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Abstract

A method is presented that uses an Approximate Nearest
Neighbor method for determining correspondences within
the Iterative Closest Point Algorithm. The method is based
upon the k-d tree. The standard k-d tree uses a tentative
backtracking search to identify nearest neighbors. In con-
trast, the Approximate k-d tree (Ak-d tree) applies a depth-
first nontentative search to the k-d tree structure. This
search improves runtime efficiency, with the tradeoff of re-
ducing the accuracy of the determined correspondences.

This approximate search is applied to early iterations of
the Iterative Closest Point Algorithm, transitioning to the
standard k-d tree for the final iterations after the change in
the mean square error of the correspondences becomes suf-
ficiently small. The method benefits both from the improved
time performance of the approximate search in early itera-
tions as well as the full accuracy of the complete search in
later iterations.

Experimental results indicate that the time efficiency of
Ak-d tree is superior to the k-d tree and Elias for mod-
erately large point sets. The change in the shape of the
minimum potential well space is subtle, and the conver-
gence properties are often identical. In those cases where
the global minimum was not achieved, the difference in fi-
nal mse was very small. In one trial, Ak-d tree converged
faster to a better minimum with a smaller mse, which indi-
cates that the use of approximate methods may be benefi-
cial in the presence of outliers.

Keywords: nearest neighbor, k-d tree, iterative closest
point, registration, range image, computational geometry

1 Introduction
The Iterative Closest Point Algorithm (ICP) [1] is a

method for bringing into registration two partially overlap-
ping but slightly misaligned range images. ICP has proven

to be very useful in the processing of range data, and a
number of variations on the basic method have been pro-
posed [2]. These include alternate transformation calcula-
tions [3], the use of intensity information and curvature [4],
and outlier selection filters.

At each iteration, corresponding points between the
two images are determined by a Nearest Neighbor (NN)
method. Determining these correspondences accounts for
the majority of the runtime expense of ICP. In their orig-
inal paper Besl and McKay [1] suggested the use of the
k-d tree method. They also indicated that other NN meth-
ods may be suitable and there have been some prior explo-
rations into the use of alternatives. Blais and Levine [5]
used the inverse calibration parameters of the acquisition
sensor to project the points from one image onto the ref-
erence frame of the other image. While this method was
efficient, it required a normal estimate for each point and
did not necessarily identify the true nearest neighbor corre-
spondences. Simon et al. [6] used a caching technique sim-
ilar to Voronoi methods to exploit the spatial coherency be-
tween neighboring points. Greenspan and Godin [7] devel-
oped a method that preprocessed spherical neighborhoods
of each point and tracked their evolution across iterations.

In this paper we explore the use of an Approximate
Nearest Neighbor (ANN) method for improving the run-
time efficiency of ICP. True NN methods return the point
�pc from a set P that is the minimum distance from the
query point �q;

||�q − �pc|| ≤ ||�q − �pi|| ∀ �pi ∈ P (1)

Alternately, ANN methods return an approximation �̂pc

of �pc whose distance from �q is within some bound (1+ε) of
the distance between �q and �pc;

||�q − �̂pc|| ≤ (1 + ε)||�q − �pc||, ε ≥ 0 (2)

The main benefit of ANN methods is improved time
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performance over their exact couterparts. This has been of
particular interest for high dimensional spaces where true
NN methods can become computationally expensive.

This paper continues in Section 2 with a description
of the basic k-d tree, followed by the introduction of a
modified search of the k-d tree that we shall call the Ap-
proximate k-d tree (Ak-d tree) in Section 3. In Section 4,
Ak-d tree is applied to ICP and its runtime performance is
compared to the k-d tree and Elias methods. Tests on more
general data sets are presented in Section 5, and the pa-
per concludes with a summary and a discussion of future
research directions in Section 6.

2 k-d Tree
The k-d tree was discovered by Bentley [8] and is likely

the most well-utilized NN method. The k-d tree is a binary
search tree in which each node represents a partition of the
k-dimensional space. The root node represents the entire
space, and the leaf nodes represent subspaces containing
mutually exclusive small subsets of P. At any node, only
one of the k dimensions is used as a discriminator, or key,
to partition the space. When the tree is searched, the single
scalar value of the key of �q is compared against the node
key value, and the appropriate branch is followed. When a
leaf node is encountered, all of the B points resident in the
leaf’s bin region are tested against �q, and the closest bin
point �pb is determined.

It happens that the true nearest neighbor may lie in a
different bin than �q. This will occur when the distance
between �q and a boundary of its bin region is less than
the distance between �q and the closest bin point �pb. Con-
versely, �pb is guaranteed to be the true nearest neighbor if
the sphere centered at �q with radius ||�q−�pb|| is completely
contained within the bin region. This is known as the Ball-
Within-Bounds (BWB) test.

If the BWB test fails, then �pb may not be the true near-
est neighbor, and it is necessary to backtrack up the tree
and test points contained in alternate paths. The Bounds-
Overlap-Ball (BOB) test determines whether or not the
sphere centered at �q intersects with some region, which
may therefore contain the true nearest neighbor. All points
contained in all bin regions that pass the BOB test must be
considered during backtracking. If a new nearest neighbor
is encountered, then the sphere radius is adjusted down-
ward, the BWB test is repeated, and the backtracking re-
sumes if necessary.

The performance of the k-d tree search is O(log n), and
the average number of distance computations is minimal
when the bin size is smallest, i.e., B = 1. Bentley pointed
out that the average runtime cost is minimized for a slightly
larger bin size [8]. This is due to the greater cost of back-
tracking as compared to a simple linear traversal of a small
list. (This property is also observed in other elementary

logarithmic algorithms, such as Binary Search and Quick-
sort.) In practise it is typical to set the bin size to a default
value of B = 10 or 20.

3 Approximate k-d Tree Search
The idea behind the Ak-d tree is to return as an approx-

imate nearest neighbor �̂pc the closest point �pb in the bin
region where �q lies. This value is determined from the ini-
tial depth-first search, and so the expense of backtracking
is avoided. It is also no longer necessary to execute the
BWB test, which further improves runtime efficiency.

The tradeoff for this enhanced efficiency is that, in cases
where the true nearest neighbor does not lie in the same bin
as �q, only an approximate result will be returned. We have
found, however, the true nearest neighbor is often found,
especially when the bins are large. Further, when the true
nearest neighbor is not found, the approximation is often
very close to the true value, due to the proximity of points
within a region.

We implemented the method and tested it on two sets P
and Q of 10000 3-D points distibuted uniformly and ran-
domly over the unit cube. P was used to construct the Ak-d
tree with a given bin size, and �̂pci was determined for each
point �qi in Q. Following this, a full (i.e., backtracking) k-
d tree search was executed on the same tree structure, and
the true �pci for each �qi was determined. Figure 1 shows
a histogram that tabulates the frequency of distances be-
tween the respective �̂pci and �pci for bin size B = 50. The
large spike at value 0 indicates that a large percentage (79
%) of the resulting approximate values were in fact true
nearest neighbors, i.e., �̂pci = �pci. The remaining approxi-
mations formed a bell-shaped distribution centered around
0.05, which was roughly twice the interpoint separation of
P.

The above results are plotted in Figure 2, with the true
separations ||�pci−�qi|| on the x-axis and the correspond-
ing differences between the true and approximate results
||�pci−�̂pci|| on the y-axis. The solid bar of values at y = 0
represents the cases where �̂pci = �pci. The remaining rela-
tions indicate that there is a strong correlation between the
true separation and the closeness of the approximation. We
can therefore generally expect �̂pci to be a tighter approxi-
mation when �pci is nearer to �qi.

Another experiment characterized the effect of bin size
on the tightness of the approximation. Trees were con-
structed for a variety of bin sizes from B = 5 to 295, in
increments of 5, and for each tree the true and approximate
searches were executed. The percentage of trials where the
resulting true and approximate results were the same was
plotted as a function of B in Figure 3. As expected, the
approximate search had a greater likelihood of finding the
true nearest neighbors for larger bins. In the extreme case
when B = NP, all NP points in P would reside in the
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Figure 1: Histogram of ||�pc − �̂pc||
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Figure 2: ||�q − �̂pc|| vs. ||�pc − �̂pc||

bin of the single tree node, and the two searches would be
equivalent.

4 Application to ICP
At each ICP iteration, correspondences are determined

based upon the current relative position of the two surfaces
P and Q under registration. The unique transformation
that minimizes the mean square error (i.e., the mse) of the
correspondences is then calculated and applied to Q prior
to the next iteration. The algorithm is said to fully converge
when the mse remains constant for two consecutive itera-
tions. This occurs when there is no change in the correp-
sondences between two iterations, and there would there-
fore be no change in the correspondences or the mse in any
subsequent iterations.

If the initial misregistration between the two surfaces is
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Figure 3: Binsize (B) vs. % True Nearest Neighbors Found

a) sensor view

b) rotated view

Figure 4: Test Image (56260 points)

small, then the ICP will converge to a global minimum re-
sulting in a correct registration. Alternately, if the initial
misregistration is large then ICP will converge to a local
minimum resulting in an incorrect registration. The mini-
mum potential well space is the set of initial relative trans-
formations between two surfaces that would result in cor-
rect convergence to a global minimum.

If an ANN were used in place of an NN to calculate cor-
respondences at each iteration, then convergence could be
affected. As seen in Figure 3, for reasonably large bin sizes
there will still be some points �qi whose approximate near-
est neighbors �̂pci will not equal their true nearest neighbors
�pci. In these cases, even though �̂pci may be close to �pci

(especially when ||�pci−�qi|| is small as evident in Figure 2)
the convergence properties will be different. The minimum
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Figure 6: Time (s) vs. mse

potential well space will change as a result, and the global
minimum may never be realized.

Rather than using a pure ANN method, it is therefore
attractive to base an ICP on a hybrid of ANN and NN.
The simplest possibility is to start the iterations using the
Ak-d tree search and at some iteration transition to the use
of the k-d tree. With this scheme ICP would benefit both
from the improved time efficiency of the Ak-d tree in early
iterations, and the full accuracy of the k-d tree in later it-
erations. The transition could occur after a certain fixed
number of iterations, after the mse becomes sufficiently
small, or after the change in the mse across iterations is
sufficiently small.

These three variations of the hybrid method were im-
plemented and tested on the data set illustrated in Figure 4.
This range image contained 56260 points and was acquired
with a Biris range sensor mounted on a linear motion stage.
The floating point set Q was an exact copy of P that was
perturbed to a slightly different initial position. The rota-
tional offset was 5 degrees about all 3 axes, and the trans-
lational offset in all 3 directions was 50 mm, which was
∼ 25%, 14%, and 47% of the extent of the image along
the x-, y-, and z-axes respectively. The main benefits of an
experimental setup where P = Q is that an exact conver-

Figure 7: Time (s) vs. mse

gence event can be easily identified when all of the inde-
ces between corresponding points are respectively equal.
When this occurs, the mse will vanish in the subsequent
iteration.

A set of k-d trees were constructed using bin sizes of
B = 20 and 100. Trials of the ICP were executed for each
tree starting from the same initial misregistration and using
both the full k-d tree search, as well as the hybrid method
that transitioned from the Ak-d tree to the k-d tree search
after a fixed number of iterations.

Figure 5 plots the evolution of the mse for these trials
as a function of number of iterations. The mse is seen to
reduce earlier for the k-d tree trial. For each of the hybrid
trials, following the transition the mse values for the hybrid
trials still lag slightly behind that of the k-d tree trial. Even-
tually, all of the trials converge to the global minimum,
with the k-d tree reaching this point with fewer iterations.

In the hybrid trials, prior to the transition some of the
correspondences computed by the Ak-d tree search are
approximate. The calculated mse is therefore an over-
estimate of the true mse that would have been calculated
were an NN method used to determine all correspon-
dences. After the transition, all correspondeces are cal-
culated using the full backtracking k-d tree search, and so
the calculated mse will be correct.

A cursory examination of the plot in Figure 5 might lead
one to conclude that k-d tree outperforms the Ak-d tree hy-
brids. An examination of the relative time performance of
the two methods, however, supports the opposite conclu-
sion. Figure 6 shows a plot of the evolution of mse vs.
elapsed runtime for the same set of trials. The k-d tree trial
is not shown as its time exceeded the scale of this plot.
Irrespective of the transition criterion, the hybrid method
converges completely before the k-d tree has completed its
second iteration. Although Figure 5 shows that k-d tree
minimizes mse in fewer iterations, it is clear that the dif-
ferent methods iterate with different time efficiencies. The
k-d tree iterations are more time expensive than those of
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the Ak-d tree, especially in early iterations when the �q i are
farthest from their correpondents, and the expense of com-
puting the true NN is greatest.

Figure 7 plots the time results from an additional set of
trials that included tests of an implementation of the Elias
method. The Elias method is a true NN method which
subdivides space regularly and groups P into voxels. The
k-d tree bin size was varied over a range of B = [10, 200]
and the voxel bin parameter for the Elias method was var-
ied over a range of V = [20, 85], where the total number of
voxels is equal to V3. These ranges included the optimal
values for both methods. We varied the Ak-d tree bin size
over the range of B = [1, 200].

The Ak-d tree method performed very favorably, con-
verging with a best time of 16 seconds as compared to 41
seconds for Elias and 210 seconds for k-d tree. These times
included the costs of constructing the initial data structures,
which was 2.2 seconds for k-d tree and Ak-d tree (which
used the same tree structure) and 0.1 seconds for Elias. The
best time performance for k-d tree occured for B = 100,
while the Ak-d tree was optimal for a smaller bin size of
B = 20. In addition to being more time efficient, the
Ak-d tree hybrid method has the added advantage of being
less sensitive to the selection of parameters values. This
makes it more likely to get a good result with an arbitrary
choice of bin size, as often occurs in practise.

When implementing the above methods, a moderate and
equivalent amount of attention was afforded to the opti-
mization of each. For example, square root calculations
were avoided wherever possible, but no assembly level
coding or other machine specific techniques were used.
The implementations were developed with an eye to mak-
ing the timing comparisons as fair as possible. It is be-
lieved that these implementations (and thus the measured
time values) are representative of what a practitioner in the
field would typically reproduce. The comparisons between
the k-d tree and Ak-d tree methods are particularly even-
handed, as the exact same code was used with only minor
modifications between the two searches.

5 Experiments
A set of experiments was executed to determine the

effectiveness of the method on a more general data set,
as may be encountered in a model-building application.
Range images of four toy objects (a Brachiosaurus, Mr.
Clown, a Truck, and TRex) were collected using a Biris
range scanner mounted on the end-effector of a CRS A465
6 dof articulated manipulator, shown in Fig. 8. Biris is a
profile sensor, and the most distal joint of the robot was
used as the scanning mechanism. The encoders readings
of the remaining 5 joints allowed each scanned image to
be localized within the robot coordinate frame.

From this data set, the 6 image pairs illustrated in Fig. 9

Figure 8: Robot Mounted Scanner

were selected to perform the tests. The version of ICP that
was used did not have any outlier filter mechanism, so pairs
were selected that had a significant amount of overlap, al-
though some outliers did exist. The initial misalignment
within the image pairs was due to the absolute robot posi-
tioning error. The degree of misalignment depends upon a
number of factors including the length of the path that the
robot travelled between scan locations. It is believed that
these initial misalignments are similar to those that typi-
cally result from manually assisted pre-alignment, which
is a common preprocessing stage prior to ICP.

For each image pair ICP iterated to convergence using
both the k-d tree and the Ak-d tree hybrids. The Ak-d tree
hybrid method transitioned to the use of k-d tree at the iter-
ation when the mse drew less than a threshold percentage
of the intial mse as measured in the first iteration. The two
transition thresholds tested were 1% and 0.1%. The results
were manually inspected and in each case all registrations
were successful. The resulting alignments of the two TRex
image pairs using Ak-d tree are illustrated in Fig. 10

The results for these trials are tabulated in Table 1. In
each test, the time to converge (tf ) was faster for both ver-
sions of the Ak-d tree than for the k-d tree. For half of the
trials, the final mse (msef ) was identical for the at least one
version of the Ak-d tree and the true methods. For two of
the six tests (Clown, Truck), the Ak-d tree trials resulted in
a larger final mse, although by a very small margin.

The most remarkable result was from the TRex 2 test
where the Ak-d tree trials were not only faster than either
the k-d tree or the Elias trials, but they also converged to a
smaller final mse. This indicates that ANN can converge to
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a) b)

c) d)

e) f)

Figure 9: Initial Misregistered Image Pairs

a smaller minimum mse when outliers are present, which
is almost always the case in real data sets.

A comparison of the Ak-d tree against Elias showed
roughly equal performance. The Ak-d tree had a better
time performance in two of the six tests. In both of these
tests the mse was the same or better than that of the Elias
trial.

6 Discussion and Summary
We have demonstrated the use of an ANN to enhance

the time performance of ICP, and our experimentation has
revealed a number of interesting properties. The time ef-
ficiency of the hybrid method is better than the standard
k-d tree. In initial tests with a moderately sized image of
56260 points, performance was improved significantly. On
tests with smaller image pairs there was also a consistent
time performance improvement when compared with op-

a) b)

Figure 10: Registration Results

timal choice of binsize for k-d tree. The images used in
these tests were much smaller than those often encountered
in practise, which may easily be 2 to 3 orders of magnitude
larger. Any speedup of Ak-d tree over k-d tree or Elias will
scale with image size, as is evident from a comparison with
the results achieved in Section 4. We therefore expect the
time savings to be proportionally larger for larger images.

The shape of the potential well is affected by the ANN,
although out experimentation indicated that the change is
not drastic. Half of the six tests on real image pairs re-
sulted in the exact same final mse using either k-d tree or
Ak-d tree. In two of the trials the Ak-d tree final mse was
larger, although only by a slight margin. In the remaining
trial, the ANN final mse was significantly smaller than that
of the k-d tree and Elias trials. This result indicates that
the use of a true NN to calculate ICP correspondences does
not guarantee converge to the global minimum when out-
liers are present. The reason is that outliers by definition
do not have true correspondences, and there is no particular
reason to believe that the true nearest neighbors of outliers
represent an optimal choice of correspondent. An explana-
tion for the observed behaviour is that the correspondence
returned from the Ak-d tree is less likely to be a true NN
when the separation is greater, which is generally the case
for outliers. As it is not straightforward to detect and re-
move outliers, a conclusion that we draw from this result
is that the use of an ANN may be an effective method to
improve ICP convergence in the presence of outliers.

For moderately large point sets, the time performance
of the hybrid method was better than both k-d tree and
Elias, and it is expected that this result will also hold for
large point sets. For smaller sets, the time performance was
comparable to Elias, which is known to be very time effi-
cient, with O(log N) expected time performance. Despite
its time efficiency, Elias is often considered inpractical due
to its large memory requirement which is proportional to
the volume of the image i.e., O(N 3). This is of particular
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NP NQ B ix if msef tx tf

k-d tree 5008 3284 20 - 69 5.188546 - 2.21
Brach 1 Elias ” ” 30 - ” ” - 1.39

Ak-d tree(1%) ” ” 20 15 63 ” 0.22 1.55
Ak-d tree(0.1%) ” ” 20 15 63 ” 0.21 1.52

k-d tree 2125 2905 20 - 46 3.161124 - 1.01
Brach 2 Elias ” ” 20 - ” ” - 0.67

Ak-d tree(1%) ” ” 20 8 41 ” 0.09 0.79
Ak-d tree(0.1%) ” ” 10 12 28 3.161231 0.11 0.47

k-d tree 6224 16604 50 - 44 21.823087 - 9.85
Clown Elias ” ” 35 - ” ” - 5.80

Ak-d tree(1%) ” ” 20 7 36 21.823814 0.52 6.77
Ak-d tree(0.1%) ” ” 75 10 56 21.823087 1.02 8.81

k-d tree 3962 2438 20 - 41 2.165853 - 0.95
Truck Elias ” ” 20 - ” ” - 0.50

Ak-d tree(1%) ” ” 20 4 32 2.165873 0.09 0.69
Ak-d tree(0.1%) ” ” 10 5 36 ” 0.10 0.70

k-d tree 1457 1573 20 - 25 0.753817 - 0.28
TRex 1 Elias ” ” 25 - ” ” - 0.19

Ak-d tree(1%) ” ” 20 11 25 ” 0.06 0.18
Ak-d tree(0.1%) ” ” 10 16 21 0.753835 0.07 0.12

k-d tree 1068 1075 20 - 37 2.007675 - 0.26
TRex 2 Elias ” ” 25 - ” ” - 0.19

Ak-d tree(1%) ” ” 10 8 33 1.956773 0.03 0.14
Ak-d tree(0.1%) ” ” 10 20 34 ” 0.05 0.11

Table 1: Experimental Results
concern for large images. In contrast, tree-based methods
have a memory requirement of only O(N).

An attractive practical aspect of the Ak-d tree search
is that it is trivial to implement given an existing k-d tree
method, which most ICP implementations are based upon.
Its performance also appears to be relatively insensitive to
the selection of bin size.

In future work, we plan to further explore the effects of
the use of the Ak-d tree search on ICP convergence. We
will investigate the effects of ANN on point thinning tech-
niques, which can also improve the time performance of
ICP, and we will investigate the use of other ANN meth-
ods for enhanced ICP.
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