N
N

N

HAL

open science

Approximate k-Nearest-Neighbor Searches: A New
Algorithm with Probabilistic Control of the Precision
Sid-Ahmed Berrani, Laurent Amsaleg, Patrick Gros

» To cite this version:

Sid-Ahmed Berrani, Laurent Amsaleg, Patrick Gros. Approximate k-Nearest-Neighbor Searches: A
New Algorithm with Probabilistic Control of the Precision. [Research Report] RR-4675, INRIA. 2002.

inria-00071910

HAL Id: inria-00071910
https://hal.inria.fr /inria-00071910
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/inria-00071910
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4675--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Approximate k-Nearest-Neighbor Searches:
A New Algorithm with Probabilistic Control of
the Precision

Sid-Ahmed Berrani , Laurent Amsaleg , Patrick Gros

N°4675
Decembre 2002

THEME 3

apport
derecherche

% I N RIA

RENNES

Approximate k-Nearest-Neighbor Searches:
A New Algorithm with Probabilistic Control of the
Precision

Sid-Ahmed Berrani* , Laurent Amsaleg’ , Patrick Gros'

Théme 3 — Interaction homme-machine,
images, données, connaissances
Projet Texmex

Rapport de recherche n 4675 — Decembre 2002 — 29 pages

Abstract: This paper describes a new approach for performing efficient approximate
k-nearest-neighbor searches in high-dimensional databases. This approach allows a fine and
intuitive control over the precision of the search by setting at run time the maximum proba-
bility for a vector that would be in the exact answer set to be missing in the approximate set
of answers. One of the contribution of this paper is an off-line process computing controlled
approximations shrinking each cluster within which feature vectors are enclosed. Those
approximations are values for (approximate) radiuses of clusters, and they are computed
for all the levels of precision defined beforehand. Therefore, to answer a query, the search
process simply considers the appropriate approximations corresponding to the desired level
of precision. This may cause the actual nearest-neighbors of the query point to be ignored.
Our method, however, probabilistically bounds the chances for this to happen. This paper
also presents a performance study of the implementation. It shows, for example, that our
method is 6.72 times faster than the sequential scan when it handles more then 5 10 24-
dimensions vectors, even when the probability of missing one of the true nearest-neighbors
is below 0.01.

Key-words: Approximate nearest neighbor searche, multidimensional indexing, content-
based retrieval

(Résumé : tsup)

* Thomson Multimédia R&D France, 1, av Belle Fontaine, BP 19. 35511 Cesson-Sévigné - France.
T Projet Texmex, IRTSA-CNRS.

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 71 71

Recherche approximative de k-plus proches voisins avec
controéle probabiliste de la précision

Résumé : Ce rapport présente une nouvelle technique pour rechercher de facon approxi-
mative les plus proches voisins d’un vecteur requéte au sein de bases de données hautement
multidimensionnelles. Cette technique contréle la précision de la recherche en fonction de la
probabilité maximale que I’on a de ne pas retrouver dans le résultat approximatif un vecteur
qui serait présent dans le résultat exact. L’une des contribution majeure de ce travail est
une méthode pour calculer un ensemble de formes englobantes approximatives pour chacun
des clusters formés dans une premiére phase de pré-traitement des données. Les caractéris-
tiques des formes englobantes approximatives dépendent de la distribution des vecteurs au
sein de chaque cluster et aussi des niveaux de précision prédéfinis. Conjointement & sa re-
quéte, l'utilisateur doit fournir un taux de précision caractérisant la qualité de la réponse
qu’il souhaite. Une fois lancée, la recherche n’exploite alors que les formes englobantes ap-
proximatives qui auront été pré-calculées pour ce taux. Il se peut ainsi qu'un ou plusieurs
des plus proches voisins exacts du point requéte soient ignorés. Notre méthode borne de
facon probabiliste les chances pour que cela arrive. Ce rapport présente également une étude
expérimentale des performances de cette technique. Cette étude montre, par exemple, que
pour 5 10° vecteurs de dimension 24, la recherche approximative est 6.72 fois plus rapide
qu’une recherche séquentielle, méme lorsque la probabilité d’ignorer un des plus proches
voisins exacts du point requéte est inférieure a 0,01.

Mots-clé : Recherche approximative des plus proches voisins, indexation multidimension-
nelle, recherche par le contenu

Precision of Approximate Nearest-Neighbor Searches 3

1 Introduction

Image databases and therefore content-based retrieval systems have become increasingly
important in many applications areas such as medicine, geography, weather-forecast, art,
security. Content-based retrieval systems rely on image processing techniques to extract
descriptors from images [Fal96, VT00]. Descriptors encode information found in images.
They are typically vectors of real numbers defining points in a high-dimensional space. The
similarity of two images is assumed to be proportional to the similarity of their descriptors,
which is measured as the (often Euclidean) distance between the points defined by the
vectors. Similarity search is therefore often implemented as a k-nearest-neighbor search
(k-NN-search) within the feature space.

Nearest-neighbor search is inherently expensive and defining efficient methods for in-
dexing large high-dimensional datasets remains an unsolved problem. All existing indexing
schemes generally work well for low-dimensional spaces. Their performance, however, de-
grades as the number of dimensions of the descriptors increase. This phenomenon is known
as the curse of dimensionality: navigating within the index becomes more costly than a sim-
ple, brute force, sequential scan in high-dimension spaces when searching nearest-neighbors.
However, sequential scans are clearly infeasible for very large image databases. The curse of
dimensionality phenomenon is particularly prevalent when performing exact NN-searches.
Therefore, there is an increasing interest in performing approximate NN-searches, where
result quality is traded for reduced query execution time.

In this work, we describe a method for performing approximate k-NN searches where the
precision of the search is probabilistically controlled. Together with his query, a user is asked
to set the imprecision of the current search (chosen among a set of predefined imprecision
levels), that imprecision being defined as the maximum probability for a vector that would
belong to the exact answer set to be actually missing in the approximate set of answers
that is eventually returned. This imprecision set at run time is called a. As expected, high
imprecision settings (and therefore high values for @) dramatically reduce the response times
of k-NN-searches since coarse results can be returned, while lower imprecision settings (and
therefore low values for a) tend to cause more accurate k-NN-searches at the price of higher
response times.

The method we describe here can enforce o at run time because it includes a crucial
off-line preprocessing phase during which the feature space is analyzed. This preprocess-
ing starts by clustering vectors and by isolating outliers. Each cluster is then analyzed.
In addition to the exact radius of the minimum hypersphere bounding each cluster, ap-
proximate radiuses shrinking clusters are computed for all the predefined imprecision levels.
Approximate radiuses are computed in a very controlled manner that takes into account the
population, the volume and the distribution of vectors within each cluster. The values of
these approximate radiuses are recorded in a specific data structure.

Latter, on-line, when answering a query, the system uses the value of a set by the user
to select which approximate radius must be taken into account, for every single cluster, by
the filtering rules eliminating irrelevant clusters. Eliminating clusters on the basis of their
approximate radiuses instead of on the basis of their exact radiuses may cause the actual

RR n~4675

4 Berrani & Amsaleg € Gros

nearest-neighbors of the query point to be ignored. Our method, however, probabilistically
bounds the chances for this to happen, and explaining the links between those probabilities
and the computation of approximate radiuses forms the core of this paper.

Our method that probabilistically controls the precision of approximate k-NN-searches
has the following interesting properties:

e It is not limited to search for the nearest-neighbor of query points [BFG99, CP0O,
GRO0]. It can search for k neighbors as well.

e It is clearly understandable by end-users. « is the only (additional) parameter that
has to be set by users. Since it is a probability, it is quite easy to have an intuitive
perception of the repercusions of the setting on the quality of the final result. Our
method is not based on some relative or absolute € values for computing approximate
distances which are, in general, very non-intuitive to end-users [WB00, CP00, IM98].

e It is tunable at run-time. A user can resubmit his query with a different « if he
feels that the current setting is not adequate (too coarse for example). Changing the
setting will not cause any extra cost to be added on the evaluation of queries. The
proposed scheme allows users to gracefully change the precision settings, ranging from
the lossless search, to lower precision levels. In addition, it is possible to use this
method to build a system in which the precision of the answer improves as the time
goes by.

e All costs are pushed to the off-line phase. The complex calculations of approximate
radiuses are all performed off-line. At run-time, once « set, the search algorithm just
needs to select the corresponding appropriate radiuses to consider.

e Efficient. Our method is efficient in the sense that it is much faster than the sequential
scan and it performance does not severely degrades as the dimension of data and/or
the size of the database increase. It is also efficient is terms of space comsumption:
only additional radiuses are bookeeped, the DB not being replicated for each level of
precision [GROO].

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3
gives a global overview of the search technique. Then, Section 4 presents the method for
probabilistically controlling the precision of approximate NN-searches. Section 5 evaluates
the performance of the technique and Section 6 concludes and discusses open issues.

2 Related Work

This section discusses related work. We first overview traditional multidimensional indexing
approaches achieving exact NN-searches. We especially focus on the filtering rules theses
techniques use to dramatically reduce their response times. We then move to approximate
NN-search schemes.

INRIA

Precision of Approximate Nearest-Neighbor Searches 5

2.1 Cells and Filtering Rules

Traditional multidimensional indexing techniques typically divide the data space into cells
containing vectors. Cell construction strategies can be classified in two broad categories:
data-partitioning ([BKK96, WJ96], ...) and space-partitioning ([Hen98, WSB9S], ...)
indexing methods.

NN-algorithms typically use the geometrical properties of cells to eliminate those cells
that can not have any impact on the result of the current query [RKV95, HS95]. Eliminating
irrelevant cells avoids having to subsequently analyze all the vectors they contain, which,
in turn, reduces response time. Eliminating irrelevant cells is often enforced at run-time by
applying two rather similar filtering rules. The first rule is applied at the very beginning of
the search process and identifies irrelevant cells as follows:

if dmin(g, C;) > dmax(q, C;) then C; is irrelevant,

where dmin(g, C;) is the minimum distance between the query point ¢ and the cell C; and
dmax(g, C;) the maximum distance between ¢ and cell Cj.

The search process then ranks the remaining cells on their increasing distances to q. It
then accesses cells one after the other, fetches all the vectors each cell contains, computes
the distance between ¢ and each vector of the cell. This may possibly update the current
set of the k best neighbors found so far.

The second filtering rule is applied to stop the search as soon as it is detected that none
of the vectors in any remaining cell can possibly impact the current set of neighbors; all
remaining cells are skipped. This second rule is:

if dmin(q, C;) > d(g,nny) then stop,

where C; is the cell to process next, d(g,nny) is the distance between g and the current
kth-NN.

The “curse of dimensionality” phenomenon makes these filtering rules ineffective in high-
dimensional spaces [WSB98, BGRS99, PKF00, BBK01, KPF01, JDMOQ].

2.2 Approximate NIN-Searches

This phenomenon is particularly prevalent when performing exact NN-searches. There is
therefore an increasing interest in performing approximate NN-searches, where result quality
is traded for reduced query execution time. Many approaches to approximate NN-searches
have been published.

2.2.1 Dimensionality Reduction Approaches

Dimension reduction techniques have been used to overcome the “curse of dimensionality”
phenomenon. These techniques, such as KLT, SVD or DFT (see [Ger81, CM0Q]), exploit
the underlying correlation of vectors and/or their self similarity [KPF01], frequent with real

RR n~4675

6 Berrani & Amsaleg € Gros

datasets. NN-search schemes using dimension reduction techniques are approximate because
they only coarsely preserve the distances between vectors. Therefore, the neighbors of query
points found in the transformed feature space might not be the ones that would be found
using the original feature space. Dimension reduction techniques introduce imprecision on
the results of NN-searches which can not be controlled nor precisely measured. In addition,
such techniques are effective only when the number of dimensions of the transformed space
become very small, otherwise the “curse of dimensionality” phenomenon remains. This makes
their use problematic when facing very high-dimensional datasets.

2.2.2 Early Stopping Approaches

Weber and Bohm with their approximate version of the VA-File [WB00] and Li et al. with
Clindex [LCGMWO02] perform approximate NN-searches by interrupting the search after
having accessed an arbitrary, predetermined and fixed number of cells. These two techniques
are efficient in terms of response times, but give no clue on the quality of the result returned
to the user and no knob to tune this quality. Ferhatosmanoglu et al., in [FTAAO01], combine
this with a dimensionality reduction technique. With this technique, it is possible to improve
the quality of an approximate result by either reading more cells or by increasing the number
of dimensions for distance calculations. This scheme suffers from the same drawbacks as the
ones mentioned here and in the above section.

2.2.3 Geometrical Approaches

Geometrical approaches enforcing approximate NN-searches have originally been studied
in the computational geometry community [BWY80, AM93, Ber93|, and efficient solutions
were proposed only for very low dimensional spaces, however. Geometrical approaches for
higher dimensional spaces typically consider an approximation of the sizes of cells instead
of considering their exact sizes. They typically account for an additional ¢ value when
computing the minimum and maximum distances to cells, making somehow cells “smaller”.
Shrunk cells tend to make the filtering rules more severe, which, in turn, increases the number
of irrelevant cells. Cells containing interesting vectors might be filtered out, however.

In [WBO00], Weber and Bohm present the VA-BND in which ¢ is empirically estimated
by sampling database vectors. They show that this € is big enough to increase the filtering
power of the rules while small enough in the majority of cases to avoid missing the true
nearest-neighbors. In addition to be data and query dependent, the main drawback of this
approach is that the same ¢ is applied to all existing cells. This does not account for the
possible very different data distributions in cells, making this scheme efficient but not reliable
in terms of precision.

The AC-NN scheme for M-Trees presented in [CP00] (and derived from [AMN*98]) also
relies on a single value ¢ set by the user. Here, € represents the maximum relative error
allowed between the distance from ¢ and its exact NN and the distance from ¢ and its
approximate NN. In this scheme, € can only have a very obscure meaning to the user and its
setting is far from being intuitive. In addition, their experiments showed that, in general,

INRIA

Precision of Approximate Nearest-Neighbor Searches 7

the actual relative error is always much smaller than €. Ciaccia and Patella also present
an extension to AC-NN called PAC-NN which uses a probabilistic technique to determine
an estimation of the distance between ¢ and its NN. It then stops the search as soon as it
founds a vector closer than this estimated distance. PAC-NN therefore assumes known the
distribution of data around ¢, which might not be possible in the general case. Also, this
scheme can not search for k neighbors.

2.2.4 Hashing-based Approaches

Approximate NN-searches using locality sensitive hashing (LSH) techniques are described
in [IM98] and in [GIM99]. These schemes project the vectors into the Hamming cube and
then use several hash functions such that co-located vectors are likely to collide in buckets.
LSH techniques tune the hash functions based on a value for € which drives the precision
of searches. As for the above schemes, setting the right value for ¢ is key and tricky. The
maximum distance between any query point and its NN is also key for tuning the hash
functions. While finding the appropriate setting is, in general, very hard, [GIM99] assumes,
thanks to what is observed in [CPZ9§|, that choosing only one value for this maximum
distance gives good results in practice. This, however, makes more difficult any assessment
on the quality of the returned result. Finally, the LSH scheme presented in [GIM99] might,
in certain cases, return less than k vectors in the result.

2.2.5 Probabilistic Approaches

The techniques presented here are the most relevant to our work. Both are unable, however,
to search for k neighbors.

DBIN [BFG99] exploits the statistical properties of data and clusters data using the
EM (Expectation Maximization) algorithm. It aborts the NN-search when the estimated
probability for a remaining database vector to be a better neighbor than the ones currently
known falls below a predetermined threshold. DBIN bases its computations on the assump-
tion that the points are IID samples from the estimated mixture-of-Gaussians probability
density function. It therefore assumes that the estimated model is the true model for the
DB. This might not be the case, and, according to the authors, the sensitivity of DBIN
to this crucial assumption has not yet been investigated. The section concluding DBIN
suggests to create a limited number of clusters. Each cluster, however, might consequently
contain a significant portion of the database, incurring costly scans. This raises scalability
issues when handling very large datasets.

P-Sphere Trees [GRO0] investigate the trading of (disk) space for time when searching
for the approximate NN of query points. In this scheme, some vectors are first picked from
a sample of the DB, and each picked vector becomes the center of one hypersphere. Then,
the DB is scanned and all the vectors that have one particular center as nearest neighbor
go into the corresponding hypersphere. Vectors belonging to overlapping hyperspheres are
replicated. Hyperspheres are built such that the probability of finding the true NN of
the query point can be enforced at run time by simply having the search identifying the

RR n~ 4675

8 Berrani & Amsaleg € Gros

nearest center and solely scanning the corresponding hypersphere. The size of hyperspheres
is therefore key to tune the precision of P-Sphere Trees since large hyperspheres increase the
probability of finding the NN in the one that is scanned. [GRO0] details the rather complex
process determining the right size for spheres given the search accuracy desired by users.
To construct the index, P-Sphere Trees must have available a sample of query points, and
therefore, the reliability in the enforced probability heavily depends on the representativity
of the sample. In addition to this problem, since P-Sphere Trees replicate vectors falling
in more than one hypersphere, the DB size might explode, as shown by their experiments.
Handling several levels of accuracy is therefore problematic since it requires to manage
different P-Sphere Trees, thus augmenting the size explosion problem.

3 Overview

This section gives a brief overview of our approach to approximate nearest-neighbor searches.

This approach first clusters vectors. The current version of our algorithm for control-
ling the precision of approximate NN-searches requires clusters to be enclosed in minimum
bounding hyperspheres in an Euclidean space. All existing vectors might not be in clusters
because the clustering algorithm isolate outliers. Outliers are stored in a specific file that
we treat separately. The algorithm we use for clustering is detailed Section 5.

Each clusters is analyzed off-line to derive several approximate radiuses given the exact
radius, the volume and the distribution of vectors within each cluster. For each cluster,
several approximate radiuses are determined, each corresponding to a predetermined level
of precision. All the approximate radiuses of one cluster are always smaller than the exact
radius of the same cluster. Approximate radiuses will ultimately be considered during the
approximate NN-searches.

At query submission time, a user provides, along with the query, an imprecision level
called a controlling the quality of the approximate NN-search. « is chosen among a set of
predefined values, and it corresponds to the maximum probability for a vector that belongs
to the exact answer set to be actually missing in the approximate set of answers eventually
returned. The method used to compute approximate radiuses such that the probability to
miss a real neighbor stays below « is presented in the next Section.

This imprecision level then determines which specific approximate radiuses must be taken
into account by the filtering rules during the NN-search. Irrelevant clusters are thus filtered
out and the remaining clusters are then ranked with respect to the distance of their centers to
the query point. Clusters are then accessed one after the other. When a cluster is accessed,
all the data points it contains (all points enclosed within its ezact bounding hypersphere)
are fetched in memory. The search then computes the distances between all points in the
cluster and the query vector. This might in turn update the current set of neighbors. It
might also filter out more clusters. The search stops when k neighbors have been found
and when the approximate minimum distance to the next cluster is greater than the current
distance to the kt* neighbor.

INRIA

Precision of Approximate Nearest-Neighbor Searches 9

Before returning the result to the user, a sequential scan of the file where outliers are
stored is performed. This might also update the current set of neighbors.

4 Computing Approximate Radiuses and Controlling Pre-
cision

This section presents the method computing the approximate radiuses of each cluster. This
method takes into account the distribution of the vectors in each cluster, their sizes, their
populations. It computes these approximate radiuses for several predetermined levels of
imprecision set beforehand (e.g. 0.01, 0.02, 0.10, ...). Given the level of imprecision
actually selected by a user at run-time, the system selects for each cluster the corresponding
appropriate radius to consider during the search.

Since approximations of clustered are considered, it is possible that one or more vectors
that would be in the exact answer set are actually missing in the approximate set of answers
eventually returned to the user. Such vectors are called missing vectors. If we focus on one
specific missing vector, because the approximate NN-search considers approximate radiuses
instead of exact (and bounding) radiuses, then we can assert this vector is located in a very
particular area of the specific cluster in which this vector is located, area bounded by the
exact radius of that cluster and by one particular approximate radius of that same cluster.

This section presents how the volume of this area for every single cluster is controlled,
since, for one cluster, this volume is linked to the probability for a vector of that cluster,
if it is in the exact result, to be missing in the approximate result. For the sake of clarity,
the method is described here for a single imprecision level defined beforehand, this level
being also the one used at run-time, and called a. Predefining several levels beforehand and
selecting one a among them at run-time is a straightforward extension.

The presentation of the technique is decomposed in 4 steps:

1. We first explain where missing vectors can only be located in each cluster, and why the
volume of the area in which they can only be is directly determined by the imprecision
of the search.

2. We then explain the relation between the global level of imprecision a and the local
imprecision settings «a; that have to be considered at the level of each cluster.

3. We then detail how we use each «a; to compute the corresponding approximate radius
of each cluster if we assume that vectors in clusters follow an isotropic distribution.

4. We finally relax this assumption and present a more general way to compute approx-
imate radiuses, even if the distribution of vectors in clusters is anisotropic.
4.1 Hyper-rings and Hyper-caps

This first part explains where missing vectors can only be located in each cluster. We focus
on one specific cluster, C;. A graphical representation of C; is provided by Figure 1, in a 2d,

RR n~° 4675

10 Berrani & Amsaleg € Gros

Figure 1: One Hyper-ring and one Hyper-cap

Euclidean space, however. The minimum hypersphere bounding this cluster, called MHS;,
is centered on ¢; and its radius is r;. We also suppose that one approximation of this cluster
has been computed, somehow. The output of the method computing this approximation is a
value for ¢; that is used to shrink the radius of C;. ¢; is computed given the imprecision levels
that are predefined (recall here that we only consider one such level for simplicity). This
approximation is an hypersphere, called AHS;, centered on ¢; with a radius equal to r; — ;.
AHS; is depicted as the inner and striped disk on the Figure. C; contains several vectors,
but one specific vector, called V, is a missing vector. On the Figure, C; contains 4 vectors,
3 represented by grey dots, and the other vector, represented by a solid black dot, is V.
Because V is missing, then we can make the following remarks:

e (C; in which V is has been filtered out by the filtering rules. Otherwise, if C; had
not been filtered out, then all vectors from C; would have been considered by the
approximate NN-search, and therefore V' would not be missing. (C; is obviously not
filtered out in the case of the exact search since one of its vector, namely V, is in the
answer set.)

e V is inevitably located in the very specific area of C; which is upper-bounded by MHS;
and lower-bounded by AHS,;. This area is called the hyper-ring of C;, noted HR;, and
visible on Figure 1.

o If dmin; denotes the minimum distance between a query point ¢ and MHS; (g and
dmin; can be seen on Figure 1), then V in C; is precisely located in the region of C;
enclosed between the intersection of MHS; and the hypersphere centered on the query
point g with a radius equal to dmin; +¢;. This specific region is included in HR; and
is called the hyper-cap of cluster C;, noted HC;. HC; is depicted on Figure 1 as the
plain grey area.

It is quite obvious that the volume of HR; is related to the imprecision of the search
(hence to &;) because the larger is the volume of the ring of one cluster, the higher is the
probability for any vector of that cluster to be located within that ring (and possibly within
the cap once the query point is known). The next section investigates the relationships
between ¢; (and therefore HR; and HC;) and .

INRIA

Precision of Approximate Nearest-Neighbor Searches 11

4.2 From o to o

This section explains how approximate radiuses corresponding to a given « are determined.
It presents how we relate a to probabilities at the level of each cluster, which will ultimately
be at the root of the computation of approximate radiuses.

Enforcing the global level of imprecision a asks to control, at the level of each cluster,
the local probability «; for a vector of that cluster, if it is in the exact result, to be missing
in the approximate result. We introduce the following notations:

e P(miss(V)) is the probability for a vector V' to be a missing vector; This probability
must verify the global imprecision constraint P(miss(V)) < a.

e P(Ve(;) is the probability for a vector V to be located within cluster C;.

e P(miss(V)|V e C;) is the probability for a vector V' to be a missing vector, knowing
that V is located within cluster C;. Our goal is to find «; such that, Vi, P(miss(V)|V €
C;) < a; enforces the global imprecision constraint.

Because each vector belongs to one and only one cluster, (V€ C;) forms a partition of the
event space. Hence, P(miss(V)) can be formulated as follows:

P(miss(V)) = ZP(miss(V)WE Ci)P(Ve;) (1)

From this equation, we are trying to determine P(miss(V)|V € C;), for every single
cluster C;. A solution is possible if we consider that P(miss(V)|V € C;) = P(miss(V)|V €
C;),VYi,Vj, that is, the probability of missing a vector is uniformly distributed over all
clusters, independently of their relative position to the query point or to their population.

By denoting 8 = P(miss(V)|VeC;), it is possible to rewrite (1) as:

P(miss(V))

Z,@P(VG Cz) <«
P(miss(V)) = ﬁz P(VEC;) < a

since ZP(VG cH)=1

2

P(miss(V)) = fB<a (2)
Hence, it is possible to conclude that
P(miss(V)|Ve(;) < a, Vi (3)

that is, enforcing P(miss(V)|V € C;) < a for each cluster C; ensures that, globally,
P(miss(V)) < a. The next section shows how the radiuses of approximate hyperspheres
given a are computed.

RR n~ 4675

12 Berrani & Amsaleg € Gros

Figure 2: Using an Hyperplan to Approximate HC}

4.3 From Hyper-rings, Hyper-Caps and o to Approximate Radiuses

We present here how the number of vectors that are in the hyper-ring of each cluster is
determined. We then explain that, under the specific assumption of isotropy, the number
of vectors that are in the hyper-cap of each cluster is a simple proportion of what is in
the hyper-ring. We will then be ready to present the numerical method used to compute
radiuses.

To enforce (3), the number of vectors located in the hyper-cap of C; (noted card(HC;))
over the total number of vectors belonging to C; (noted card(C;)) must be less or equal
to «, that is:

card(HC;)

card(C;) @ “)

(4) indicates that, to enforce a at the level of cluster C;, the approximate radius that
determines the volume of HR; must be such that the resulting hyper-cap HC; contains at
most a proportion « of all the vectors of C;.

card(HC;) depends on the distance between g and cluster C; because this impacts the
(inner) curvature of HC;. For a cluster C; and a given approximate radius, the further q is,
the bigger is the hyper-cap of cluster C;. Depending on the distance between ¢ and each
cluster is very problematic since it is not possible to account for all possible locations of
g. It is possible to break this dependency by considering an overestimation of HC;, called
HC';, defined as the intersection of C; with an half-subspace. This half-subspace contains ¢
and is bounded by an hyperplan orthogonal to (g, ¢;) and located at a distance of dmin; +¢;
from ¢. Note that one hyper-cap defined using such an hyperplan is always larger than the
same hyper-cap defined using its actual curvature. Relying on hyperplans is therefore a safe
approximation since it overestimates the probability to miss a vector. Figure 2 shows an
example of this hyperplan, denoted as a dotted straight line. Note the volume of the plain
grey area increased with respect to Figure 1. From now on, all hyper-caps mentioned in the
rest of this paper must be understood as approximate by hyperplans.

card(HC;) also depends on the distribution of the data points within HR; (and therefore
within C;) and also on which “side” of this cluster the query point is close to. If the

INRIA

Precision of Approximate Nearest-Neighbor Searches 13

distribution of the data points within cluster C; follows a privileged direction, card(I/IEi)
will be very different if g is also aligned with this direction (in this case card(I/{E’i) will be
large), or if ¢ is orthogonal to this direction (in this case ca,rd(I/Iai) will be small). For
simplicity, we temporarily assume that points in each HR; follow an isotropic distribution.!
Section 4.4, however, reconsiders this assumption and accounts for more general distribution
models.

Because points in all hyper-rings are supposed to follow an isotropic distribution, the
number of vector in one hyper-cap is a proportion of the number of vectors in the corre-
sponding hyper-ring. Therefore, card(HC;) can be expressed as:

card(C;) = card(HR;) %
~ ‘ vol(ﬁaz‘)
=card(HR;) vol(MHS;) —vol(AHS;) ¥

where vol(I/{Ei) is the volume of the hyper-cap of C;, vol(HR;) is the volume of the hyper-
ring of C;, vol(MHS;) the volume of the minimum hypersphere bounding C; and vol(AHS;)
the volume of C;’s approximate hypersphere.

Using (5), it is possible to rewrite (4) as follows:

vol(ﬁz'i) card(HR;) (©)
vol(MHS;)—vol(AHS;) card(C;) >

Except vol(MHS;), all the terms in (6) depend on the size of the approximate hypersphere
of C;. The radius of this approximate hypersphere is the unknown to find from this unique
inequality. We solve it and get the largest radius that verify (6) by first making the following
preliminary remarks:

e card(HR;) can not be expressed analytically.
o card(HR;) decreases when the radius of C;’s approximate hypersphere increases.
e card(HR;) varies within IV.

Given these remarks, it is possible to resolve (6) numerically and to obtain the value
for the radius of the approximate hypersphere of C; given one specific a. The numerical
method we use relies on a bisector-based strategy within the interval [0,7;]. Due to lack of
space, we do not include here the corresponding pseudo-code.

1We do not assume, however, that all hyper-rings of all clusters are identical. Their distribution only
share the isotropic property.

RR n~4675

14 Berrani & Amsaleg € Gros

4.4 Arbitrary Distributions in HR;

The isotropic distribution assumption does not hold in the general case. We give here initial
ideas to extend the above approach to cope with arbitrary distributions of vectors within
hyper-rings on a per cluster basis. Additional investigations are required, however.

The previous section assumed an extreme case in the sense that it assumed the isotropic
distribution to hold for all HR;. Another extreme case is to consider that the vectors in all
the hyper-rings of all existing clusters are all included in their associated hyper-cap. In this
case, the vector distribution is severely skewed and the isotropic assumption does not hold
anymore.

In fact, for a given «, the real distribution of vectors in hyper-rings is, for each cluster,
between the two above extreme cases. We can therefore try to estimate, for each cluster, the
probability for the isotropic distribution to hold. For cluster Cj, this probability is called
P(ID;). This probability allows to rewrite P(miss(V)) as:

P(miss(V)) =P(miss(V)|ID;)P(ID;) + P(miss(V)|ID;) P(ID;) (7

where P(miss(V)|ID;) is the probability of having V' missing when the cluster is isotropic.
Supposing this assumption holds for C;, then P(miss(V)|ID;) can be deduced from (6). If

it it does not hold, then, from (4), P(miss(V)|ID;) < card(HR:) 1t js therefore possible to

card(C;) °
rewrite (7) as:
P(miss(V)) =
VOI(I/fai) card(HR;)
(vol(MHS,-)—vol(AHSi) card(C;)) P(ID;) +
card(HR;) .
(i) @0 <o

In this inequality, P(ID;) is the only unknown. In general, determining what is the
right value for this probability for each cluster require to use statistical approaches. For one
cluster C; and given one predetermined a, it is possible to estimate P(ID;) by first computing
C;’s approximate hypersphere under the assumption of having an isotropic distribution, and
then estimate how many vectors fall in C;’s hyper-cap. Then, several random vectors can
be generated and used as queries in order to count how many vectors of C; actually miss in
the approximate result. Comparing this number to the estimated number of missing vectors
is key to tune P(ID;) for every single cluster.

In general, if we assume by default that clusters are all anisotropic (therefore setting
P(ID;) =0, Vi), then the search will prefer safety (that is, loosing as few points as possible)
over speed. In this case, all clusters will only be slightly shrunk, and the filtering rules will
not declare many clusters as being irrelevant. The response time improvement will therefore
not be dramatic. In contrast, setting P(ID;) = 1, Vi, incurs an opposite behavior: clusters
are in this case heavily shrunk, the filtering rules become very aggressive and the response-

INRIA

Precision of Approximate Nearest-Neighbor Searches 15

times tends to drop to small values. This, however, increases the chances of loosing points,
especially if the real distribution of vectors in clusters is far from being isotropic.

5 Performance Evaluation

This section provides an performance evaluation of the technique detailed above. The first
experiment shows how evolves the precision of the approximate results. The second exper-
iment shows the impact of the dimensionality of data over the response time. The third
experiments investigates the relationships between the response time of our technique and
P(ID). Finally, the fourth and last experiment shows the performance of the search tech-
nique when the size of the database increases. We first describe our experimental setup and
the datasets we used.

5.1 Experimental Environment and Implementation of the Clus-
tering

The technique computing approximate radiuses and the corresponding NN-search algorithm
are implemented in C++. All the algorithms run on a Sun Blade 100 workstation under
SunOS 5.7. Its CPU is a 502 MHz UltraSPARC-IIe, with 763 Mb of main memory and 73 Gb
of local disk. All the response times reported here have been obtained using getrusage().

The clustering algorithm we use is derived from the first phase of Birch [ZRL96]. It has
couple crucial differences, however. Birch ends its first phase when all the created micro-
clusters can fit in the allowed main memory. Instead, we stop our clustering when the number
of micro-clusters created falls bellow the maximum number of clusters that are allowed to
exist. The variance of data points drives the radius of Birch’ clusters. Instead, radiuses of
clusters in our implementation are exact in the sense that each defines a minimum bounding
hypersphere. Birch uses a hierarchical approach to quickly find the potential clusters in
which one point might fall, which therefore avoids the need to examine many irrelevant
clusters. This hierarchical approach greatly accelerates the insertion of points in clusters,
but may also cause many points to be misplaced. Our approach for clustering does not
use any (accelerating) hierarchy. Instead, it examines all existing clusters every time one
point has to be inserted. We are well aware that this is not smart, that it does not scale
and that it makes the clustering awfully time-consuming. We have to point-out, however,
that the clustering is not in the critical path of the run time search since it is performed
beforehand, off-line. In addition, we were primarily interested in understanding how to come
up with an approximate k-NN-search method where the quality of the result can be easily
and intuitively set by users in a probabilistic manner. We therefore tried to be as less as
possible perturbed by bogus assignments of points in clusters: not using any hierarchy tends
to strongly diminish point mis-placements. Coming up with a smart clustering strategy is
part of our ongoing work.

RR n~°4675

16 Berrani & Amsaleg € Gros

The output of the clustering phase is a set of minimum bounding hyperspheres defined
by their center and their exact radius. As for Birch, clusters might overlap and outliers are
treated separately. Data points are stored sequentially on disk on a per cluster basis. No
specific data structure is used to index the clusters. Outliers are also stored in a separate
data file, in a sequential manner.

5.2 Overview of the Databases

Two different datasets were used to evaluate our approach. The first dataset is a 501 Mb
DB made of 24 dimension descriptors derived from 52,273 real life images. 610 images come
from a DB of still images found on the web?, while all other images come from various
TV broadcasts. The descriptors computed belong to the local differential descriptors fam-
ily [FRKV94, SM97], extended to cope with color [GFBO01]. On average, more than 95 de-
scriptors are computed for each image. Therefore, the total number of descriptors for our im-
age bank is 5,017,298. Among these images, we know particularly well 1,816 images (result-
ing in 411,409 descriptors) because we extensively used them in past works [AG01, AGBO1].

The second dataset is made of 6 subsets of 22,299 descriptors all computed from the same
22,299 images extracted from various video-clips (1 image over 20 is used here). The subsets
differ by the dimensionality of their descriptors: it ranges from 27 up to 512. The descriptors
of a single subset, however, have all the same number of dimensions. The descriptors are
color histograms. The number of bins for histograms defines the dimension of descriptors and
therefore defines what is a subset. All the descriptors for all bin’s values are computed from
the images: lower dimension descriptors are not obtained by truncating higher dimension
descriptors. In the case of 512d descriptors, the resulting subset occupies slightly more
than 45 Mb on disk. This second dataset is quite small in volume, yet big in terms of
dimensionality. It allowed us to investigate the behavior of our scheme with respect to the
“curse of dimensionality” problems and to understand how our technique scales.

5.3 Experiment 1: Precision of the Search

The goal of this first experiment is to study the effective precision of the approximate NN-
search with respect to a.

For this experiment, we focused solely on the well known 1,816 images (411,409 descrip-
tors, 24d). The noise rate for the clustering was set to 0.15, that is, clusters containing
less than 15% of the average population of all clusters are considered to contain noise. The
corresponding vectors are the outliers that we treat separately. Given this DB and this
noise rate, the clustering algorithm created 1,868 clusters and found 58,836 outliers. We
also created a set of 200 queries. The vectors used as queries were randomly picked in the
DB. Each query asks for 15 neighbors.

To study the precision of approximate NN-searches, we first retrieved the 15 exact NN
of each query vector. We then performed the 200 approximate NN-searches varying a.

?http://www.inrialpes.fr/movi/pub/Images/index.html

INRIA

Precision of Approximate Nearest-Neighbor Searches 17

0.5
Ve
Ve
&= P(ID)=1 e
-6~ P(ID)=0.9 -
—& P(ID)=0.8 e
w -, |-B P(ID)=07 - o
Z %% |- P(D)=06 o
-5~ P(ID)=0.5 gy
—_ Ve
'g — P(ID)=0 . 5 ‘
é P Ve
5 0.3 y A *]
c P 7
i) P %
g - Z (%)
o
S 74
% 0.2} 1 B
& P g /
< . 5
01 ’ e g % .
gy
Ve d A v
= o : e (%
0 0.1 0.2 0.3 0.4 0.5
o

Figure 3: Exp. 1. DB= 411,409 vect., 24-d ; Query= 200 vect., 15 NNs ; estimating the
probability of missing an exact NN in the approximate result.

Then, for each result set, we computed the proportion of the exact answers that were not
retrieved by the approximate process. We then averaged all these proportions. This averaged
proportion corresponds to an empirical estimation of the overall imprecision of the search.
Figure 3 presents these results for various values of « and for various probabilities P(ID).?

This Figure shows the average proportion of missing vectors given the probability « set.
It shows, for example, that when « is set to 0.4, that is, the approximate search is allowed to
miss 6 (among 15) of the exact nearest neighbors of each query point, then, when P(ID) =1,
the average proportion of missing vector observed in all the 200 approximate results sets
is 0.374, that is, on average, the approximate NN-searches miss 5.61 vectors that are the
actual NN of the query points. For all P(ID), the measured imprecision is always smaller
than a (no points are above the diagonal line).

Varying P(ID) has subtle effects. Recall this gives the probability for the isotropic
distribution to hold. When P(ID) = 0, the approach assumes that all vectors in hyper-

3P(ID) means here that the probability P(ID;) is the same for all the clusters.

RR n~°4675

18 Berrani & Amsaleg € Gros

rings are all in hyper-caps. This tends to make the corresponding approximate radiuses
(almost irrespective of «) extremely close to the exact radius of the minimum bounding
hypersphere of all clusters. This filters out many clusters, but not enough to possibly miss
vectors. This, in turn, causes the actual precision of the search to be much higher than the
one set. This can be observed on the Figure, where, for small P(ID), the actual number of
missing vectors is also very small. In contrast, when P(ID) is close to 1, then approximate
radiuses are small enough (with respect to the radiuses of the minimum bounding spheres of
clusters) to aggressively filter clusters. Since many clusters are filtered out, it is more likely
that the true NN of query points are missed. This is why, for example, the line showing the
imprecision when P(ID) = 1 follows closely the diagonal line. As a matter of fact, it seems
that our clusters are, on average, quite isotropic.

We also measured the precision of the search for all the experiments presented below.
We found similar results as the ones described here, that is, the measured precision is always
very close to a. No additional precision measurements are therefore given in the remainder.

5.4 Experiment 2: Influence of Data Dimensionality
5.4.1 Dataset 1: 411,409 desc., 24d

The second experiment shows the influence of the dimensionality of data on the performance
of the search. In this experiment, we re-used again the previous 411,409 descriptors having
24 dimensions. These descriptors were then truncated to 5, 7, 10, 15 dimensions. Each
resulting set of data was then clustered (same noise ratio as the one used previously). Table 1
summarizes their characteristics. In this table, Max pop and Min pop correspond to the
maximum and minimum number of vectors found in the clusters. We also reused the previous
set of 200 query vectors (truncated accordingly). In this experiment, P(ID) = 1.

In this experiment, we gave 3 different values to a. One of them is 0. In this case, all
the approximate radiuses considered during the search are equals to the exact radiuses of
all minimum bounding spheres. Therefore, o = 0 is a lossless search which gives the exact
answer. Irrelevant clusters that are filtered out can not, in this case, contain any missing
vector. Figure 4 shows the resulting cumulative response time when searching the 20 NN of
each of the 200 query vectors, varying the dimension of the vectors and varying the value of
a. This Figure also shows the response time of a traditional sequential scan since it remains
competitive in high-dimensions.

d #cl. #4 | Foutliers | Max pop | Min pop
5 | 1,513 | 370,230 41,179 7,449 25
7 | 1,824 | 370,069 41,340 6,504 22
10 | 1,905 | 364,359 47,050 9,292 20
15 | 1,719 | 357,170 54,239 12,672 25
24 | 1,868 | 352,573 58,836 17,891 20

Table 1: Exp. 2. Description of dataset 1, varying d. DB= 411,409 vectors.

INRIA

Precision of Approximate Nearest-Neighbor Searches 19

90

—— Seq. scan

80r | —=~ Exact search (a = 0)

—&— Approx. search (o = 0.01)
701 | = Approx. search (o = 0.20) R

60

50

40

Response time (s)

20 b

10 b

0 | | | | | | | | |
4 6 8 10 12 14 16 18 20 22 24

Dimension of vectors

Figure 4: Exp. 2., dataset 1. Query= 200 vect., 20 NNs ; increasing d, P(ID) = 1.

As it can be observed, the performance of our approach is linear, while much below
the sequential scan. In the case of 24 dimensions, 1,868 clusters were created, 352,573
vectors were clustered and there was 58,836 outliers. In this case, a sequential scan takes
80.14 seconds while the exact search (i.e., @ = 0) with our method takes 30.93 seconds,
that can be decomposed in 23.15 seconds for the cluster-based search and 7.78 seconds for
sequentially scanning the outliers. In this case, 1,599.31 clusters, on average, were filtered
out, and therefore, only 268.69 clusters, on average, were read (roughly 14% of the clusters).
This incurred the filtering out of about 68.82% of the clustered vectors. For a = 0.01,
in 24 dimensions, the overall response time is 16.09 seconds, decomposed in 8.31 seconds
for the cluster-based approximate search and 7.78 seconds for scanning the outliers. In
this case, 1,843.82 clusters, on average, were filtered out. Considering only 1.29% of the
clusters, in turn, eliminated about 93% of the clustered vectors from the analysis, making
the approximate NN-search 4.98 times faster than the sequential scan.

These numbers can be found in Table 2, which also provides additional numbers for
several values of o and for all the dimensions considered in this experiment. Each line of

RR n~4675

20 Berrani & Amsaleg € Gros

Search, a =0 Search, o = 0.01 Search, oo = 0.10 Search, o = 0.20
d %cl read | %v read || %cl read | %4 read || %cl read | %% read || %cl read | %% read
5 2.31 6.56 0.61 1.98 0.24 0.77 0.15 0.52
7 5.06 12.32 0.99 3.15 0.35 1.30 0.20 0.75
10 7.06 16.32 1.23 4.25 0.41 1.66 0.21 1.04
15 11.20 21.91 1.44 4.86 0.46 1.88 0.23 1.06
24 14.38 31.18 1.29 6.50 0.37 2.67 0.18 1.61

Table 2: Exp. 2., dataset 1. % of clusters and vectors read, 20 NNs, P(ID) = 1, varying d
and a.

| Radius |
exact
approx, a = 0.01

FullCl |
0.4757

FreqCl |
0.5433

ThinCl]|
0.7838

Average
0.4946

(64.09%) 0.1708

(63.40%) 0.1988

(68.11%) 0.2499

(58.47%) 0.2054

approx, a = 0.10

(77.50%) 0.1070

(76.29%) 0.1288

(81.19%) 0.1474

(74.99%) 0.1237

approx, a = 0.20

(92.45%) 0.0755

(83.14%) 0.0916

(87.13%) 0.1008

(83.20%) 0.0831

Table 3: Exp. 2., dataset 1. Reduction of radiuses, d = 24, P(ID) = 1, varying a.

this table shows, for a specific dimension d, the percentage of clusters and vectors that
were read during the approximate search for several values of a. These percentages are
with respect to total number of existing clusters and the total number of clustered vectors,
given by Table 1. There is no direct relationships between the number of clusters and the
number of vectors that might be read by the search: clusters are not balanced, and the
search does not accesses the same clusters when the dimension changes. It therefore should
not be surprising to observe that more vectors might be read even when less clusters are
accessed. It is possible to find the numbers mentioned in the above paragraph by looking
at the d = 24 line. Note that this table gives numbers for o = 0.10 while the corresponding
response times are not plotted on Figure 4 for the sake of readability.

It is interesting to see on Figure 4 that no major response time improvements are observed
even when « is increased (and therefore the precision decreased). The reason is that —if we
consider only one cluster for simplicity— when « is increased, then the relative differences
between consecutive radiuses tend to be smaller since the density of the cluster increases (its
volume decreases much faster than the number of points in the approximate hyperspheres),
which, in turn, does not allow the filtering rules to filter out much more clusters.

Table 3 gives evidence of this phenomenon. This table gives the exact radius of 3 partic-
ular clusters in the case of 24 dimensions, P(ID) = 1: the cluster that contains the largest
number of vectors (17,891 vectors), the cluster that is the most frequently accessed on aver-
age by the 200 queries (accessed 34 times when @ = 0.01) and the cluster that is, on average,
the most shrunk when considering approximate radiuses. These clusters are referred to as
FullCl, FreqCl and ThinCl, respectively, in the Table. This table gives also the approximate
radiuses that have been computed for the 3 specific values of a mentionned above (0.01,
0.10 and 0.20). If we focus on FullCl, we can observe that its exact radius is 0.4757 while

INRIA

Precision of Approximate Nearest-Neighbor Searches 21

d | #cl #v | #outliers | Max pop | Min pop
27 298 | 21,555 744 513 15
64 300 | 21,726 573 600 15

125 298 | 21,809 490 545 14
216 297 | 22,029 270 472 11
343 295 | 22,001 298 704 11
512 296 | 22,038 261 7 11

Table 4: Description of dataset 2, varying d. DB= 22,299 vectors.

Search, a =0 Search, a = 0.01 Search, a = 0.10 Search, a = 0.20

d || %clread | %v read || %cl read | %o read || %cl read | %o read || %cl read | %v read
27 8.49 9.95 1.29 1.85 0.68 1.13 0.51 0.91
64 17.01 19.85 1.05 1.56 0.61 1.04 0.50 0.86
125 24.93 28.98 0.91 1.37 0.56 0.95 0.46 0.83
216 31.46 37.43 0.80 1.37 0.53 0.96 0.44 0.83
343 34.56 40.74 0.72 1.30 0.47 0.96 0.42 0.86
512 32.17 39.07 0.50 1.25 0.43 1.08 0.39 1.04

Table 5: Exp. 2., dataset 2. % of clusters and vectors read, 20 NNs, P(ID) = 1, varying d
and a.

the approximate radius drops down to 0.1708 when o = 0.01 and to 0.1070 when o = 0.10.
In addition, this table provides the corresponding reduction factor in parentheses. Overall,
these numbers show that the speed with which radiuses are reduced decreases for larger val-
ues of a, which in turn, diminishes accordingly the number of clusters that can be filtered
out. Note this table also give numbers when averaging the radiuses of all existing clusters.

5.4.2 Dataset 2: 22,299 desc., 512d

To better understand the behavior of our approximate NN-search, we conducted additional
dimension-related experiments using our second dataset. Its characteristics are summarized
Table 4 and the cumulated response time for searching the 20-NN of 200 query vectors are
depicted by Figure 5. In this experiment, P(ID) = 1. As observed previously, response
times are linear when d increases. In the case of 512 dimensions, the sequential scan needs
84.37 seconds to complete the search. The approximate search when o = 0 (again, this
returns the exact result) needs 29.95 seconds. Setting a to 0.01 tremendously improves
the response time: it drops to 3.57 seconds (speedup of 23). Increasing o to 0.20 does not
improve further the response time since it is 3.45 seconds. If we observe the number of
clusters and vectors filtered out in the case of this second dataset (see Table 5), then we
find rather similar information as in the case of dataset 1. We also computed the reduction
in terms of the length of radiuses for dataset 2, and found evidences corroborating what
we found earlier. For example, in the case of 512 dimensions, the average radius length is

RR n~ 4675

22 Berrani & Amsaleg € Gros

90 ‘

—5— Seg. scan

80 | -& Exact search (a = 0)

—6— Approx. search (o = 0.01)
—x— Approx. search (a = 0.20)

70

Response time (s)

0 100 200 300 400 500 600
Dimension of vectors

Figure 5: Exp. 2., dataset 2. Query= 200 vect., 20 NNs ; P(ID) = 1, increasing d.

21,668.0. This length drops down to 2,217.8 (reduction of 89.75%) when a = 0.01, to 1,225.4
(94.34%) when o = 0.10 and to 805.12 (96.28%) when a = 0.20.

5.5 Experiment 3: Response Times, varying P(ID)

Section 4.4 pointed-out a possible method for setting P(ID) at the level of every single
cluster. This method, however, has not yet been implemented and its effectiveness is still
to be proved. That section also pointed-out the consequences of setting P(ID) to 0 or to 1:
low values for P(ID) forces the search to favor safety over speed. While the first experiment
above was focused on the effective precision observed with respect to varying a and varying
P(ID), the experiment described here details the impact of varying P(ID) on the response
time of a search.

In this experiment, we focused solely on the 24 dimensions vectors extracted from
dataset 1 and on the 512 dimensions vectors of dataset 2. We also created 200 query
vectors, and each query was asked to retrieve 20-NN. We first set P(ID) = 0 and we mea-

INRIA

Precision of Approximate Nearest-Neighbor Searches

23

24-d Response Time (s) %cl read %0 read

o || PID)=0 | P(ID)=1 || PUD)=0 | PUD)=1 || P(ID) =0 | P(D) =1
0.01 25.78 16.09 12.97 1.29 22.36 6.50
0.10 20.16 13.74 5.78 0.37 13.13 2.67
0.20 18.38 13.11 3.75 0.18 10.18 1.61

Table 6: Exp. 3., dataset 1, d=24. Response times, % of cl and ¥ read, 20 NNs, varying «
and P(ID).

512-d Response Time (s) %cl read %7 read
o || PADY=0 | PUD) =1 || P(ID)=0 | P(ID)=1 || PUD) =0 | P(ID) =1
0.01 26.89 3.57 30.40 0.50 34.51 1.25
0.10 15.67 3.44 16.11 0.43 18.42 1.08
0.20 12.14 3.45 10.93 0.39 13.37 1.04

Table 7: Exp. 3., dataset 2, d=512. Response times, % of cl and ¥ read, 20 NNs, varying «
and P(ID).

sured the cumulative response times of the 200 searches, for 3 values of a. We then set
P(ID) =1 and performed the very same measurements. The corresponding measurements
in the case of 24d are given Table 6 and the ones for 512d are given Table 7. In addition to
the response times, these two tables give the percentages of clusters and vectors that were
actually read during the search process. Note that the response times for these experiments
when P(ID) = 1 have already been discussed in the above paragraphs. They are therefore
not repeated here.

As expected, setting P(ID) = 0 makes the search much slower then when P(ID) =1. In
the case of 512d, for example, the search is about 7.5 times faster when P(ID) = 1 compared
to the case where P(ID) = 0: 3.57 seconds versus 26.89.

Nevertheless, the search is still much faster than the sequential scan: the sequential
scan needs about 80 seconds to complete while the approximate search needs 25.78 when
P(ID) = 0 in the case of 24d (3.11 times faster); the sequential scan needs about 84 seconds
with 512d while the approximate search needs 26.89 seconds when P(ID) = 0 (3.14 times
faster). Therefore, setting by default P(ID) = 0 ensures safety since it is very unlikely that
any real neighbor of the query points will be missing, yet, it improves the search significantly.

5.6 Experiment 4: Varying the DB Size

The last experiment we show here uses the biggest database described above, that is, the
5,017,298 descriptors of 24 dimensions computed on the 52,273 images. To vary the size of
the DB, however, we generated various data sets by keeping only 100,000, 411,409, 1,000,000,
1,490,733 and 3,208,771 descriptors. Each set was then clustered (noise rate is 0.15) and
outliers stored separately. For example, 2,763 clusters were created and 147,039 outliers were

RR n~4675

24 Berrani & Amsaleg € Gros

1000

—&- Seq. scan
900 | - Exact search (a = 0) b
—&- Approx. search (o = 0.01)
8001 | —¥ Approx. search (o = 0.20) N

Response time (s)
S [6)] [e2] ~
o o o o
o o o o

T T T T

w

o

o
T

200

100

5 |
0 0.5 1 15 2 25 3 35 4 4.5 5

Database size x 10°

Figure 6: Exp. 4. 24d descr.; Query= 200 vect., 20 NNs ; increasing the size of the DB.

found in the case of the dataset containing 1,000,000 descriptors. We picked 200 vectors as
queries from the database.

Figure 6 shows the cumulative response times for the search of 20 NNs for each query
vector, for 3 values of a and for the sequential scan. In this experiment, P(ID) = 1. For
the database of 5,017,298 vectors, the response time of the cluster based search with a =0
is 2.35 times faster than the sequential scan (416.09 seconds vs. 977.59 seconds). With a
a = 0.01, our technique searches the 20 approximate neighbors 6.72 times faster than the
sequential scan (145.450 seconds vs. 977.59 seconds), while the average effective precision
stays above 0.99. In this case, on average, 99.08% clusters were filtered out, corresponding
t0 91.61% of the total number of vectors.

INRIA

Precision of Approximate Nearest-Neighbor Searches 25

6 Conclusion and Perspectives

This paper presents a new approach for performing efficient approximate k-nearest-neighbor
searches in high dimensional databases with a probabilistic control of the precision. The
desired level of precision for searches is given at run time, and can range from lossless (e.g.,
exact) searches, to lower precision searches. This approach trades result quality for reduced
query execution time.

Our approach assumes that most of the vectors are enclosed in clusters. Vectors not
in clusters are outliers, and are treated separately. Clusters are analyzed off-line to derive,
from their distribution and exact bounding hypersphere, a set of approximated bounding
hyperspheres corresponding to various precision levels defined beforehand. Approximated
radiuses are computed on a per cluster basis, and such that the global precision of the final
answer is enforced. The performance evaluation of this approach shows it is 6.72 times faster
than the sequential scan when it handles ore then 5 10® 24-dimensions vectors, even when
the probability of missing one of the true nearest-neighbors is below 0.01, and more than 2
times faster in the case of a lossless NN-search.

This approach currently makes some specific assumptions that must be carefully studied.
Vectors are supposed to be clustered, which, in turn, gives high importance to the quality of
the clusters on which our technique relies. Regardless of any technical issue, the quality of a
clustering heavily depends on the nature of the data to cluster. Data following a Gaussian
or a uniform distribution do not fit well in clusters. It is therefore likely that our approach
fails on ill-clustered data sets. Extremely poor clustering, however, probably do not exist
when considering real image descriptors computed over real data sets. We plan, however,
to clarify the range of data and descriptors our approach can efficiently handle.

Our approach also assumes specific metrics (Euclidean), shape for the clusters (hyper-
spherical) and distributions (isotropy), that we plan to relax. Determining if the isotropy
assumption holds for all clusters is inherently difficult as it is the case for all distribution
estimations in high-dimensional spaces. Section 4.4, pointed out a possible method to cope
with anisotropic vector distributions within clusters. This method, however, requires further
investigations. If we assume by default that clusters are all anisotropic (therefore setting
P(ID;) = 0), then the search will prefer safety (loosing as few points as possible) over speed.

References

[AGO1] L. Amsaleg and P. Gros. Content-based retrieval using local descriptors: Prob-
lems and issues from a database perspective. Pattern Analysis and Applica-
tions, 4(2/3), 2001.

[AGBO1] L. Amsaleg, P. Gros, and S. Berrani. A robust technique to recognize objects
in images, and the db problems it raises. In Proc. of the 7th Workshop on
Multimedia Information Systems, 2001.

RR n~° 4675

26

Berrani & Amsaleg € Gros

[AM93]

[AMN+98]

[BBKO1]

[Ber93]

[BFG9Y]

[BGRS99]

[BKK96]

[BWYS80]

[CMO0]

[CPOO]

[CPZ98]

[Falo6)]

[FRKV94]

S. Arya and D. Mount. Approximate nearest neighbor queries in fixed dimen-
sions. In Proc. of the 4th ACM/SIGACT-SIAM Symp. on Discrete Algorithms,
Austin, Texas, USA, pages 271-280, January 1993.

S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions.
Journal of the AcM, 45(6), November 1998.

C. Bohm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases.
ACM Computing Surveys, 33(3), September 2001.

M. Bern. Approximate closest point queries in high dimensions. Information
Processing Letters, 45, 1993.

K. Bennett, U. Fayyad, and D. Geiger. Density-based indexing for approxi-
mate nearest-neighbor queries. In Proc. of the 5th ACM Int. Conf. on Knowl-
edge Discovery and Data Mining, San Diego, CA USA, August 1999.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is "nearest
neighbor" meaningful? In Proc. of the 8th Int. Conf. on Database Theory,
London, U. K., January 1999.

S. Berchtold, D. Keim, and H. Kriegel. The X-tree : An index structure for
high-dimensional data. In Proc. of the 22nd Int. Conf. on Very Large Data
Bases, Mumbai (Bombay), India, pages 28-39, 1996.

J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected-time algorithms
for closest point problem. ACM Trans. on Mathematical Software, 6(4), 1980.

K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new
approach to indexing high dimensional spaces. In Proc. of the 26th Int. Conf.
on Very Large Data Bases, Cairo, Egypt, pages 89-100, September 2000.

P. Ciaccia and M. Patella. Pac nearest neighbor queries: Approximate and
controlled search in high-dimensional and metric spaces. In Proc. of the 16th
Int. Conf. on Data Engineering, San Diego, California, USA, February 2000.

P. Ciaccia, M. Patella, and P. Zezula. A cost model for similarity queries in
metric spaces. In Proc. of the 17th ACM SIGMOD Symp. on Principles of
Database Systems, June 1-8, 1998, Seattle, Washington, pages 59—68, 1998.

C. Faloutsos. Searching Multimedia Databases by Content. Kluwer Academic
Publishers, 1996.

L. Florack, B. Romeny, J. Koenderink, and M. Viergever. General intensity
transformation and differential invariants. Journal of Mathematical Imaging
and Vision, 4(2), 1994.

INRIA

Precision of Approximate Nearest-Neighbor Searches 27

[FTAAO1]

[Ger81]

[GFBO1]

[GIM9Y]

[GROO]

[Hen98]

[HS95]

[IM98]

[JDMO0]

[KPFOL1]

[LCGMW02]

[PKF00]

RR n~° 4675

H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi. Approximate
nearest neighbor searching in multimedia databases. In Proc. of the 17th Int.
Conf. on Data Engineering, Heidelberg, Germany, pages 503-511, April 2001.

J. Gerbrands. On the relationships between SVD, KLT and PCA. Pattern
Recognition, 14(1-6):375-381, 1981.

P. Gros, R. Fablet, and P. Bouthemy. New descriptors for image and video in-
dexing. In H. Burkhardt, H.P. Kriegel, and R. Veltkamp, editors, State-of-the-
Art in Content-Based I'mage and Video Retrieval, volume 22 of Computational
Imaging and Vision. Kluwer Academic Publishers, 2001.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proc. of the 25th Int. Conf. on Very Large Data Bases, Edinburgh,
Scotland, UK, pages 518-529, September 1999.

J. Goldstein and R. Ramakrishnan. Contrast plots and p-sphere trees: Space
vs. time in nearest neighbor searches. In Proc. of the 26th Int. Conf. on Very
Large Data Bases, Cairo, Egypt, pages 429440, September 2000.

A. Henrich. The LSDh—tree: An access structure for feature vectors. In Proc.
of the 14th Int. Conf. on Data Engineering, Florida, USA, pages 362-369,
February 1998.

G. Hjaltason and H. Samet. Ranking in spatial databases. In Egenhofer and
Herring, editors, Proc. of the 4th Int. Symp. on Spatial Databases, Portland,
Maine, USA, August 1995.

P. Indyk and R. Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In Proc. of 13th ACM Symp. on Theory of
Computing, Dallas, TX USA, pages 604-613, April 1998.

A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 22(1):4-37, January
2000.

F. Korn, B. Pagel, and C. Faloutsos. On the ’dimensionality curse’ and the
’self-similarity blessing’. IEEE Trans. on Knowledge and Data Engineering,
13(1):96-111, January 2001.

C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold. Clustering for approx-
imate similarity search in high-dimensional spaces. IEEE Trans. on Knowledge
and Data Engineering, 14(4):792-808, July 2002.

B. Pagel, F. Korn, and C. Faloutsos. Deflating the dimensionality curse using
multiple fractal dimensions. In Proc. of the 16th Int. Conf. on Data Engineer-
ing, San Diego, California, USA, March 2000.

28

Berrani & Amsaleg € Gros

[RKV95]

[SM97]

[VT00]

[WB00]

[WJ96]

[WSBOS]|

[ZRL96]

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, San Jose,
California, USA, May 1995.

C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 19(5), 1997.

R. Veltkamp and M. Tanase. Content-based image retrieval systems: A survey.
Technical Report UU-CS-2000-34, Institute of Information and Computing
Sciences, Utrecht University, Netherlands, October 2000.

R. Weber and K. Bohm. Trading quality for time with nearest neighbor
search. In Proc. of the 7th Conf. on Extending Database Technology, Konstanz,
Germany, March 2000.

D. White and R. Jain. Similarity indexing with the SS-tree. In Proc. of the 12th
Int. Conf. on Data Engineering, New Orleans, Louisiana, USA, September
1996.

R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In Proc. of
the 24th Int. Conf. on Very Large Data Bases, New York City, New York,
USA, August 1998.

T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering
method for very large databases. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, Montreal, Canada, June 1996.

INRIA

Precision of Approximate Nearest-Neighbor Searches 29
Contents

1 Introduction 3

2 Related Work 4

2.1 Cells and Filtering Rules 5

2.2 Approximate NN-Searches oo . 5

2.2.1 Dimensionality Reduction Approaches 5

2.2.2 Early Stopping Approaches oo 6

2.2.3 Geometrical Approaches L oL oo 6

2.2.4 Hashing-based Approaches L. 7

2.2.5 Probabilistic Approaches 7

3 Overview 8

4 Computing Approximate Radiuses and Controlling Precision 9

4.1 Hyper-rings and Hyper-caps oL 9

4.2 From ato a; o o i e 11

4.3 From Hyper-rings, Hyper-Caps and a to Approximate Radiuses 12

4.4 Arbitrary Distributions in HR; o 14

5 Performance Evaluation 15

5.1 Experimental Environment and Implementation of the Clustering 15

5.2 Overview of the Databases, 16

5.3 Experiment 1: Precision of the Search 16

5.4 Experiment 2: Influence of Data Dimensionality 18

5.4.1 Dataset 1: 411,409 desc., 24d, 18

5.4.2 Dataset 2: 22,299 desc.,512d oo 21

5.5 Experiment 3: Response Times, varying P(ID) 22

5.6 Experiment 4: Varyingthe DB Size 23

6 Conclusion and Perspectives 25

RR n~°4675

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http:/ /www.inria.fr
ISSN 0249-6399

