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Abstract—Kron Reduction (KR) is a methodology for analyz-
ing an electrical network by replacing it with a simpler circuit
having less nodes but the same terminal behavior of voltages and
currents at target vertices. Existing approaches to instantaneous
KR, however, can fail in preserving the structure of transfer
functions representing power lines. Therefore, even if the original
lines are passive RLC circuits, reduced lines might have transfer
functions that do not correspond to a physically realizable passive
system. To overcome this drawback, in this work we focus on
RL line models and propose two approximate KR algorithms
producing reduced lines with first-order transfer functions and
capable of representing exactly the asymptotic behavior of electric
signals, even if they are unbalanced. Then, we show how to apply
these KR methods to the design of decentralized voltage and
frequency controllers for AC islanded microgrids. Notably, we
focus on the Plug-and-Play (PnP) algorithm previously proposed
by some of the authors, which assumes loads connected to the
inverter outputs, and generalize it to networks where loads
appear in arbitrary positions. Theoretical results are validated
with numerical examples and the application of KR for designing
PnP controllers is assessed through a simulation on a 21-bus
microgrid.

Index Terms—Kron reduction, network-reduced model, decen-
tralized control, plug-and-play, AC islanded microgrids.

I. INTRODUCTION

Kron Reduction (KR) is standard tool for simplifying

linear electrical networks [1] while preserving the behavior

of electrical variables at target nodes. KR assumes network

nodes are classified either as internal or boundary nodes,

and provides an algebraic procedure for computing: (i) the

topology of a new network connecting boundary nodes only,

(ii) the value of admittances related to new edges and (iii)

equivalent currents supplied at boundary nodes accounting

for the effect of internal currents in the original network.

Graph-theoretical properties of KR have been analyzed in

[2], [3] for DC resistive networks. A general analysis of AC

three-phase balanced circuits in Periodic Sinusoidal Steady

State (PSSS), termed AC-KR, can be found in [4]. Recently,

several studies focused on generalizations of KR methods

preserving the electrical behavior of boundary variables not
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trol Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015
Lausanne, Switzerland.

giancarlo.ferraritrecate@epfl.ch, Corresponding author.

only in PSSS, but also during transients [2], [4], [5], [6]. In

these instantaneous KR procedures, network line admittances

are replaced by differential models, and sufficient conditions

guaranteeing well-posedness of the network reduction process

have been studied.

It should be noted that KR is not the only approach for ob-

taining dynamical models of reduced networks. For instance,

in the power system literature, multiport equivalencing meth-

ods based on the idea of fitting reduced models on samples

of the network frequency response have been proposed [7].

However, KR is different because it provides a mathematical

framework for simplifying electric networks without approxi-

mating the time evolution of boundary variables.

Existing instantaneous KR methods have a relevant limita-

tion: they do not guarantee that reduced line models will have

the same structure of the original ones, e.g. simple RL lines

could result in reduced lines with more complex dynamics

[6]. Therefore, even though this does not happen for simple

cases such as DC resistive or homogeneous networks [4], [3],

[2], in general one faces the problem of devising approximate

instantaneous KR methods for preserving selected features of

line models.

Motivated by applications to low-voltage microgrids [8],

in this paper we focus on RL line models. Indeed, wires

in microgrids have usually a short length and capacitive

effects can be disregarded, see [9, Chapter 5], [10, Chapter

6] and [11, p. 259]. For this kind of lines, we propose two

novel approximate KR methods termed approximate AC Kron

Reduction (aAC-KR) and hybrid Kron Reduction (hKR). We

show that these techniques ensure asymptotic equivalence

between original and reduced models, if networks reach a

PSSS. Unlike the instantaneous KR procedures in [2], [4], [5],

[6], aAC-KR and hKR provide reduced circuits whose lines

have first-order transfer functions, as the original lines. The

features of our methods are then validated through numerical

simulations.

In order to demonstrate the practical relevance of aAC-KR

and hKR, in the second part of the paper we show how to use

them to design decentralized voltage and frequency controllers

for AC microgrids, i.e. electrical networks composed of Dis-

tributed Generation Units (DGUs) and loads, operating either

connected or isolated from the main grid [8], [12], [13], [14],

[15], [16]. In particular, we focus on the latter operation mode,

thus dealing with Islanded microGrids (ImGs). KR has already

found applications to ImGs; for instance, in [17], [18] KR is

advocated as the procedure for mapping ImGs with general

topologies into their equivalent load-connected circuits, where

loads appear only at the terminals of inverters. This can be
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done by labeling other load nodes as internal and applying

KR to eliminate them. Following this procedure, any control

design method for load-connected ImG could be directly

extended to ImGs with arbitrary topologies by performing

control synthesis on the reduced network. However, control

schemes for ImGs often rely on additional assumptions, such

as specific line models. For instance, droop controllers are

tailored to either mainly inductive or mainly resistive lines

[19], while Plug-and-Play (PnP) controllers in [20] assume RL
lines. In this paper, we focus on the latter class of decentralized

regulators, as they enjoy the following features: (i) when a

DGU is plugged in, the design of the local controller can

be done on the fly as it requires no global model but only

the parameters of power lines connected to the DGU; (ii)

one can test in an automatic way if the addition/removal

of a DGU is critical for ImG stability by solving a local

optimization problem. Within this framework, we show that

both aAC-KR and hKR can be used to extend the design

method in [20] (which assumes load-connected ImGs and RL
lines) to arbitrary interconnections of DGUs and loads, while

preserving the structure of transfer functions describing power

lines. The design of PnP controllers based on the proposed

approximate KR methods is tested on a 21-bus ImG derived

from the IEEE test feeder in [21], enhanced with switches

yielding changes of line topology and plug-in/out of DGUs.

Simulations performed in PSCAD confirm the applicability of

our methods to control of ImGs.

The paper is structured as follows. Section II summarizes

the existing KR methods, highlighting the corresponding fea-

tures and limitations. In Section III, we present the approxi-

mate KR methods (aAC-KR and hKR), and in Section IV we

assess their performances through numerical simulations. In

Section V, we (i) introduce the models of DGUs and lines,

(ii) review the results in [20] about PnP control design for

load-connected AC ImGs, and (iii) show how to combine this

methodology with the proposed approximate KR techniques.

Simulations illustrating the joint use of aAC-KR/hKR and PnP

design are given in Section VI. Finally, Section VII concludes

the paper.

A preliminary version of this work has been presented at the

15th European Control Conference [22]. Differently from [22],

in which only hKR has been described, in the present paper

we (i) introduce aAC-KR, (ii) perform a detailed comparison

between the two approximate KR methods including numeri-

cal examples and simulations, (iii) provide a more general and

rigorous proof of [22, Proposition 1] showing the asymptotic

equivalence between the original network and the reduced

circuit obtained through hKR, and (iv) extend this latter result

also to aAC-KR.

Notation and basic definitions. We use fabc(t) =
[fa(t), fb(t), fc(t)]

T ∈ R
3 for denoting three-phase signals in

the abc frame. To fabc(t), we associate its representation in the

dq0 reference frame (i.e. fdq0(t)). It is obtained from fabc(t)
through the Park transformation [23], denoted with T (θ(t)),
θ(t) = ω0t, ω0 being the nominal network angular frequency.

To three-phase signals without zero-sequence component (i.e.

f0(t) = 0) we can associate their complex dq-representation

fdq(t) = fd(t) + i fq(t) without loss of generality.

When clear from the context, we omit time dependence

of electrical quantities. L [·] identifies the Laplace-transform

operator. Moreover, for a real valued function f(t), we indicate

with H[f(t)] and A [f(t)] the corresponding Hilbert transform

and analytic signal, respectively. They are defined as follows.

Definition 1 (Hilbert transform). The Hilbert transform H of
a real function f(t) is defined as [24]:

H(f(t))(t) = p.v.

∫

∞

−∞

f(τ)h(t− τ) dτ =
1

π
p.v.

∫

∞

−∞

f(τ)

t− τ
dτ

where h(t) = 1/(πt) and p.v. denotes the Cauchy principal

value (since the integral is improper).

Definition 2 (Analytic signal). The analytic signal f̄(t) =
A [f(t)] is a complex-valued function, whose real part is equal

to f(t), and its imaginary part is H [f(t)]. In formulae [24]:

f̄(t) = A [f(t)] = f(t) + iH [f(t)] .

The analytic signal generalizes the phasor concept. Notably,

the latter one is restricted to time-invariant amplitude, phase

and frequency, while the analytic signal allows for time-

varying parameters [24].

Algebraic graph theory. The cardinality of the finite set S
will be denoted with |S|. According to the definitions in [25],

a weighted graph G = (V, E ,W ) of order n = |V| is given by

a finite set of nodes V = {1, . . . , n}, a set of edges E ⊆ V×V
and a diagonal matrix W of dimension |E| × |E|, collecting

on its diagonal weights We, e ∈ E . In this work, weights can

be real numbers, complex numbers or SISO transfer functions

(in this case, we replace W with W (s)). An edge e ∈ E is a

self-loop if e = (i, i), for some i ∈ V; all graphs in this work

will not contain self-loops. A graph is undirected if (x, y) ∈
E =⇒ (y, x) ∈ E . In this case, the pairs (x, y) and (y, x) are

considered as identical and unordered. Otherwise, the graph is

said to be directed. The set of neighbors of node i ∈ V is Ni =
{j : (i, j) ∈ E or (j, i) ∈ E}. An undirected graph is connected

if, for all (i, j) ∈ V×V , there is a path from i to j. A directed

graph is weakly connected if its undirected version (obtained

by neglecting the edge orientation) is connected. The incidence

matrix of G [25] is denoted with B ∈ {−1, 0, 1}|V|×|E|. The

Laplacian of G is defined as the matrix L = B · W · BT

[25]. Note that, by construction, the Laplacian matrix has zero

row sum. We recall that, to a Laplacian matrix is possible to

associate a unique graph, up to the orientation of edges.

II. KRON REDUCTION METHODS FOR ELECTRICAL

NETWORKS

Let G = (V, E ,W (s)) be the weighted directed graph asso-

ciated with a given circuit. Following the formalism introduced

in [2], [4], [5], [26], each vertex corresponds to a node of the

network and each edge is a branch of the circuit (see the

example in Figure 1). For performing KR, the vertex set V
is partitioned into a set of boundary nodes Vb and a set of

internal nodes Vℓ. More specifically, subset Vb identifies the

nodes at which the behavior of electrical variables must be

preserved, while Vℓ contains the nodes to be eliminated.

We denote the nodal currents injected at boundary nodes

with Ib; the nodal currents injected at internal nodes are
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Iℓ and they are positive if entering into nodes. Nodal volt-

ages V are partitioned analogously. In this work, each edge

e1, ..., e|E| ∈ E corresponds to an electric RL line and the

orientation of the edges is arbitrary. We adopt the following

sign convention: reference directions of line currents coincide

with edges orientations and line voltages Ve, e = (i, j) ∈ E
are defined as Vi − Vj . Moreover, the weight of every edge

is given by its admittance transfer function We(s) accounting

for the dynamics of line e ∈ E .

Let us now consider an electrical network composed of n >
0 nodes, partitioned into nb > 0 boundary nodes and nℓ =
n−nb > 0 internal nodes. We collect the nodal currents in the

following vector: I =
[
ITb , I

T
ℓ

]T
, where Ib =

[

Ib1 , ..., Ibnb

]T

and Iℓ =
[

Iℓ1 , ..., Iℓnℓ

]T

. Nodal voltages V =
[
V T
b , V T

ℓ

]T
are

partitioned analogously. In order to account for the network

interconnections, by applying Kirchhoff’s Current Law (KCL)

and Kirchhoff’s Voltage Law (KVL) one obtains [6]:
(
Ib(s)
Iℓ(s)

)

=

(
Lbb(s) Lbℓ(s)
Lℓb(s) Lℓℓ(s)

)(
Vb(s)
Vℓ(s)

)

(1)

that is I(s) = L(s)V (s), where L(s) is the graph Laplacian

of the graph G with weights

Wij(s) =
1

Rij + sLij

(2)

modeling the admittance transfer function associated with

edges (i, j) ∈ E . By construction, one has Lij(s) = −Wij(s)
if (i, j) ∈ E and Lii(s) = −∑j∈Ni

Lij(s).
At this point, we have all the elements for introducing KR.

In particular, in the sequel we will focus on summarizing two

existing approaches, namely KR in phasors domain [4] (called

hereafter AC-KR) and instantaneous KR [6].

1 4

3

2 5

e1 e4 e5

e3

e2

e6

Fig. 1: Graph representing an electrical network.

A. AC-KR

Let us consider the directed graph G = (V, E ,W (s)),
where transfer functions Wij(s) in the form (2) represent the

relation between L [Vi(t)− Vj(t)] and L [Iij(t)]. We assume

the network is in PSSS with angular frequency ω0, hence

Vi(t) = Ai cos(ω0t+φi) and Ii(t) = Bi cos(ω0t+γi), ∀i ∈ V .

Moreover, we can associate each cosinusoid Vi(t) with the

corresponding rotating phasor ~Vi = Aiexp(i(ω0t+ φi)) [27].

Current phasors ~Ii are defined analogously. Let us now define

vectors ~V = [~V1, ~V2, ..., ~Vn]
T , ~I = [~I1, ~I2, ..., ~In]

T , and the

impedance Zij = Rij + iω0Lij of line (i, j). The relation

between nodal currents and nodal voltages is then given by:

~I = L
AC · ~V , (3)

where L
AC
ij = −1/Zij , if (i, j) ∈ E , and L

AC
ii =

∑

j∈Ni
1/Zij . In particular, by construction, LAC = L(iω0),

with L defined in (1).

Definition 3 (AC-KR). Let ~V , ~I and L
AC be partitioned

into boundary and internal components as in (1) and assume

L
AC
ℓℓ is invertible. AC-KR is given by the graph GAC

red =
(
Vb, Ered,WAC

red

)
associated with the reduced Laplacian

L
AC
red = K

(
L
AC
)
= L

AC
bb − L

AC
bℓ (LAC

ℓℓ )−1
L
AC
ℓb , (4a)

and

~Ib = L
AC
red

~Vb − T AC~Iℓ (4b)

T AC = −L
AC
bℓ (LAC

ℓℓ )−1, (4c)

where K(·) denotes the KR operator and T AC is the accom-

panying matrix of LAC .

Conditions for the invertibility of LAC
ℓℓ are given in the next

Lemma, which has been adapted from [28, Lemma 2.4.20].

Lemma 1. If all lines are represented by RL models and

the graph G is weakly connected, then the matrix L
AC
ℓℓ is

nonsingular.

It can be shown that the matrix L
AC
red in (4a)-(4b) is still the

Laplacian of the Kron reduced graph GAC
red [4] that is uniquely

defined up to the orientation of edges (which can be arbitrarily

chosen). Moreover, WAC
red,ij = −

(
L
AC
red

)

ij
for (i, j) ∈ Ered,

while T AC provides the vector of equivalent nodal currents

~̃Ib = T AC~Iℓ (5)

to be injected at boundary nodes of GAC
red in order to account

for the effect of eliminated currents ~Iℓ.
It can be shown that, as long as one provides the same

voltages ~Vb in G and GAC
red , the same current absorption Ib

is obtained in both cases, if currents (5) are injected into

boundary nodes GAC
red [3], [4].

At this point, it is convenient to show, through a simple

example, how to perform AC-KR, hence computing L
AC ,

L
AC
red and T AC , defined in (3), (4a) and (4c), respectively.

Example 1. We consider the linear, single-phase circuit G
shown in Figure 2a, and we assume the network is PSSS with

angular frequency ω0 = 2πf0, f0 = 50 Hz. Consequently,

all the voltages and currents can be represented through their

associated rotating phasors, i.e. ~V = [~V1, ~V2, ~V3, ~V4]
T , ~I =

[~I1, ~I2, ~I3, ~I4]
T . The vertex set of G is partitioned in boundary

and internal nodes as follows: V = {Vb,Vℓ}, where Vb =
{1, 2, 3} and Vℓ = {4}. As regards the edges e1, e2, e3 ∈
E , they correspond to RL power lines, and their parameters

are reported in Table I. Our aim is to derive, via AC-KR,

the equivalent network GAC
red connecting boundary nodes only

(see Figure 2b). Notice that this operation amounts to a Y−∆
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transformation. We start by writing the incidence and weights

matrices of G:

B =







−1 0 0
0 −1 0
0 0 −1
1 1 1







, (6)

WAC =





WAC
14 0 0
0 WAC

24 0
0 0 WAC

34



 ,

where

WAC
14 =

1

Z14
= 0.247− 1.552i

WAC
24 =

1

Z24
= 0.041− 0.451i

WAC
34 =

1

Z34
= 0.092− 0.290i.

Then, we compute the Laplacian matrix L
AC = B ·WAC ·BT ,

and partition it as in (1), thus having:

L
AC =

(

L
AC
bb L

AC
bℓ

L
AC
ℓb L

AC
ℓℓ

)

,

with

L
AC
bb = diag (0.247− 1.552i, 0.041− 0.451i, 0.092− 0.289i) ,

L
AC
bℓ =





−0.247 + 1.552i
−0.041 + 0.451i
−0.092 + 0.289i



 , L
AC
ℓb = (LAC

bℓ )T ,

and

L
AC
ℓℓ = 0.380− 2.292i.

Next, using (4a), one obtains the reduced Laplacian L
AC
red =





0.087− 0.501i −0.026 + 0.305i −0.061 + 0.196i
−0.026 + 0.305i 0.039− 0.363i −0.014 + 0.057i
−0.061 + 0.196i −0.014 + 0.057i 0.075− 0.253i



 , (7)

while the accompanying matrix T AC , is given by (4c), as

T AC =





0.676− 0.004i
0.194− 0.014i
0.129 + 0.019i



 . (8)

At this point, we have all the elements for computing the

weights of the reduced edges r1, r2, r3 ∈ Ered as WAC
red,ij =

−
(
L
AC
red

)

ij
(see Table I for the corresponding line param-

eters). Moreover, from (5) the equivalent vector of currents

injected at boundary nodes of GAC
red is

~̃Ib = T AC~I4.

In the next Section, we summarize a KR method which,

differently from AC-KR, allows to reduce linear circuits while

preserving the behavior of boundary variables also in non-

stationary regime (e.g. during transients).

Edge Resistance [Ω] Inductance [mH]

e1 0.1 2
e2 0.2 7
e3 1 10

r1 0.2746 10.354
r2 1.4482 14.8132
r3 3.9315 52.3706

TABLE I: Example 1 - Line parameters of the original and

reduced network.

1 2

3

4
e1 e2

e3

(a) Original network G.

1 2

3

r1

r3r2

(b) Reduced network GAC
red

.

Fig. 2: Example 1 - Original and reduced networks. Boundary

and interior nodes are represented by red squares and blue

circles, respectively.

B. Instantaneous KR

Instantaneous KR is a general reduction method which

can be applied to any system composed of passive R, L,

C components while guaranteeing the equivalence between

original and reduced boundary variables not necessarily in

PSSS [6]. This method, however, presents some drawbacks

(discussed later in this Section) which further motivate the

need for the approximated KR methods proposed in Section

III.

Definition 4 (Instantaneous KR). Assume Lℓℓ(s) in (1) is

invertible1 for some s ∈ C. Instantaneous KR is given

by the graph Gred = (Vb, Ered,Wred(s)) associated with

Lred(s) = K (L(s)) (up to the orientation of edges, which

can be arbitrarily chosen) and [6]

Ib(s) = Lred(s)Vb(s)− T (s)Iℓ(s) (9a)

T (s) = −Lbℓ(s)L
−1
ℓℓ (s). (9b)

We highlight that (9b) corresponds to (4c) when L
AC is

replaced by L(s). Moreover, (9a) provides a relation similar

to (4b). In particular, the vector

Ĩb(s) = T (s)Iℓ(s) (10)

identifies the equivalent currents to be injected into the bound-

ary nodes. We further notice that, by construction, for given

internal currents Iℓ(t) and voltages Vb(t), t ≥ 0 (assuming null

initial conditions), currents Ib(t) computed through (1) and

(9a) are identical at all times (hence the name instantaneous

KR).

Remark 1. Instantaneous KR has some limitations. More

specifically, the branch admittances of the reduced network

might have different dynamics with respect to those in the

1Conditions for the invertibility of Lℓℓ(s) have been studied in [6].
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original circuit and, what is worse, might not even represent

a physical circuit built with passive R, L, C elements. Conse-

quently, a key issue is to understand when weights Wred,ij(s)
can be written as in (2) replacing Rij and Lij with suitable

parameters R̃ij and L̃ij . It has been shown that this is guar-

anteed only under special assumptions, for instance if original

lines are homogeneous [4], i.e.
Rei

Lei

=
Rej

Lej

, ∀ei, ej ∈ E . In

this case, one also has R̃ij > 0 and L̃ij > 0.

III. APPROXIMATE KR METHODS

In this Section, we propose two approximated KR ap-

proaches, termed approximate AC-KR (aAC-KR) and hybrid

KR (hKR), respectively. Both the methods allow to (i) extend

the application of AC-KR to electrical variables not necessarily

in PSSS, and (ii) overcome the realization problems of instan-

taneous KR discussed in Remark 1 (at least, as long as the

parameters of the reduced circuit are positive). In particular,

the proposed approximate techniques provide reduced circuits

whose lines have the same RL “nature” as the original ones.

From a practical point of view, aAC-KR and hKR share the

idea of using the line parameters (resistances and inductances)

obtained from AC-KR at frequency ω0, while differ in the

way equivalent internal currents referred to boundary nodes

are computed.

In the sequel, we first define the approximated Kron re-

duced graph; it is exploited in both aAC-KR and hKR for

preserving the RL nature of the reduced lines. Then, we

separately characterize the proposed methods by describing

how the equivalent boundary currents (accounting for the

effects of eliminated internal currents) are computed. Finally,

in Proposition 1, we prove that both aAC-KR and hKR ensure

asymptotic equivalence between original and reduced models

if the considered network reaches a PSSS.

Definition 5 (Approximate Kron reduced graph). The approx-

imate Kron reduced graph GA
red of the original network G with

respect to a specified angular frequency ω0 is obtained by:

1) computing L
AC
red = K

(
L
AC
)

and the associated directed

graph GAC
red =

(
Vb, Ered,WAC

red

)
, at the given ω0;

2) setting GA
red =

(
Vb, Ered,WA

red(s)
)

where, for (i, j) ∈
Ered

WA
red,ij(s) =

1

R̃ij + sL̃ij

, (11a)

Z̃ij = −

(

L
AC
red,ij

)

−1

, R̃ij = Re
(

Z̃ij

)

, L̃ij =
1

ω0

Im
(

Z̃ij

)

.

(11b)

Notice that, in GA
red line impedances have still the dynamics

(2) but resistances R̃ij and inductances L̃ij are those predicted

by AC-KR at angular frequency ω0. This is a key difference

from instantaneous KR (see Remark 1). Moreover, this choice

of the network weights will allow us to describe, without

introducing any approximation, the asymptotic behavior of

the network when input variables are in PSSS with angular

frequency ω0 (see Proposition 1 in Section III-C). Note also

that, by construction, the graphs associated with L
AC
red and

Lred(s) have the same set of undirected edges. Therefore, by

choosing the same orientation, the set of directed edges of

Gred and GAC
red can be made identical (this is why they have

been both denoted with Ered).

Remark 2. AC-KR does not guarantee positivity of the

reduced resistances and inductances in (11b). Based on the

results of [4], one expects that negative values can occur if

the time constants of the original lines are spread in a wide

range. In practical applications such as microgrids, however,

electrical lines are usually similar and so are their time

constants.

A. Approximate AC-KR

The idea behind aAC-KR is to use the accompanying matrix

T AC in (4c), computed with respect to ω0, to obtain an

approximation of the equivalent internal currents referred to

boundary nodes when the network is in non-stationary regime.

Since, by construction, T AC is a complex valued matrix (to be

multiplied by phasors ~Iℓ so as to give other phasors, as shown

in (10)), we must now find a way to represent non-sinusoidal

internal currents Iℓ(t) through complex functions.

In general, given a real-valued function f(t), there is not

a unique way to represent it though a complex function f̃(t),
such that Re(f̃(t)) = f(t) [29]. However, from e.g. [29], one

has that, among all these possible complex functions, the ana-

lytic signal f̄(t) = A (f(t)) is the only representation which

guarantees harmonic correspondence (i.e. if f(t) becomes a

sinusoid, then f̄(t) coincides with the corresponding phasor ~f )

and simultaneously verifies the generalized Tellegen’s theorem

[30]. For this reason, the first approximate KR method we

propose exploits the notion of analytic signal of the real

function Iℓ(t), and it is defined as follows.

Definition 6 (aAC-KR). Let J̄ℓ(t) = A (Iℓ(t)) be a complex

function denoting the analytic signal of the real function Iℓ(t),
and let Re

(
T AC J̄ℓ(t)

)
indicate the approximated internal

currents to be injected into the boundary nodes of the reduced

network. aAC-KR is given by the network GA
red and the relation

Ib(s) = L
A
red(s)Vb(s)− J̃b(s), (12a)

where L
A
red(s) is the Laplacian of GA

red and

J̃b(s) = L
[
Re
(
T AC J̄ℓ(t)

)]
. (12b)

From (12b), we notice that the interior currents reduction

is performed using the entries of T AC , which, by definition,

refer to variables in PSSS. Therefore, we expect the aAC-KR

to lose accuracy when applied to nonlinear circuits or networks

at a frequency ω 6= ω0 (where ω0 is used to compute GA
red and

T AC). To overcome this issue, in the sequel we present a more

sophisticated approximate KR method.

B. Hybrid Kron Reduction

Differently from aAC-KR, in hKR the mapped internal

currents are the same as in (10), as described in the following.
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Definition 7 (hKR). hKR is given by the network GA
red and

the relation

Ib(s) = L
A
red(s)Vb(s)− Ĩb(s) (13)

where L
A
red(s) is the Laplacian of GA

red and Ĩb(s) is defined

in (10).

In Section IV, we will show that, compared to aAC-KR,

hKR provides more accurate approximations of the boundary

electrical variables; this is due to the fact that, with hKR,

internal currents are mapped into boundary ones with no

approximations (currents Ib in (13) are the same as currents

Ĩb in (10)). On the other hand, performing the interior currents

reduction using the entries of T (s) is more complex than

implementing (12). In fact, the transfer functions of T (s) may

have a high degree, in the case of large networks, and this

could be an implementation limit.

Example 2. We want to apply (separately) aAC-KR and hKR

to the circuit described in Example 1 (Figure 2a), assuming

that electric variables are not necessarily in PSSS.

The incidence matrix B has the form (6), while the weights

matrix W (s) is:

W (s) =






10
1+0.02s 0 0

0 5
1+0.035s 0

0 0 1
1+0.01s




 ,

where resistances and inductances of the weights in W (s) are

the same of Example 1. It follows that, at PSSS with ω0 =
2π50 rad/s, W (iω0) = WAC .

The Laplacian L(s) = B ·W (s) ·BT , partitioned as in (1),

is

L(s) =

(
Lbb(s) Lbℓ(s)
Lℓb(s) Lℓℓ(s)

)

with

Lbb(s) =









10

1 + 0.02s
0 0

0
5

1 + 0.035s
0

0 0
1

1 + 0.01s









,

Lbℓ(s) =










− 10

1 + 0.02s

− 5

1 + 0.035s

− 1

1 + 0.01s










, Lℓb(s) = (Lbℓ(s))
T ,

and

Lℓℓ(s) =
16(1 + 0.011s)(1 + 0.030s)

(1 + 0.01s)(1 + 0.02s)(1 + 0.035s)
.

The accompanying matrix T (s) is obtained from (9b) as

T (s) =









0.625(1+0.01s)(1+0.035s)
(1+0.030s)(1+0.011s)

0.312(1+0.01s)(1+0.02s)
(1+0.030s)(1+0.011s)

0.063(1+0.02s)(1+0.035s)
(1+0.011s)(1+0.030s)









. (14)

We can now characterize GA
red computed with respect to ω0,

and then compute L
A
red(s). Sets Vb and Ered are the same

as in Example 1, whereas, following Definition 5, the weights

matrix WA
red(s) is obtained applying (11) to the Laplacian

L
AC
red in (7). Consequently, one has

WA
red(s) = diag

(
WA

red,12(s),W
A
red,13(s),W

A
red,23(s)

)
=

=





3.642
1+0.038s 0 0

0 0.69
1+0.010s 0

0 0 0.254
1+0.013s



 ,

where WA
red,12(s),W

A
red,13(s),W

A
red,23(s) are the admittance

transfer functions of the reduced edges r1, r2, r3, respectively

(see Figure 2b). Next, let

Bred =





−1 −1 0
1 0 −1
0 1 1





be the incidence matrix of the reduced network in Figure 2b.

The Laplacian L
A
red(s) of GA

red is given by

L
A
red(s) = Bred ·WA

red(s) ·BT
red =

=







L
A
red,11(s) L

A
red,12(s) L

A
red,13(s)

L
A
red,12(s) L

A
red,22(s) L

A
red,23(s)

L
A
red,13(s) L

A
red,23(s) L

A
red,33(s)







,
(15)

with

L
A
red,11(s) =

4.332(1 + 0.015s)

(1 + 0.038s)(1 + 0.010s)

L
A
red,12(s) = − 3.642

(1 + 0.038s)

L
A
red,13(s) = − 0.690

(1 + 0.010s)

L
A
red,22(s) =

3.896(1 + 0.015s)

(1 + 0.038s)(1 + 0.013s)

L
A
red,23(s) = − 0.254

(1 + 0.013s)

L
A
red,33(s) =

0.945(1 + 0.012s)

(1 + 0.010s)(1 + 0.013s)

Finally, equivalent boundary currents are obtained substituting

(15) in (12a) and (8) in (12b) (aAC-KR case), or replacing (15)

in (13) and (14) in (10) (hKR case).

C. Asymptotic equivalence between original and reduced net-

work models

The next Proposition characterizes the asymptotic behaviors

preserved by aAC-KR and hKR.

Proposition 1. Consider the network represented by the graph

G, whose Laplacian is partitioned as in (1), and assume

parameters R̃ij and L̃ij obtained through (11) with respect

to ω0 are strictly positive. Then,

(i) if Iℓ and Vb are in PSSS with angular frequency ω0, then

the asymptotic behavior of Ib computed from (1) is the

same as when Ib is computed through aAC-KR (i.e. using

(12));
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(ii) if Vb is in PSSS with angular frequency ω0, then the

asymptotic behavior of Ib computed from (1) is the same

as when Ib is computed through hKR (i.e. using (13)).

Proof of (i). From the strict positivity of Rij and Lij in (2),

all entries Wij(s) of L(s) have asymptotically stable poles.

Hence, L(s) is asymptotically stable. Since Iℓ and Vb are si-

nusoidal with angular frequency ω0, by virtue of the frequency

response theorem [27], also the currents Ib in (1) will reach

a PSSS. In particular, it holds J̄ℓ(t) = A (Iℓ(t)) = ~Iℓ, by

definition of analytic signal. Therefore, if we write (12a) in

time domain at frequency ω0, we get that the relation between

phasors ~Vb, ~Ib and ~Iℓ is

~Ib = L
A
red(iω0)
︸ ︷︷ ︸

L
AC
red

~Vb − T AC~Iℓ, (16)

that is (4b). Concluding, we have retrieved the AC-KR case,

where the equivalence between original and reduced models

is always guaranteed [4].

Proof of (ii). After applying hKR, the Laplace transforms

of signals Ib(t), Vb(t) and Iℓ(t) are related by

Ib(s) = L
A
red(s)Vb(s)− T (s)Iℓ(s),

where T (s) is given by (9b), and L
A
red is the Laplacian of

approximate Kron reduced graph GA
red with weights Wred,ij(s)

(see Definition 5). We note that, by hypothesis, the poles of

all entries of L
A
red have strictly negative real parts. Let us

denote Ib(s) and Îb(s) as the boundary currents computed

from (1) and (13), respectively, and let us introduce I∆(s) =
Ib(s)− Îb(s). Then, by (1) and (13), one has:

I∆(s) =
(
Lred(s)− L

A
red(s)

)
Vb(s).

Suppose the inputs Vb are sinusoids with angular frequency

ω0. By the Frequency Response Theorem [27], each element

of Lred(s)Vb(s) and L
A
red(s)Vb(s) tends to a sinusoid, so

that the relation between the phasors ~I∆ and ~Vb is given

by ~I∆ =
(
Lred(iω0)− L

A
red(iω0)

)
~Vb. However, Lred(iω0) =

L
A
red(iω0) by construction, hence ~I∆ = 0, which means that

I∆ → 0 asymptotically.

D. Generalization to three-phase linear networks in dq coor-

dinates

All the considerations reported in Sections II and III so far

(along with the related formulae) hold, without restrictions,

for any linear network. In this paragraph, we focus on three-

phase linear networks in dq coordinates. From this point

on, we assume balanced RL lines, and three-phase elec-

trical signals without zero-sequence components. It follows

that, under these circumstances, we can split the circuit into

three independent and identical single-phase circuits. Each

one is associated with the equivalent “single-phase” directed

graph Gsp = (Vsp, Esp,W sp(s)) where transfer functions

W sp
ij (s) = 1/(Rij + sLij) represent, independently of the

phase ⋆ ∈ {a, b, c}, the relation between L [V ⋆
i (t) − V ⋆

j (t)]
and L [I⋆ij(t)], (i, j) ∈ Esp.

Three-phase signals can be conveniently represented in the

dq0 coordinates. In this case, under our assumptions, the graph

G representing the considered three-phase network has the

same topology of the corresponding single-phase circuit Gsp.

Moreover, it can be shown that, in the dq0 reference frame,

the RL line associated with the edge (i, j) ∈ Esp has the

dynamics

d

dt
Idqij = −

(
Rij

Lij

+ iω0

)

Idqij +
1

Lij

(

V dq
i − V dq

j

)

and its corresponding transfer function has the form Idqij (s) =

Wij(s)
(

V dq
i (s)− V dq

j (s)
)

with

Wij(s) =
1

Zij + sLij

, Zij = Rij + iω0Lij . (17)

Also in this case, the current-balance equations Idq(s) =
L
dq(s)V dq(s) can be partitioned as in (1), with Idq =
[

Idq
T

b , Idq
T

ℓ

]T

and V dq =
[

V dqT

b , V dqT

ℓ

]T

. In dq coordinates,

instantaneous KR is characterized analogously to Section

II-B. Moreover, also aAC-KR and hKR can be redefined in

dq coordinates; notably, by performing AC-KR on Gsp, one

obtains the topology of the approximate Kron reduced graph

GA
red in dq reference frame, as well as the reduced lines

parameters R̃ij and L̃ij characterizing its weights

WA
red,ij(s) =

1

Z̃ij + sL̃ij

, (18a)

Z̃ij = −

(

L
AC
red,ij

)

−1

= R̃ij + iω0L̃ij , L̃ij =
1

ω0

Im
(

Z̃ij

)

.

(18b)

As regards the computation of the equivalent internal currents

to be injected into the boundary nodes of the reduced network,

(12b) and (10) become, respectively

J̃dq
b (s) = L

[
T (θ) · Re

(
T AC J̄abc

ℓ (t)
)]

(19)

and

Ĩdqb (s) = T (s)Idqℓ (s), (20)

depending on whether we are using aAC-KR or hKR.

IV. NUMERICAL EXAMPLES

In this Section, we assess the features of aAC-KR and

hKR through numerical examples. In particular, we consider

the three-phase network in Figure 3a, composed of three

ideal voltage sources and balanced RL lines connecting the

generators to a common load. In this simple case, both aAC-

KR and hKR amount to a Y−∆ transformation. The reduced

network is shown in Figure 3b. Since the corresponding three-

phase balanced voltage generators are identical for the original

and reduced networks, from Proposition 1 we expect Ib in

the original and reduced models to be the same, if a PSSS

is reached. The lines and loads parameters, as well as the

voltages of generators, are collected in [31].
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(a) Original network.
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ĩ1c

v2a

v2b

v2c

i2a

i2b

i2c
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L13

R13

L13

R13

L13

R13

L23

R23

L23

R23

L23

R23

(b) Reduced model obtained via approximate KR methods.

Fig. 3: Numerical examples: original and reduced networks.

Red and blue boxes enclose boundary and interior nodes,

respectively.

1) Example 1 - Linear unbalanced load: In this example,

we assume that the resistive load is unbalanced. Figures 4a-4b

compare the original output current of phase a of generator 1

with its corresponding signal in the reduced networks obtained

through aAC-KR and hKR, respectively. The plots reveal that

the proposed methods ensure asymptotic equivalence, even if

the load is unbalanced but a PSSS is achieved. In particular,

from Figures 4c-4d, we notice that both the aAC-KR and

hKR model errors go to zero after short transients. Analogous

results are obtained for all the other phases and nodes.

2) Example 2 - Nonlinear load: For this second example,

we replace the resistive load in Figure 3a by a six-pulse bridge

rectifier. As in the previous example, we compare the currents

at boundary nodes of the original circuit with those of the

reduced models and, for the sake of simplicity, we concentrate

on the output currents of generator 1, phase a (see Figures

5a-5b). In particular, from Figure 5c, one can see that the

aAC-KR model error increases substantially with respect to

Example 1, while the one of the hybrid Kron reduced network

goes asymptotically to zero (see Figure 5d). We highlight that

latter phenomenon is predicted by point (ii) of Proposition 1.

Analogous results are obtained for all the other phases and

generators.

Remark 3. The proposed approximate methods produce simi-

lar results in networks reaching PSSS regime at frequency ω0,

but hKR provides better performances (i.e. faster convergence

and lower errors) than aAC-KR in case of networks with

nonlinear loads. This is due to the fact that Ĩdqb in (13)

represents the “true” internal currents mapped to boundary

nodes (they are the same as in equation (10)). Indeed, hKR

differs from KR (9) only in the dynamics of the branches, and

not in the equivalent internal currents. On the other hand,

as highlighted in Section III-B, this better accuracy of hKR

with respect to aAC-KR comes at the expenses of an higher

implementation complexity.

V. KRON REDUCTION OF AC IMGS

In this Section, we show how to apply the approximate

KR methods described in Section III to the control of AC

Islanded microGrids (ImGs), i.e. a group of interconnected

Distributed Generation Units (DGUs) and loads. Our aim is

to exploit aAC-KR and hKR to generalize the Plug-and-Play

(PnP) algorithm described in [20] for designing decentralized

controllers for AC ImGs guaranteeing voltage and frequency

stability. The method in [20], in fact, assumes (i) load-

connected ImG topologies (i.e. with loads appearing only at

the output terminals of each inverter), and (ii) RL power lines

connecting DGUs. In this context, we can resort to one of

our approximate KR method to map arbitrarily interconnected

ImGs into their corresponding load-connected networks (by

labeling as internal nodes those representing loads that are

not directly attached to DGUs). Then, since both aAC-KR and

hKR preserve the RL structure of the reduced lines, we can

use the procedure in 11 to design PnP regulators with respect

to the equivalent simplified circuit.

In the sequel, we first introduce the graph associated with

an ImG, together with the electrical models of DGUs and lines

used for controller synthesis. Then, the PnP algorithm in [20]

is briefly summarized before describing how to combine this

design procedure with the proposed approximate KR methods.

A. ImG associated graph

As for any linear electrical network, we can associate to

an ImG a weighted directed graph G = (V, E ,W (s)) (see the

example in Figure 6) where the vertex set V is partitioned

into boundary and internal nodes. In this case, the subset Vb

identifies Point of Common Coupling (PCC) nodes, i.e. the

output terminals of each DGU, while Vℓ contains load nodes.

Nodal currents injected by the DGUs and loads are denoted

with Ib and Iℓ, respectively, and they are positive if entering

into the nodes. Nodal voltages are denoted analogously. As
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Fig. 4: Example 1 - Evaluation of the output currents generated through aAC-KR and hKR, in presence of a linear load.

regards the edges, they correspond to RL power lines with

arbitrary orientation and same sign convention as in Section

II.

B. DGU and line electrical models

We assume three-phase electrical signals without zero se-

quence components and balanced network parameters2. Note

that we do not assume balanced signals; hence, the case of

unbalanced load currents is included in this framework.

Let ω0 be the reference network frequency. The model of

DGU i ∈ Vb in dq coordinates is [33]:







d

dt
V dq
i = −iω0V

dq
i +

Idqti
Cti

− IdqLi

Cti

− 1

Cti

Idqbi

d

dt
Idqti = −

(
Rti

Lti

+ iω0

)

Idqti − V dq
i

Lti

+
V dq
ti

Lti

(21)

where Vi, Iti, Ibi, ILi, Vti, Rti, Cti and Lti are shown in the

equivalent single-phase electrical scheme in Figure 7.

2See, e.g., [32] for basic definitions.

Remark 4. The scheme in Figure 7 reveals that each DGU

can have a load current ILi connected to its PCC. These

local loads, which will be treated as exogenous disturbances

in control design, are different from load currents Iℓ defined

in Section V-A. The latter ones, in fact, identify loads that are

not directly connected to PCCs (see, e.g., the blue circles in

Figure 6).

Consider an ImG composed of n nodes partitioned into nb

boundary nodes and nℓ internal nodes. If n = nb, then nℓ =
0, which means that we retrieve a load-connected ImG, with

load currents appearing only at the PCCs. Otherwise, we can

write nodal currents and voltages as Idq =
[

Idq
T

b , Idq
T

ℓ

]T

and

V dq =
[

V dqT

b , V dqT

ℓ

]T

, respectively. At this point, as already

shown, it is possible to express the current-balance equations

as Idq(s) = L(s)V dq(s), where L(s) is the Laplacian of the

graph G associated with the ImG, with weights Wij(s) in the

form (17).
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Fig. 5: Example 2 - Evaluation of the features of aAC-KR and hKR in presence of a nonlinear load.
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Fig. 6: Example of a graph associated with an ImG. Red

squares denote DGUs (i.e. boundary nodes), while blue circles

represent loads (i.e. internal nodes).

C. PnP design for load-connected ImGs

In the following, we summarize the PnP algorithm in [20]

for designing decentralized controllers guaranteeing voltage

and frequency stability in an ImG. Local regulators Ci use

measurements of the voltage V dq
i at PCC (see Figure 7) and

the current Idqti to control the voltage V dq
ti at the i-th Voltage

Source Converter (VSC) so as to make V dq
i track a reference

signal. Furthermore, each controller is composed of a matrix

gain and an integral action on the d and q components of the

VSC i

Rti Lti Iti

Vti

PCCi

Vi

ILi

Cti

Ibi
Rij Lij

DGU i Line ij

Fig. 7: Single-phase equivalent circuit of DGU i composed

of a Voltage Source Converter (VSC), an RLC filter, a local

load ILi and a single RL line connecting DGU i with the

node j ∈ V .

tracking error.

When a DGU (say DGU i) wants to join the network

(e.g. DGU 3 in Figure 8), it issues a plug-in request to

its future neighbors, i.e. DGUs j ∈ Ni (see, for example,

DGUs 2 and 4 in Figure 8). DGU i then solves the Linear

Matrix Inequality (LMI) problem (19) in [20], which depends
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3
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1
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Fig. 8: Example of plug-in request issued by DGU 3 to its

future neighbors (i.e. DGUs 2 and 4).

only upon the parameters of the lines ij3. If feasible, the

optimization problem produces a controller Ci, along with a

local and structured Lyapunov function that can be used for

certifying stability of the whole ImG. Since also DGUs j ∈ Ni

will have a new neighbor, they must update their controller Cj
by tacking into account the parameters of the new line ji.
This is done by solving an LMI problem analogous to the

one solved by DGU i. If one of the above LMI problems is

unfeasible, plug-in of DGU i is denied. Otherwise, as shown

in [20, Proposition 3], DGU i can be connected and stability of

the whole ImG can be certified using the sum of the computed

local Lyapunov functions.

Unplugging of a DGU (say DGU m) follows a similar

procedure: as line mk, k ∈ Nm will be disconnected from the

corresponding DGU k, all controllers Ck must be successfully

redesigned before allowing the disconnection. Following a

similar reasoning, also the possibility of changing a parameter

of line ij (or add a new line ij), must be first tested by

successfully designing controllers Ci and Cj through suitable

LMIs.

Remark 5. While line changes are not common in ImGs, they

could happen in the equivalent reduced network because of the

addition/removal of load nodes in the original ImG. Examples

of this phenomenon are provided in the next Section.

D. PnP design for ImGs with general topologies

Now we show how to extend the design algorithm in [20] to

ImGs with arbitrary topologies. Let us G be the directed graph

associated with an ImG and let us assume we have selected one

KR method among aAC-KR and hKR. When the plug-in of a

DGU or a load node (say node i) is required, one should first

update G accordingly, thus obtaining the graph Gnew. Then, the

chosen approximate method is applied to Gnew for obtaining

3Each LMI problem involves only 25 scalar variables and it can be easily
solved with state-of-art packages for convex optimization.

the reduced ImG GA,new
red with load-connected topology. If

some resistances or inductances of reduced lines are negative,

the plugging-in of node i is denied, as one of the assumption

of the PnP algorithm in [20] is not fulfilled. Otherwise, one

compares the reduced graphs GA
red (associated with G) and

GA,new
red for finding the set U ⊆ Vb of DGUs that have new

neighbors or that are connected to lines whose impedance has

changed. The LMI problem (19) in [20] is then solved for

all DGUs j ∈ U (and also for j = i, if node i is a DGU),

hence producing new controllers Cj . If no LMI is infeasible,

controllers in the original ImG are updated and connection of

node i is allowed.

Unplugging of a node can be performed in a similar way.

Remark 6. According to the above algorithm, aAC-KR and

hKR are performed in a centralized fashion every time there

is a change in the network topology. This is in contrast with

PnP design, whose main feature is to avoid any centralized

computations. In the future, we will study how to perform the

proposed approximate KR methods in a distributed fashion.

Notably, one can develop this generalization according to the

iterative KR procedure [3] proposed for both AC networks

in PSSS and resistive networks. In a similar spirit, we will

study how to avoid the centralized computation of the set U
by exploiting existing distributed algorithms for path-finding

over directed graphs.

VI. SIMULATION OF A 21-BUS NETWORK

In this Section, we assess the capability of PnP control and

approximate KR methods to deal with networks characterized

by complex topologies. Since we are interested in evaluating

only the stabilizing effect of PnP controllers, local pre-filters

and compensators have not been implemented. Now, recalling

that (i) each compensator takes as input the load current ILi

absorbed at the corresponding PCC (see [20] for details),

and (ii) the proposed approximate KR methods differ only

in the way equivalent internal currents referred to PCCs are

computed, in this scenario it is equivalent to use aAC-KR or

hKR, as they both provide the same reduced graph GA
red.

We use a network derived from the top half of IEEE 37

topology [21] and identify generation nodes and loads as in

[34]. The simulation has been performed in PSCAD.

A. ImG topology

The ImG in Figure 9 has 21 nodes, with six DGUs, electrical

RL lines having time constants spread in a wide range, linear

R and RL loads, as well as highly nonlinear and highly

inductive loads.

Compared to the IEEE 37 network, a switch SW1 has been

introduced, allowing the plugging-in/unplugging of loads at

nodes 16, 17 and 18. Moreover, two branches (e18 and e19)

were added and connected to the microgrid through switches

SW2 e SW3, respectively. The edge e18 creates a mesh

between DGUs 1, 3 and 4; this allows us to show that PnP

controllers can also stabilize meshed networks. The edge e19
simply changes the impedance between DGUs 3 and 5 (as

long as SW1 is closed). Finally, one generation node (vertex
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Fig. 9: 21-bus network: red squares denote boundary nodes

(DGUs), blue circles represent internal nodes (loads).

21) and two loads (at nodes 19 and 20) have been introduced,

so as to simulate the plugging-in of a new DGU. The new

generation unit is connected to the ImG via switch SW4.

At time t = 0 s, there is no energy stored in all the inductors

and capacitors and all the switches are open. At t = 5 s,

switch SW1 closes, causing an increase in electrical loads,

mainly supplied by DGUs 3 and 5. Next, SW2 e SW3 close

at instants t = 6.5 s and t = 8 s, respectively, connecting

new branches to the network. Finally, at time t = 9.5 s switch

SW4 closes, so that the sixth generation unit is connected to

the ImG. All the electrical parameters of the 21-bus network

are collected in [31].

B. PnP control design

As described in Section V-D, the first step in control design

consists in applying the chosen approximate method (aAC-

KR or hKR) to the original network, thus obtaining the

equivalent load-connected model. In particular, the reduced

line impedances are computed using (18b), with ω0 = 2π50
rad/s.

The topology of the reduced network actually depends on

the state of the switches in the original network. As long as

SW2, SW3 and SW4 are open, the network in Figure 9 has a

radial topology. Therefore, the equivalent impedance between

nodes 3 and 5 is equal to the sum of the impedances of

edges e6, e11, e13 and e14, irrespectively of the state of switch

SW1. On the contrary, when switches SW2, SW3 and SW4

are closed, the topology of the Kron reduced network and its

impedances change. Figure 10 collects the reduced networks

that arise during the simulation. In particular, Figure 10a holds

when all the four switches are open, or when only SW1 is

closed. The network in Figure 10b refers to the case when

switches SW2 and SW3 become closed, while the diagram

in Figure 10c holds when all the four switches are closed.

We further highlight that the resistances and inductances of

the Kron reduced circuits in Figure 10, collected in [31], are

positive.

At time t = 5 s, SW1 closes, but the Kron reduced network

does not change, and no redesign of the controllers is needed.

In fact, the connection of load nodes 16, 17 and 18 changes

the term accounting for the effect of internal currents (J̃b(s) in

aAC-KR or Ĩb(s) in hKR), which is mapped into an additional

contribution to the load at PCCs 3 and 5. This is, however,

not critical since DGU loads are treated as disturbances by

PnP controllers [20]. At instant t = 6.5 s, the equivalent

impedances between nodes 1, 3 and 4 change; therefore, the

controllers of DGUs 1, 3 and 4 must be redesigned (all the

other controllers do not change). At instant t = 8 s, the equiv-

alent impedance between boundary nodes 3 and 5 changes: the

corresponding DGUs must update their controllers. At t = 9.5
s, DGU 6 is connected to the network: controllers of DGUs 3

e 5 must be redesigned again.

We highlight that the proposed controllers effectively stabilize

voltage and frequency in the ImG. In particular, for plots of

the frequency response and the eigenvalues of the closed loop

ImG, we defer the reader to [31].
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(c) Equivalent reduced network for t ≥ 9.5 s.

Fig. 10: Simulation of a 21-bus ImG: Kron reduced networks.

C. Simulation results

The reference signals for all the generation units are V ref
d =√

2 ·230 V and V ref
q = 0 V . Figure 11 shows the Root Mean

Square (RMS) voltage, frequency and Total Harmonic Distor-

tion4 (THD) of phase a at the PCCs of the boundary nodes

(i.e nodes 1-5 and 21), respectively. We highlight that, in spite

of all the variations of the ImG topology, PnP decentralized

control ensures good tracking of voltage references for all

DGUs (see Figure 11a). We note that real-time switch between

different controllers has been implemented using a bumpless

control transfer scheme similar to the one used in classical

PID regulators [36]. This guarantees that (i) control variables

do not have sudden variations at switching times and (ii) after

transients due to switching, control variables are identical to

those obtained without bumpless control transfer. In our case,

bumpless controllers are effective in limiting voltage surges

and dips to a few volts when updates of controllers take place

(for t ≥ 4 s, the maximal deviation from the reference RMS

voltage is of less than 20 volts). Figure 11b shows that the

4See [35] for a definition.
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impact of the topology commutations is minor also on the

frequency profiles. In fact, PnP controllers promptly restore

the frequencies to the nominal value, ensuring negligible

variations (i.e. less than 0.5Hz when the highly inductive load

is connected and less than 0.1Hz when other events occur).

Finally, from Figure 11c, we notice that, apart from spikes

due to the closing of switches, THD values are below the

maximum limit (5%) recommended in [35].

Overall, the fact that voltage and frequency stability is guar-

anteed even for such a complicated network, proves that the

proposed approximate KR methods are well suited tools for

extending the PnP scalable design to ImGs with arbitrary

topologies.

VII. CONCLUSIONS

In this paper, we introduced two approximate network

reduction algorithms based on KR and capable to preserve

exactly the asymptotic periodic behavior of voltages and

currents at target nodes. We also used the proposed KR

methods for extending the PnP control design presented in

[20] to AC ImGs with arbitrary topology. As regards future

developments, besides addressing the problems described in

Remark 6, we aim to extend aAC-KR and hKR also to the

case of DC ImGs equipped with PnP controllers [37]. Another

interesting direction is the generalization of our results to the

case of line models including capacitive elements.
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