal obtaining
points p(j) = p + v(j), for j = 0, . . . , d. The shifted copies of points thus belong
to [0, 2]d and, for each point, d + 1 Hilbert values in the interval [0, 1] can be
computed. Figure 2 shows the three shifted copies of a two-dimensional data set.
Notice that the two close points p and q are far along the order induced by the
Hilbert curve on the first copy of the data set. However, they are close along the
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Figure 2. Shifts of a two-dimensional data set.

same order induced on the second copy. In this paper we make use of this family
of shifts to overcome the loss of the nearness property.

In the next section we define a basic property exploited in the algorithm and
give preliminary definitions necessary to introduce the method.

3. Preliminaries

In this section we give preliminary definitions and notations used in the paper,
and we state the property, coming from space-filling curves, necessary to show
the correctness of our algorithm. Although in the following we refer always to
the Hilbert curve, the algorithm can be applied with other space-filling curves. We
preferred the Hilbert curve because it has been shown to preserve locality better
than other curves [30]. Without loss of generality, we assume that the given data
set D has been normalized so that it is constituted by points in D = [0, 1]d . The
original and the shifted data points thus belong to [0, 2)d , hence in the following
we consider data sets on [0, 2)d . Furthermore we fix the value h of the h-th order
approximation of the Hilbert curve Hd

h . Notice that the Hilbert value H(p) of a
point p in [0, 2)d can be represented as a bit-string of length hd, i.e. as an integer
in the interval [0, 2hd) which, in turn, uniquely identifies a real in [0, 1).

DEFINITION 3.1. Given a set D of n points in R
d and an integer k, 1 � k �

n(n − 1)/2, the k-Closest-Pairs (CPk) problem consists of finding the k closest
pairs of D under the Lt metric.

For t � 1, the Lt distance dt (p, q) between two points p = (p1, . . . , pd) and
q = (q1, . . . , qd) is defined as

dt (p, q) =
(

d∑
i=1

|pi − qi |t
)1/t

for 1 � t < ∞ and max1�i�d |pi − qi | for t = ∞.
In the following we denote by CPk(D) the output of the CPk problem on an

input data set D .



APPROXIMATE k-CLOSEST-PAIRS IN LARGE HIGH-DIMENSIONAL DATA SETS 155

DEFINITION 3.2. An r-region is an open ended hypercube in [0, 2)d with side
length of r = 21−s having the form

∏d−1
i=0 [air, (ai +1)r), where each ai , 0 � i < d,

and s are in N.

Notice that every r-region contains one and only one contiguous segment of a
space filling curve.

DEFINITION 3.3. Given a point p and other two points q1 and q2, we denote by
MaxReg(p, q1, q2) the side r of the greatest r-region containing p but neither q1

nor q2.

MaxReg(p, q1, q2) can be calculated in time O(d) by working on the bit-string
representation of H(p), H(q1), and H(q2).

DEFINITION 3.4. Let p be a point, and let r be the side of a r-region. We denote
by MinDist(p, r) the value

min
i=1,...,d

{mod(pi, r), r − mod(pi, r)}

where mod(x, r) = x − �x/r�r , and pi denotes the value of p along the i-th
coordinate.

Hence MinDist(p, r) is the distance from the point p to the nearest face of the
given r-region.

DEFINITION 3.5. Let p be a point in R
d , and let r be a non-negative real. We

define B(p, r) as the set of points whose distance from p is less than or equal to
r , i.e. B(p, r) = {q ∈ R

d | dt (p, q) � r}.
DEFINITION 3.6. Let D be a data set, p a point in D and m be a positive integer.
The m-nearest-neighbor of p in D , written NND

m (p), is a point q such that there
exist m− 1 points q1, . . . , qm−1 with dt (p, q1) � dt (p, q2) � · · · � dt (p, qm−1) �
dt (p, q) and for each x ∈ D, x �= p, qi, i = 1, . . . , m, dt (p, x) � dt (p, qi).

DEFINITION 3.7. Given a data set, D , a point p of D , and a positive integer,
m, the interval IH (p, m) ⊆ D of the 2m points that precede and follow p in the
Hilbert order is denoted by

IH (p, m) = {qm, qm−1, . . . , q1, s1, . . . , sm−1, sm |
qm = Hpred(p, m), . . . , q1 = Hpred(p, 1),

s1 = Hsucc(p, 1), . . . , sm = Hsucc(p, m)}.
The following lemma allows us to determine, among such 2m points, the exact

l � 2m − 2 nearest neighbors of p, i.e. NND
1 (p), . . . , NND

l (p), and to establish a
lower bound to the distance from p to the (l + 1)-th nearest neighbor NND

l+1(p).
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Figure 3. An example of application of Lemma 3.1 with m = 3.

LEMMA 3.1. Given a data set D , a point p of D , a positive integer m and the
interval IH (p, m), let rb = MaxReg(p, qm, sm), rn = MinDist(p, rb), and Sn =
IH (p, m) ∩ B(p, rn). Then

(1) The points in Sn are the true first |Sn| nearest-neighbors of p in D;
(2) dt (p, NND

|Sn|+1(p)) > rn.

Proof. First, we note that, for each r-region, the intersection of the Hilbert space-
filling curve, with the r-region results in a connected segment of the curve. Hence,
to reach the points Hpred(p, m) and Hsucc(p, m) from p following the Hilbert
curve, we surely walk through the entire r-region of side rb containing p.

As the distance from p to the nearest face of its rb-region is rn, then B(p, rn)

is entirely contained in that region. It follows that the points in Sn are all and the
only points of D placed at a distance not greater than rn from p. Obviously, the
(|Sn| + 1)-th nearest-neighbor of p has a distance greater that rn from p. �

Figure 3 shows an example of application of Lemma 3.1, and shows the rb-
region, the distance rn, and B(p, rn), for m = 3.

In the next section we describe the algorithm ASP.

4. Algorithm

In this section we give the description of the ASP algorithm. The method does at
most d + 1 sorts and scans of the input data set. During each scan it works on
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ASP (D = {p1, . . . , pn}, k, m, h)
{

Init(QCP, k);
for (i = 1; i � n; i++) {

Fi.point = pi ;
Fi.lb = 0;

}
j := 0;
while (F �= ∅ && j � d) {

Hilbert(F, h, v(j));
Scan(F, v(j), m|F |/n, QCP);
Prune(F, Max(QCP));
j := j + 1;

}
return P (QCP);

}

Figure 4. The algorithm ASP.

a shifted version of the data set. Exploiting the property defined in Lemma 3.1,
at each iteration, it eliminates those points that do not need to be considered any
more. This pruning of the search space allows us to obtain a fast and efficient
approximate algorithm for the k-Closest-Pairs problem in high-dimensional spaces,
as experimental results show in Section 7.

We recall that with the notation v(j) we denote a d-dimensional vector

v(j) =
(

j

d + 1
, . . . ,

j

d + 1

)
∈ R

d .

Before starting with the description, we introduce the concept of point feature that
contains, for each point of the input data set, its Hilbert value and a value that
represents the radius of the maximum d-dimensional neighborhood explored.

DEFINITION 4.1. A point feature f is a triple 〈point, hkey, lb〉, where point
is a point in [0, 2)d , hkey is the Hilbert value associated to point in the h-th or-
der approximation of the d-dimensional Hilbert space-filling curve mapping the
hypercube [0, 2)d into the integer set [0, 2hd), and lb is a distance representing the
radius of the maximum d-dimensional neighborhood of point explored during the
execution of the algorithm.

In the following the notation f.point, f.hkey, and f.lb is used to the point, hkey,
and lb value of the point feature f , respectively.

The algorithm is reported in Figure 4. Two data structures are employed, a
priority queue, QCP, and a list of point features, F . QCP is a priority queue whose
elements are triples of the form 〈p, q, δ〉, where p and q are distinct points of the
input data set, and δ is the associated distance dt (p, q). Every triple contained in



158 FABRIZIO ANGIULLI AND CLARA PIZZUTI

Scan(F, v,M,QCP)

{
for (i = 1; i � |F |; i++) {

for (j = i + 1; j � i + M; j++) {
δ = dt (Fi .point, Fj .point);
Update(QCP, Fi .point, Fj .point, δ);

}
pl = Fi−M.point + v;
pr = Fi+M.point + v;
rb = MaxReg(Fi .point + v, pl, pr);
rn = MinDist(Fi .point + v, rb);
if (rn > Fi .lb)Fi .lb = rn;

}
}

Figure 5. The procedure Scan.

QCP is one of the nearest pairs met during the execution of the algorithm. F is a
list of point features, while Fi denotes the i-th element of the list F .

In the following we denote by P (QCP) the set {〈p, q〉 | 〈p, q, δ〉 ∈ QCP}, and
by P (F ) the set {〈p, q〉 | ∃f, g ∈ F : f �= g ∧ p = f.point ∧ q = g.point}.

The algorithm receives as input the data set D = {p1, . . . , pn}, the number k

of closest pairs to find, the number m of neighbors that the algorithm is allowed
to consider on the one-dimensional space (m predecessors and m successors), and
the order approximation h of the Hilbert space-filling curve. The procedure Init
initializes the priority queue QCP as an empty queue of size k, the number of closest
pairs to find. The initialization phase builds also the list F associated to the input
data set. The value of lb for each point feature of F is set to the value 0.

The main cycle, consists of at most d+1 steps. We explain the single operations
performed during each step of this cycle.

The Hilbert procedure calculates the h-th order approximation of the value
H(Fi.point + v(j)) of each point feature Fi of F , places this value in Fi.hkey,
and sorts the point features in the list F using as order key the values Fi.hkey.
Thus it performs the Hilbert mapping of a shifted version of the input dataset. It is
straightforward to note that the shift operation does not alter the mutual distances
between the points in F . As v(0) is the zero vector, at the first step (j = 0) no shift
is performed. Thus during this step we work on the original data set.

The procedure Scan is reported in Figure 5. To update the priority queue, QCP,
the procedure Update is employed. Update(Q, p, q, δ) modifies Q as follows:
unless the triple 〈p, q, δ〉 is already present in Q, if the size of Q is less than
the maximum size allowed (we recall that, in the case of the queue QCP, this size
is k, the number of closest-pairs we are searching for), then the triple 〈p, q, δ〉
is inserted in the queue Q. Otherwise, if δ is less than the maximum distance
associated to a triple in Q, then this triple is erased from Q and the triple 〈p, q, δ〉
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is inserted in Q. The procedure Scan performs a sequential scan of the list F .
For each point feature Fi , the distances between the point Fi.point and the points
Fi+1.point, . . . , Fi+M.point are calculated. At the same time the priority queue,
QCP, is updated through the procedure Update. After having examined the M point
features consecutive to Fi , the size, rn, of the greatest r-region containing Fi.point
but neither Fi−M.point nor Fi+M.point is calculated. Finally, if the value of rn is
greater than the value of Fi.lb already determined, this value is set to rn. Notice
that the parameter M of Scan is set to m|F |/n, i.e. it is inversely proportional to
the number of remaining point features in the list F . This allows the algorithm to
further examine the neighborhood of the remaining points maintaining at the same
time the number of distance computations performed in each iteration constant.

The procedure Prune deletes from F all the point features Fi such that Fi.lb �
Max(QCP) where Max(QCP) = max{δ | 〈p, q, δ〉 ∈ QCP}. Hence, the list of
features processed at the next step of the cycle is a subset (not necessarily proper)
of the current list.

The main cycle stops when F is an empty list or after at most d + 1 steps. This
terminates the description of the algorithm. the correctness of the algorithm. Now
we state the main property of the algorithm.

THEOREM 4.1. Let F and QCP be the current list of point features F and the
current priority queue QCP, then, during the execution of the ASP algorithm, the
following holds:

CPk(D) ⊆ P (QCP) ∪ P (F ).

Proof. We point out that the value of each Fi.lb (initially set to 0) is updated in
the procedure Scan with the value rn (see Figure 5), i.e. the distance from Fi.point
to the nearest face of the r-region containing itself but not its two furthest points
Fi−M.point and Fi+M .

Consider the first iteration (j = 0) of the algorithm, and the generic i-th main
iteration of the procedure Scan. As the M points preceding Fi.point are considered
in the M preceding main iterations of Scan (i.e. the iterations i − M, . . . , i − 1),
then by Lemma 3.1 it follows that all the points in F placed at a distance not greater
than rn from Fi.point were considered.

Once the scan of F is terminated, the procedure Prune deletes from F the point
features f having f.lb greater than Max(QCP). In QCP there are the top k closest
pairs among those examined. Thus, if f is eliminated by Prune, then there does
not exist a pair of points from D including f.point that, at the same time, belongs
to CPk(D) and was not examined.

Consider now a generic subsequent iteration (j > 0). Same considerations
apply, but this time some points from the original data set could be missing. From
the previous reasoning, all the pairs from D containing a point whose feature is
not in F and potentially belonging to the solution set CPk(D), were examined in
the previous iterations. Thus the property is guaranteed. �
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Figure 6. Approximation errors.

Theorem 4.1 proves the correctness of the algorithm. Furthermore, it establishes
that the pruning operated by ASP is lossless, that is the remaining points along
with the approximate solution found can be used for the computation of the exact
solution.

In the following with the notation F ∗ and Q∗
CP we refer to the value of the list

of point features F and of the priority queue QCP at the end of the ASP algorithm,
respectively. Moreover, we denote by εd the value 2d

1
t (2d + 1), and by δk the

distance between the two points composing the k-th closest-pair of points in D .
The following corollary gives the first important result regarding the algorithm,

i.e. when the list F ∗ is empty than we can assert that the solution returned is the
exact one.

COROLLARY 4.1. F ∗ = ∅ implies that CPk(D) = P (Q∗
CP).

Proof. The result follows immediately from Theorem 4.1. �
Now we give some definitions and results useful to state the approximation error

order for the value of δk guaranteed by the algorithm.

DEFINITION 4.2. A point p is α-central in an r-region iff for each i = 1, . . . , d,
we have αr � mod(pi, r) < (1 − α)r , where 0 � α < 0.5.

The following result is from [8].

LEMMA 4.1. Suppose d is even. Then, for any point p ∈ R
d and r = 2−m

(m ∈ N), there exists j ∈ {0, . . . , d} such that p + v(j) is ( 1
2d+2)-central in its

r-region.

The previous lemma states that if we shift a point p of R
d at most d + 1 times

in a particular manner, i.e. if we consider the set of points {p + v(0), . . . , p + v(d)},
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then, in at least one of these shifts, this point must become sufficiently central in an
r-region, for each admissible value of r . This assures that for any point p and its
closest q, in at least one of these shifts they will be in the same r-region.

As we use this family of shifts, we are able to state an upper bound for the
approximation error of the algorithm similar to that defined in [29], that employed
the same family of shifts.

THEOREM 4.2. Max(Q∗
CP) � εdδk.

Proof. Let {〈p1, q1〉, . . . , 〈pk, qk〉} be the set CPk(D), and let δi = dt (pi, qi),
for i = 1, . . . , k. From Lemma 4.1 it follows that, for each i = 1, . . . , k, there
exists an ri-region of side ri

4d+4 � δi < ri
2d+2 (this inequality defines the greatest

ri-region satisfying the following property) and an integer ji ∈ {0, . . . , d} such that
pi + v(ji ) is 1

2d+2 -central in the ri-region. Let p′
i = pi + v(ji ) and q ′

i = qi + v(ji ).
As a consequence B(p′

i , δi) is entirely contained in that region, and both p′
i and q ′

i

belong to the ri-region (see Figure 6(a)).
Notice that, as p′

i is 1
2d+2 -central in the ri-region, this implies that the distance

δ from p′
i and each point belonging to its ri-region is at most d

1
t (ri − ri

2d+2), i.e.

δ � d
1
t

2d+1
2d+2ri .

Let rmax = max{r1, . . . , rk}. If Max(Q∗
CP) � d

1
t

2d+1
2d+2rmax then each triple

〈p, q, δ〉 in Q∗
CP is such that δ � d

1
t

2d+1
2d+2(4d + 4)δk � εdδk.

Now we now show that Max(Q∗
CP) � d

1
t

2d+1
2d+2rmax. If every pair 〈pi, qi〉 is

considered for insertion into QCP then the result follows.
Otherwise, there exists a pair 〈pi, qi〉 that was not examined in any iteration.

In this case, from Theorem 4.1 it follows that 〈pi, qi〉 ∈ P (F ∗), thus the point
features associated to pi and qi certainly belong to F during the entire execution of
the algorithm. Hence q ′

i is further than M positions from p′
i (w.l.o.g. assume that q ′

i

comes after p′
i) along the order induced by the Hilbert curve in the ji-th iteration.

For the properties of the Hilbert curve, the M pairs examined in the ji-th iteration
belong to the same ri-region containing both p′

i and q ′
i , hence have distance less or

equal than d
1
t

2d+1
2d+2ri .

As the algorithm determines at least k pairs having such property (at least one
for each closest-pair), then the result follows. �

Thus, the algorithm guarantees an O(d1+ 1
t ) approximation to the solution. Now

we define the worst case condition allowing a point to be pruned from the input
data set by the ASP algorithm.

THEOREM 4.3. The list F ∗ does not contain at least those points p of D such
that δ > ε2

dδk, where δ is the distance between p and its nearest neighbor in D .
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Proof. Let p be a point of D and let δ be the distance between p and its nearest-
neighbor q in D . Let r0 be the side of the greatest r-region satisfying the following
inequality

d
1
t

2d + 1

2d + 2
r0 < δ.

Let r0 = 2−s0 (s0 ∈ N), then s0 is such that

log2

(
d

1
t

δ

2d + 1

2d + 2

)
+ 1 � s0 > log2

(
d

1
t

δ

2d + 1

2d + 2

)
.

From Lemma 4.1, it follows that there exists j ∈ {0, . . . , d} such that p + v(j) is
( 1

2d+2)-central in the 2−s0-region. When the above condition occurs, the nearest-
neighbor of p is certainly out of its r-region of side 2−s0 (see Figure 6(b)). Thus,
the in the worst case the value of f.lb is 2−s0

2d+2 , where f is the feature such that
f.point = p.

We know from Theorem 4.2 that the worst case approximation for the value of
δk given by the ASP algorithm is 2d

1
t (2d + 1)δk. Hence f.lb > Max(QCP) surely

when

1

2d + 2

(
2
d

1
t

δ

2d + 1

2d + 2

)−1

> 2d
1
t (2d + 1)δk,

i.e. for δ > 4d
2
t (2d + 1)2δk. �

Thus, let � be the distribution of the nearest-neighbor distances of the points
of D , i.e. the distribution of the distances in the set {dt (p, NND

1 (p)) | p ∈ D}.
Theorem 4.3 asserts that the ability of the ASP algorithm to prune points increases
when the distribution � accumulates around and above the value ε2

dδk. Results in
Section 7 give experimental evidence of the dependence of the pruning ability of
the algorithm from the nearest neighbor distribution of the data set with respect
to the value δk, but show also that in practice the algorithm is able to prune points
having distance to their nearest-neighbor significantly less than the worst case value
above stated.

To conclude, we give time and space cost analysis of the algorithm. In the worst
case the Hilbert procedure requires O(dn log n) time, while the procedure Prune
requires O(n) time. The procedure Scan requires in the worst case
O(m(d + log k)) time to execute the inner cycle and O(d) time to calculate rn,
thus in total O(nm(d + log k)) time. Thus, in the worst case the algorithm runs in
O(dn(d(log n + m) + m log k)) time.

Without loss of generality, if we assume that m is O(k), k � log n and d �
log k, then the time complexity can be simplified in O(d2nk). As the algorithm
enumerating all the possible pairs in the data set requires O(n2(d + log k)) time,
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then the algorithm is particularly suitable in all the applications in which n over-
comes the product dk. As an example, if we search for the top 100 closest pairs
in a one hundred dimensional data set composed by one million of points, using
the ASP algorithm we expect time savings of at least two order of magnitude with
respect to the brute force approach.

Notice that, as the point features considered in the current iteration could be a
proper subset of those considered in the preceding iteration, the effective execution
time of the algorithm could be sensibly less than the worst case.

From what is stated above, there exists a class of data sets for which it is still
possible to obtain the exact solution in O(d2nk) time by augmenting the ASP
algorithm with a final step that applies an exact method (like the brute force) to the
list F ∗. This class is characterized by peculiar separation conditions, in particular
a subset of its points have distance from their nearest neighbor less than ε2

dδk and
the cardinality of this subset is of the order of O(

√
dnk).

Let Nk(D) be |{p ∈ D | dt (p, NND
1 (p)) � ε2

dδk}|, and EASP(k) = {D | Nk(D)

is O(
√

dnk)}.
THEOREM 4.4. If the data set D belongs to EASP(k) then the ASP algorithm,
augmented with an exact post-processing step, calculates the exact solution of the
k-Closest-Pairs Problem on D in time O(d2nk).

Proof. We already pointed out that because of Theorem 4.1, it is possible to
calculate the exact solution CPk(D) starting from the queue Q∗

CP and the points
in the list F ∗. Thus, this can be done with no more than O(|F ∗|2(d + log k))

additional time, by using the brute force algorithm. If D belongs to EASP(k), then
from Theorem 4.3 and the definition of EASP(k) it follows that |F ∗| is O(

√
dnk).

Hence, the total time necessary to calculate the exact solution CPk(D) is
O(d2nk + (

√
dnk)2d), i.e. O(d2nk). �

Without loss of generality, we have defined EASP(k) assuming that the para-
meters d, n and k satisfy the above introduced constraints. In practice, the class
EASP(k) is properly contained in a larger class E ′

ASP(k), composed by the data sets
such that the ASP algorithm terminates with a list F ∗ of size O(

√
dnk). In Section

7 we will see that this class contains data sets having less tightening separation
conditions than those defining EASP(k).

Finally, regarding the space cost analysis, the algorithm requires O(dn + k)

space to store the list F and the queue QCP. As the size of the input data set is dn,
then the algorithm requires space linear in the size of the input data set.

In the next section we describe the implementation of the disk-based version of
the ASP algorithm.
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5. Disk-Based Algorithm

In this section we describe the disk-based version of the algorithm ASP, designed
to deal with data sets that cannot fit into main memory.

Let I and F be the number of bytes required to store, respectively, an integer
and a floating point number.

DEFINITION 5.1. A feature record is a record composed of the following fields:

• point: an array of floating point numbers, representing a point in [0, 2)d ; this
field is F d bytes long;

• hkey: is the Hilbert value associated to point in the h-th order approximation
of the d-dimensional Hilbert space-filling curve mapping the hypercube [0, 2)d

into the integer set [0, 2hd); it is �hd
8I

�I bytes long;
• lb: is a floating point number representing the radius of a d-dimensional neigh-

borhood of point entirely explored during the execution of the algorithm; it is
F bytes long;

• id: is an integer whose value uniquely identifies the record; this field is I bytes
long (assuming that log2 n � 8I).

Thus a feature record is (�hd
8I

� + 1)I + (d + 1)F bytes long. A feature file is a
sequential file composed by feature records.

The Disk-based-ASP algorithm is reported in Figure 7. The algorithm uses an
in-memory data structure, the queue QCP, two feature files, FF0 and FF1, and a
buffer to swap portions of the two files between main and secondary memory.

The input of the algorithm is composed by the file InFile containing the data set
normalized in the hypercube [0, 1)d , by the dimensionality d of the data set, the
number k of closest pairs to find, the number m of neighbors that the algorithm is
allowed to consider on the one-dimensional space, the approximation order h of
the space-filling curve, and the size BUF of the buffer.

The procedure FFCreate reads the file InFile containing the data set and creates
the corresponding feature file FF0 in an obvious way.

The procedure FFSort performs an external sort of the file FF0 producing the
file FF1 ordered with respect to the field hkey. In the current implementation of
disk-based ASP, we used the polyphase merge sort with replacement selection to
establish initial runs [27] to perform the external sort. This procedure requires the
number FIL of auxiliary files allowed and the size BUF of the main memory buffer.

The procedure FFScan, reported in Figure 8, is the disk-based version of the
procedure Scan. It allocates an array buf of feature records, used as a circular buffer
to store a contiguous portion of the file InFile. The buffer must contain at least
2M +1 feature records, hence if the value of M becomes greater than buflen (recall
that M is set to mN/n, thus it is initially equal to m and could increase during the
execution of the algorithm) then it must be lowered to a suitable value. Basically,
FFScan performs the same operations of Scan, but in addition it creates the feature
file OutFile which will be processed during the next main iteration of the algorithm.
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Disk-based-ASP(InFile, d, k, m, h, BUF)

{
Init(QCP, k);
n = FFCreate(InFile, FF0);
N = n;
j = 0;
while (N > 0 && j � d) {

FFSort(FF0, FF1, FIL, BUF);
Remove(FF0);
FFScan(FF1, FF0, BUF, mN/n, j);
Remove(FF1);
N = FFPrune(FF0, FF1, Max(QCP));
Remove(FF0);
Rename(FF1, FF0);
j = j + 1;

}
return P (QCP);

}

Figure 7. The algorithm Disk-based-ASP.

Notice that the dimension of the buffer can be “doubled” by storing only the
M feature records following the current record. Indeed, the M feature records
preceding the current record are leaved into the buffer only to calculate the func-
tion MaxReg. But, MaxReg(p, q1, q2), where p is the current point, q1 is M-th
predecessor of p, and q2 is the M-th successor of p, is equal to min{r1, r2}, where
r1 = MaxReg(p, q1, q1), and r2 = MaxReg(p, q2, q2). Thus the real value r1

could be stored in an augmented in-memory feature record (i.e. each in-memory
feature record contains an additional field storing the floating point number r1)
and then used to calculate min{r1, MaxReg(p, q2, q2)}. As q1 is not stored into the
buffer when p is processed, it remains to establish how r1 can be calculated: as
p is the M-th predecessor of q2, then the value r1 associated to q2 can be cal-
culated as MaxReg(q2, p, p). This can be done contextually to the calculation of
MaxReg(p, q2, q2). So, when q2 becomes the current point (M iterations later) the
r1 value associated to q2 is correctly stored in its in-memory feature record. We do
not report this version of FFScan because it is slightly more involved than those
presented.

Finally, the procedure FFPrune deletes from the file FF0 the feature records
having value of lb greater than Max(QCP). Notice that FFScan operates an early
pruning, as it stores in the file FF0 only the feature records having lb less or equal
than the current value of Max(QCP).
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FFScan(InFile, OutFile, BUF, M, j)

#define succ(x) ((curr + x) % buflen)

#define pred(x) ((curr + M − x) % buflen)

{
/* --- Allocates the buffer --- */
buflen = BUF / sizeof(FeatureRecord);
if (buflen < 2M + 1) M = floor((buflen − 1)/2);
buf = calloc(buflen, sizeof(FeatureRecord));
/* --- Fills the buffer --- */
InFeatFile = fopen(InFile);
maxrow = 0; // last record of InFile in the buffer
for (i = 0; i < buflen && fread(buf [i], InFeatFile); i++) maxrow++;
/* --- Starts the scan of the file InFile --- */
OutFeatFile = fcreate(OutFile);
curr = 0; // current position in the buffer
currow = 0; // current record of InFile
while (++currow � maxrow) {
/* --- Compares the current point with the M successors --- */
for (i = 1; i < min(M, maxrow − currow); i++) {

other = succ(i);
d = dist(buf [curr].point, buf [other].point, t);
Update(QCP, buf [curr].id, buf [other].id, d);

}
/* --- Updates the field lb of the current record --- */

pl = buf [pred(M)].point + v(j);
pr = buf [succ(M)].point + v(j);
rb = MaxReg(buf [curr].point + v(j), pl, pr);
rn = MinDist(buf [curr].point + v(j), rb);
if (rn > buf [curr].lb) buf [curr].lb = rn;
/* --- Creates the feature file for the (j + 1)-th iteration --- */
if (j < d && buf [curr].lb � Max(QCP)) {

rec.hkey = Hilbert(buf [curr].point + v(j+1), h);
rec.point = buf [curr].point;
rec.lb = buf [curr].lb;
rec.id = buf [curr].id;
fwrite(rec, OutFeatFile);

}
/* --- Loads into the buffer the next record of InFile --- */
if (currow > m && fread(buf [pred(M)], InFeatFile)) maxrow++;
curr = succ(1); // go to the next position in the buffer

}
fclose(OutFeatFile);
fclose(InFeatFile);
free(buf );

}

Figure 8. The procedure FFScan.
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6. Related Work

Several exact algorithms regarding the k-Closest-Pairs Problem and its variations
have been proposed. A comprehensive overview can be found in [32] and [38].

Bentley and Shamos [5] were the first who gave an optimal O(n log n) algo-
rithm based on the divide and conquer paradigm. The search space was recursively
partitioned and the problem was solved on these subspaces. To obtain the solution
on the overall set, only those couples of points coming from two disjoint partitions
whose distance is less than the minimum distance already found were considered.

This algorithm, as pointed out in [38], is complicated because it uses multidi-
mensional divide and conquer. A more simple algorithm was proposed by Lenhof
and Smid [28]. The algorithm requires O(n log n+k) time for any fixed dimension
and is based on the construction of a grid such that (i) at least one cell contains at
least two points and (ii) each cell contains at most 2d points. If δ is the side length of
this grid, property (i) implies that the distance between the two closest points in D
is at most dδ, thus each point of D must be compared with the points contained in
its cell or in the (2d+1)d −1 neighboring cells. Property (ii) implies that each point
is compared with a constant number of points. The algorithm then consists of two
phases, an approximation phase in which the condition 20d(k + 2n) � n(n−1)

2 must
be satisfied, and an enumeration phase that requires at least �(5d k + 4dn log n).
This implies that when k = 1 in the approximation phase d can not be greater that
log20 n. As k increases this limit value diminishes while the enumeration phase
degenerates to the brute force O(n2) even for small values of d. A simplification of
Lenhof and Smid’s algorithm with the same running time has been introduced by
Chan in [9].

Randomized algorithms to solve the closest pair problem in O(n log n) were
proposed by Rabin [33], Dietzfelbinger et al. [14], and Khuller and Mathias [26].
The approach is similar to that of Lenhof and Smid [28], but the size δ of the cells is
computed by using random sampling and the brute force approach on the sample.

Katoh and Iwano [25] presented algorithms for finding the k closest/farthest
bichromatic pairs, that iteratively reduces the search space by a half and uses higher
order Voronoi diagrams. The authors found that their algorithms were very fast but
they were defined only for d = 2.

The on-line or dynamic extension to the closest pair problem has been studied
in [6, 16, 36]. This version of the problem receives the points one after another and,
as they arrive, the current closest pairs must be updated.

More recently algorithms for the problem of finding k closest pairs between two
spatial data sets were introduced in [12, 11, 13]. Corral et al. presented a number of
different algorithms for discovering the k closest pairs between two spatial data sets
stored in two different R-trees. Each spatial data set is indexed using an R∗-tree,
a variation of the R-trees hierarchical data structure that applies a sophisticated
node split technique. Basically, these algorithms traverse the two trees and try to
avoid the comparison of the points stored in all the possible pairs of nodes by
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using several strategies. In particular they propose a pruning heuristic and two
updating strategies for minimizing the pruning distance and use them to design
branch-and-bound algorithms that solve the k closest pairs query problem. They
reported experiments on real and uniformly distributed 2D data, and studied the
scalability of the methods when the data set size and the number of pairs required
increases.

The algorithms were compared with those of Hjaltason and Samet [21] and
showed to outperform them. Yang and Lin in [40] observed that the methods of
Corral et al. work well when the data sets do not overlap and that the poor per-
formances in case of overlapping are due to the inability of the join algorithm to
prune nodes. Thus they proposed a new index structure, named the bichromatic
Rdnn-Tree, that allows the pruning of the path search and algorithms with better
performances than those of [12]. None of these algorithms were applied to data set
containing more than four dimensions.

In [29], Lopez and Liao presented an approach to solve the k-Closest-Pairs
Problem based on multiple shifted copies of the input data set ordered with respect
to the Z-order (Peano space filling curve). Their method consists of two phases, an
approximate phase, where the approximate solution is guaranteed within a small
factor of the exact one, and an exact phase, in which the k closest pairs are ob-
tained. The approximation phase uses a priority queue Q of size k to store a pair of
unshifted points and the size of the smallest r-region that contains the (shifted) pair.
For each point pi , the k closest points qj with respect to the Z-order are considered
and the smallest r-region containing pi and qj is computed. If the size of this region
is less than the size of the largest r-region contained in Q, the pair contained in this
r-region is deleted while (pi ,qj ) is inserted in Q. This step is repeated d + 1 times
to consider for each point its d+1 shifts v(0), v(1), . . . , v(d). The idea of using shifts
to solve proximity problems, such as the exact Closest Pair and the Approximate
Nearest Neighbor, has also been employed by Chan [10].

Though our approach is similar to the approximation phase of Lopez and Liao
algorithm, the following main differences can be pointed out.

• Because of Lemma 3.1, our method at each step eliminates points of no more
use, thus the number of points to be examined is sensibly reduced.

• Our method can stop without executing all the d + 1 iterations and return the
exact solution. Furthermore, it can be used as a preprocessing step for an exact
algorithm, which takes advantage of the reduction of the data set size.

• We prove that there exists a class of data sets for which our method obtains the
exact solution with the same time complexity by augmenting the algorithm
with a final step that applies an exact method to the reduced data set. The
characteristics of these data sets are intrinsic, that is they do not depend on the
structure of the ASP algorithm.

• For each pair of points we consider their true distance instead of the size of
the smallest r-region containing them.
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• We consider the Hilbert space filling curve while they use the Peano curve.
The Hilbert curve has been shown to achieve better results than the Peano
curve [18].

• Experimental results shows that our method outperforms the Lopez and Liao
method since, on the same data sets, we always obtain the exact solution.

• We realized a disk-based implementation of our method which is able to deal
with data sets that do not fit into main memory.

In the next section we describe experimental results on large high-dimensional
synthetic and real data sets.

7. Experimental Results

We implemented the algorithm using the C programming language� on a Pentium
III 850 MHz based machine��,‡. We used a 32 bit floating-point type to represent
point coordinates and distances.

The data sets we used to test the algorithm are: Cure (d = 2, n = 100,000),
ColorMoments (CM for short) (d = 9, n = 68,040), CoocTexture (COT for short)
(d = 16, n = 68,040), ColorHistogram (CH for short) (d = 32, n = 68,040),
and Landsat (d = 60, n = 275,465). Cure is the two-dimensional synthetic data
set described in [34] (referred as Data set 1) and widely used to test clustering
algorithms. The others data sets represent a collection of real images. The points
of COT and CH are image features extracted from a Corel image collection‡‡

while the points of Landsat are normalized feature vectors associated to tiles of
a collection of large aerial photos.¶

We search the k closest pairs under the L2 metric. We experimented also with
the L1 and L∞ metrics and obtained analogous results, thus we just describe exper-
iments under the Euclidean metric. Although we are able to guarantee an O(d

3
2 )

approximation to the solution, the algorithm calculated the exact solution for all
the experiments, even when F ∗ was not empty.

Table I reports the size, n, the dimension, d of each data set, the residual number,
|F ∗|, of points in the list of point features, F , at the end of the algorithm, the actual
number, d∗, of steps necessary to the algorithm to find the solution, the execution
time, ¶¶ T ∗, of the ASP algorithm and the execution time, T , of the brute force
approach when we are searching for the first k = 100 closest pairs (m = k, h = 2).

� We used Microsoft Visual C++ 6.0 as developing environment.
�� The operating system of the computer is Microsoft Windows XP Professional.
‡ The machine has 256 MB of main memory and one EIDE hard disk.

‡‡ See http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeature.html for more
information.

¶ See http://vision.ece.ucsb.edu for a detailed description.
¶¶ Execution times were computed using the built-in function clock(), to obtain the overall num-

ber of clock cycles needed to perform the calculation, and the system constant CLOCKS_PER_SEC,
which specifies the number of clock cycles per second.
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Table I. Size of the F ∗ list and execution times of ASP and brute force method
for k = 100

n d |F ∗| d∗ T ∗ [sec] T [sec]

Cure 100,000 2 0 2 40.28 (h = 8) 4,464.30

CM 68,040 9 0 3 24.63 2,890,83

COT 68,040 16 0 1 23.67 3,476.37

CH 68,040 32 0 3 38.91 5,369.59

Landsat 275,465 60 81,371 61 7,787.58 154,153.23

Figure 9. Nearest-neighbor distance distribution of CH and Landsat.

The table shows that ASP stops after at most 3 steps for the first four experiments
obtaining the exact solution in few seconds. The results show the low execution
times needed by ASP to obtain the solution with respect to the brute force approach
(two order of magnitude less) and the effectiveness of the algorithm in reducing the
size of the input data set. In practice the algorithm is able to prune points having
distance δ to their nearest-neighbor significantly much less than ε2

dδk, the worst
case stated by Theorem 4.3. The Landsat data set required all the 61 iterations
(done in about two hours versus the about 42 hours of the brute force algorithm).
In this latter case the algorithm was not able to produce an empty F ∗ list, but also
in this case the list Q∗

CP contained the exact solution and the size of the input data
set reduced significantly, in fact the size of F ∗ is about 1/3 of the size of the data
set.

Figure 9 depicts the distributions of the nearest-neighbor distances of the CH
and Landsat data sets together with the value δ100 and the mean � of each distrib-
ution. According to Theorem 4.3, for k = 100 the Landsat data set is more hard to
manage than the CH data set by the ASP algorithm, as in the former case the ratio
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Figure 10. Synthetic data set.

�/δ100 is two order of magnitude less than the latter case (29.3 of Landsat versus
2474.3 of CH).

We now study how the algorithm scales with respect to the various parameters.
To this end we built a family of synthetic data sets in which a subset of points
is nearer each other with respect to the other points of the data set. Each data
set of this family is characterized by the dimensionality, d, the total number of
points, n, the number, s, of points that are closer to each other with respect to the
remaining, n − s, and a parameter, c. Figure 10 shows the structure of these data
sets. The s close points are placed in s distinct vertexes among the 2d vertexes of
the inner hypercube, having side length, δ, while the remaining n − s nonclose
points are placed in n − s distinct vertexes among the 2d vertexes of the outer
hypercube, having side length 1.0. The L2 minimum distance between a nonclose
point and a close point is set to cδ, this means that δ is equal to

√
d/(

√
d + 2c).

Thus the distribution �c of the nearest-neighbor distances is such that there are s

distances in the range [δ, √dδ] and n − s distances in the range [cδ, (c + √
d)δ].

We set s = 1, 000 and m = k in all the experiments, and considered the range c ∈
{103, 102, 101}. In all the experiments we found that the algorithm terminates with
the exact solution and an empty F list after executing less than d +1 iterations. We
first describe the behavior of the memory-based version of ASP. Figure 11 shows
the execution times of ASP for n = 100, 000 points, k = 100, h = 2 and d ranging
from 20 to 128. Figure 12, instead, shows the number of iterations performed in the
aforementioned experiments by ASP before stopping the execution. Surprisingly,
up to 128 dimensions, the algorithm executes a constant number of iterations for
c = 103, less than 10 iterations for c = 102 and no more than d/2 iterations for
c = 10. These curves show that in practice the algorithm is able to prune points
having distance to their nearest-neighbor significantly less than ε2

dδk, the worst case
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Figure 11. Execution time of ASP for different dimensions.

Figure 12. Number of iterations executed by ASP.
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Figure 13. Execution times of memory-based ASP for different dimensions.

Figure 14. Execution times of memory-based ASP for different data set sizes.
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Figure 15. Execution times of disk-based ASP for different dimensions.

Figure 16. Execution times of disk-based ASP for different data set sizes.
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Figure 17. Execution times of memory-based ASP for different values of k.

Figure 18. Execution times of memory-based ASP for different values of h.
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Table II. Comparison between the approximation quality of LL and ASP

k = 1 k = 10 k = 20 k = 50 k = 100

LL ASP LL ASP LL ASP LL ASP LL ASP

COT 1.24 1.00 1.67 1.00 1.82 1.00 1.93 1.00 1.96 1.00

CH 1.00 1.00 1.00 1.00 1.32 1.00 1.15 1.00 1.68 1.00

Landsat 1.32 1.00 2.33 1.00 2.23 1.00 2.10 1.00 1.98 1.00

stated by Theorem 4.3. Indeed, we note that δk is such that δ � δk �
√

dδ and in the
distribution �c there are n − s points having distance from their nearest-neighbor
in the range [cδ, (c +√

d)δ], thus significantly less than ε2
dδk (e.g., compare ε2

128 =
33, 817, 088 with c = 10). Figures 13 and 14 show how the memory-based version
of ASP scales respectively with respect to the dimensionality d of the data set
and the number n of points, while Figures 15 and 16 show the same information
for the disk-based version of ASP. To study the effect of the buffer size on the
execution time we varied the size from 1 MB (dashed curves) to 64 MB (solid
curves). Time improvement associated to a larger buffer is mainly consequence
of the better performance of the external sort algorithm. Figures 17 and 18 show
how the algorithm ASP scales respectively with respect to the number k of closest
pairs to find and the approximation order h of the Hilbert space-filling curve. All
the figures points out the good performances of ASP as the values of the input
parameters increases.

Finally we compared the quality of the approximation returned by our algorithm
with those returned by algorithm [29] (LL for short in the following). We used the
same data sets employed to test the LL algorithm: COT (d = 16, n = 68, 040),
CH (d = 32, n = 68, 040), and Landsat (d = 60, n = 275, 465).

The comparison between LL and ASP, under the L2 metric, is reported in Ta-
ble II. Each value reported in the table is a ratio of the form δ∗

k /δk, i.e. the ratio
between the approximation δ∗

k to the k-th closest pair distance determined by the
algorithm LL or ASP and the effective value δk of this distance. We run ASP with
h = 4 and m = k in all the experiments. The table shows that ASP guarantees a
much more accurate approximation than the LL algorithm, since it always returned
the exact closest pairs in all the experiments performed. LL found the exact solution
only for the CH data set when k = 1 and k = 10.

8. Conclusions

In this paper an O(d1+1/t ) approximate algorithm to solve efficiently the k-Closest-
Pairs problem under the Lt metrics on large high-dimensional data sets in time
O(d2nk) and linear space has been presented. The algorithm exploits the order
induced on the data by the Hilbert space-filling curve to eliminate points early from
the input data set. The experimental results gave the exact closest pairs for all the
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considered synthetic and real high-dimensional data sets and for different values of
k, confirmed that the pruning of the search space is effective, and showed that the
algorithm guarantees a better approximation quality than related approaches. We
presented a thorough scaling analysis of the algorithm for in-memory and disk-
resident synthetic data sets showing that the algorithm scales well with the data set
size, both in memory and disk-resident, as well as with the dimension. The method
is particularly suitable in all those applications in which the size n of the data set
overcomes the product dk and the dimensionality d is large. In these cases it can be
used as a preprocessing step for the brute force algorithm, actually the best exact
algorithm for the k-Closest-Pairs problem in high dimensional spaces, by taking
advantage of the reduction of the data set size operated by our algorithm.
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