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Abstract 

The approximate analytical solutions of the radial Schrodinger equation have been obtained 

by the interaction of Manning-Rosen and Hellmann potentials which is a newly proposed 

potential. Using the Wentzel-Kramers-Brillouin WKB approach, we obtained the eigenstates 

solutions for any arbitrary angular momentum. Special cases of potential consideration have 

been discussed. Eigenenergy solutions to equations obtained play an important role in 

quantum mechanics because they contain a wealth of vital information regarding the system 

under consideration. 
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1.  INTRODUCTION 

In quantum mechanics, exact solutions to equations play an important role because 

they contain a wealth of important information regarding the system under consideration. 

For example, the exact solution of the Schrodinger equation for the hydrogen atom and 

simple harmonic oscillator provided strong evidence supporting the validity of the quantum 

theory. However many quantum systems are treated as approximations because exact 

solutions are few1-4. The bound state energy equation and the unnormalized radial wave 

functions have been approximately obtained for the Manning-Rosen potential by using the 

supersymmetric WKB approach and the function analysis method5. The analytical bound 

state solutions of the Dirac equation with the Manning–Rosen potential for an arbitrary spin-

orbit coupling quantum have been solved6. 

The WKB approximation method is one of the earliest and simplest methods of 

obtaining approximate eigenvalues of the one-dimensional Schrodinger equation in the 

limiting case of large quantum numbers and was originally proposed Wentzel, Kramers, and 

Brillouin7-10. In the lowest- order approximation, the WKB quantization condition is 

∫ √2m (E − V(r)dr
r1
r2

= 𝜋ђ(𝑛 +
1

2
), 𝑛 = 0, 1, 2 . .. (1) 

In general, Eq. (1) yields moderately accurate eigenvalues as analytic functions of the 

parameters contained in the potential. 

 To properly use the WKB approximation for three-dimensional problems with 

spherical symmetry is to apply the one-dimensional WKB formalism to the radial 

Schrodinger equation 

∂2Ψ

∂r2
+
2m

ђ2
[𝐸 − 𝑉𝑒𝑓𝑓(𝑟)]Ψ = 0  (2) 

where the effective potential 𝑉𝑒𝑓𝑓(𝑟) = 𝑉(𝑟) +
𝑙(𝑙+1)ђ2

2𝑚𝑟2
     

Such a straightforward application leads to an important difficulty in obtaining exact energy 

eigenvalue solution because the WKB reduced radial wave function at the origin has a 

behavior which is different from that of the true wave function11. For this reason, Langer12 

suggested that the strength of the angular momentum 𝑙(𝑙 + 1) should be treated as an 

adjustable parameter K, not as a fixed quantity. Langer pointed out that K should be replaced 
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with the term (𝑙 +
1

2
)
2

 in the lowest order quantization formula which has great physical 

meaning. The replacement of 𝑙(𝑙 + 1) → (𝑙 +
1

2
)
2

 regularizes the radial WKB wave function 

at the origin and ensure correct asymptotic behaviour at large quantum numbers9-17. 

In this work, our aim is to solve the Schrodinger equation for the Manning-Rosen 

plus Hellmann potential via the WKB approximation method. The Manning-Rosen plus 

Hellmann potential takes the form: 

 𝑉(𝑟) = − [
𝐶𝑒−∝𝑟+𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2
] −

𝑉0

𝑟
+
𝑉1𝑒

−∝𝑟

𝑟
 (3) 

where α is the screening parameter, C, D and 𝑉0, 𝑉1 are the depth of the potential. Not much has 

been done in solving the Manning-Rosen Plus Hellmann potential via the WKB method. 

 This paper is organized as follows: Section 1 has the introduction, a brief description 

of the semiclassical quantization and the WKB approximation for the radial solution is 

reviewed in section 2. In section 3, the radial Schrodinger equation with Manning-Rosen plus 

Hellmann potential is solved. Finally, we give a brief discussion in section 4 before the 

conclusion in section 5 

 

2.  SEMICLASSICAL QUANTIZATION AND THE WKB APPROXIMATION 

 In this section, we consider the quasiclassical solution of the Schrodinger’s equation 

for the spherically symmetric potentials. Given the Schrodinger equation for a spherically 

symmetric potentials 𝑉(𝑟) of eq. (3) as 

(−𝑖ђ)2  ( 
∂2

∂r2
+

1

𝑟2
∂2

∂θ2
+

1

𝑟2sin2θ
 
∂2

∂ϕ2
 ) 𝜓(𝑟, 𝜃, 𝜙)  = [2𝑚(𝐸 − 𝑉(𝑟))]  𝜓(𝑟, 𝜃, 𝜙)  (4) 

The total wave function in Eq. (3) can be defined as 

  𝜓(𝑟, 𝜃, 𝜙) = [𝑟𝑅(𝑟)][√𝑠𝑖𝑛𝜃𝛩(𝜃)𝛷(𝜙)]   (5) 

And by decomposing the spherical wave function in Eq. (4) using Eq. (5) we obtain the 

following equations: 

     (−𝑖ђ
d

dr
)
2

𝑅(𝑟) = [2𝑚(𝐸 − 𝑉(𝑟)) −
𝑀⃗⃗ 2

𝑟2
] 𝑅(𝑟), (6) 

     (−𝑖ђ
d

d𝜃
)
2

𝛩(𝜃) = [𝑀⃗⃗ 2 −
𝑀𝑧
2

sin2θ
]𝛩(𝜃),  (7) 
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   (−𝑖ђ
d

d𝜙
)
2

𝛷(𝜙) = 𝑀𝑧
2𝛷(𝜙)  (8) 

where 𝑀⃗⃗ 2, 𝑀𝑧
2 are the constants of separation and, at the same time, integrals of motion. The 

squared angular momentum 𝑀⃗⃗ 2 = (𝑙 +
1

2
)
2

ђ
2
. 

Considering Eq. (6), the leading order WKB quantization condition appropriate to Eq. (3) is  

   ∫ √𝑃2(𝑟)
𝑟2

𝑟1
𝑑𝑟 = 𝜋ђ (𝑛 +

1

2
), n=0, 1, 2 . . .   (9) 

where  𝑟2 & 𝑟1 are the classical turning point known as the roots of the equation 

  𝑃2(𝑟) = 2𝑚(𝐸 − 𝑉(𝑟)) −
(𝑙+

1

2
)
2
ђ
2

𝑟2
= 0  (10) 

eq. (9) is the WKB quantization condition which is subject for discussion in the preceding 

section. Consider Eq. (6)-(8) in the framework of the quasiclassical method, the solution of 

each of these equations in the leading ђ approximation can be written in the form  

  Ψ𝑊𝐾𝐵(𝑟) =
𝐴

√𝑃(𝑟,𝜆)
𝑒𝑥𝑝 [±

𝑖

ђ
∫√𝑃2(𝑟) 𝑑𝑟]   (11) 

2.1  Solutions to the radial Schrödinger equation   

 The radial Schrodinger equation for the Manning-Rosen Plus Hellmann potential can 

be solved approximately using the WKB quantization condition Eq. (9). Since the potential 

of interest slowly varies, we assume that the wave function remains sinusoidal. Hence, we 

use the effective potential and plug it into the WKB approximation of Eq. (10) and to obtain 

the exact solution, we consider two turning points.  

given the effective potential of the centrifugal term as 

𝑉𝑒𝑓𝑓(𝑟) = − [
𝐶𝑒−∝𝑟+𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2
] −

𝑉0

𝑟
+
𝑉1𝑒

−∝𝑟

𝑟
+ 

(𝑙+
1

2
)
2
ђ
2

2𝑚𝑟2
  (12) 

The wave equation (12) is not an exactly solvable problem even for 𝑙 = 0 because of 

the centrifugal barrier term. Therefore, to solve eq. (12) analytically, we use an 

approximation scheme of the exponential-type proposed by Greene and Aldrich12,13 to deal 

with the centrifugal term: 
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1

𝑟2
=  

𝛼2

(1− 𝑒−𝛼𝑟)2
  (13) 

the potential in Eq. (12) can also be written in the form 

  𝑉𝑒𝑓𝑓(𝑟) = −
𝐶𝑒−∝𝑟

(1−𝑒−∝𝑟)2
−

𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2
−

𝑉0∝

1−𝑒−∝𝑟
+
𝑉1∝𝑒

−∝𝑟

1−𝑒−∝𝑟
+ 

𝛼2ђ
2
(𝑙+

1

2
)
2
𝑒−𝛼𝑟

2𝑚(1− 𝑒−𝛼𝑟)2
  (14) 

Subs. Eq. (14) into Eq. (9), we have 

∫ √𝑃2(𝑟)
𝑟2

𝑟1
𝑑𝑟 =

∫ √2𝑚(𝐸𝑛𝑙 +
𝐶𝑒−∝𝑟

(1−𝑒−∝𝑟)2
+

𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2
+

𝑉0∝

1−𝑒−∝𝑟
−
𝑉1∝𝑒

−∝𝑟

1−𝑒−∝𝑟
− 

𝛼2ђ
2
(𝑙+

1

2
)
2
𝑒−𝛼𝑟

2𝑚(1− 𝑒−𝛼𝑟)2
 )

𝑟2

𝑟1
𝑑𝑟 = 𝜋 (𝑛 +

1

2
) 

 (15) 

 

Let  𝑀⃗⃗ 2 =
𝛼2ђ

2
(𝑙+

1

2
)
2

2𝑚
   (16) 

∫ √2𝑚(𝐸𝑛𝑙 +
𝐶𝑒−∝𝑟

(1−𝑒−∝𝑟)2
+

𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2
+

𝑉0∝

1−𝑒−∝𝑟
−
𝑉1∝𝑒

−∝𝑟

1−𝑒−∝𝑟
− 

 𝑀⃗⃗ 2

(1− 𝑒−𝛼𝑟)2
)

𝑟2

𝑟1
𝑑𝑟 = 𝜋ђ (𝑛 +

1

2
)  (17) 

making the transformation  

 𝑧 =
𝑒−𝛼𝑟

1− 𝑒−𝛼𝑟
        (18) 

 

We then obtain 

−√2𝑚

𝛼ђ
∫

1

𝑧(1+𝑧)
√𝐸𝑛𝑙 + 𝐶𝑧(1 + 𝑧) + 𝑉0𝛼(1 + 𝑧) − 𝑉1𝛼𝑧 + 𝐷𝑧2 − 𝑀⃗⃗ 2(1 + 2𝑧 + 𝑧2)𝑑𝑧 =

𝑧2

𝑧1

𝜋 (𝑛 +
1

2
)          (19) 

−√2𝑚

𝛼ђ
∫

1

𝑧(1+𝑧)
√−(𝑀⃗⃗ 2 − 𝐶 − 𝐷)𝑧2 + (𝐶 + 𝑉0𝛼 − 𝑉1𝛼 − 2𝑀⃗⃗ 2)𝑧 + 𝐸𝑛𝑙 + 𝑉0𝛼 − 𝑀⃗⃗ 2𝑑𝑧 =

𝑧2

𝑧1

𝜋 (𝑛 +
1

2
)          (20) 

−√2𝑚(𝑀⃗⃗ 2−𝐶−𝐷)

𝛼ђ
∫

1

𝑧(1+𝑧)
√−𝑧2 +

𝐶+𝑉0𝛼−𝑉1𝛼−2𝑀⃗⃗ 2

(𝑀⃗⃗ 2−𝐶−𝐷)
𝑧 +

𝐸𝑛𝑙+𝑉0𝛼−𝑀⃗⃗ 2

(𝑀⃗⃗ 2−𝐶−𝐷)
𝑑𝑧 = 𝜋 (𝑛 +

1

2
)

𝑧2

𝑧1
           (21) 
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Let  
𝐶+𝑉0𝛼−𝑉1𝛼−2𝑀⃗⃗ 

2

(𝑀⃗⃗ 2−𝐶−𝐷)
= 𝑏, and 

𝐸𝑛𝑙+𝑉0𝛼−𝑀⃗⃗ 
2

(𝑀⃗⃗ 2−𝐶−𝐷)
= −𝑐,          (22) 

We then have 

 

 
−√2𝑚(𝑀⃗⃗ 2−𝐶−𝐷)

𝛼ђ
∫

1

𝑧(1+𝑧)
√−𝑧2 + 𝑏𝑧 − 𝑐 𝑑𝑧 = 𝜋 (𝑛 +

1

2
)

𝑧2

𝑧1
           (23) 

 
−√2𝑚(𝑀⃗⃗ 2−𝐶−𝐷)

𝛼
∫

1

𝑧(1+𝑧)
√(𝑧 − 𝑧1)(𝑧2 − 𝑧)𝑑𝑧

𝑧2

𝑧1
= 𝜋ђ(𝑛 +

1

2
)         (24) 

where we obtain the turning points 𝑧2 & 𝑧1 from the terms inside the square roots as 

 𝑧1 =
−𝑏−√𝑏2−4𝐶

2
  

 𝑧2 =
−𝑏+√𝑏−4𝐶

2
  

 

Let  2𝑧 + 1 = 𝑦; 𝑑𝑧 =
𝑑𝑦

2
      (25) 

subs. Eq. (25) into eq. (24), we obtain 

  ∫
1

𝑦2−1
√(𝑦 − 𝑦1)(𝑦2 − 𝑦)𝑑𝑦

𝑦2

𝑦1
=

−𝛼𝜋ђ(𝑛+
1

2
)

√2𝑚(𝑀⃗⃗ 2−𝐶−𝐷)

            (26) 

 

For computing the integral in equation (26), we use the integral expression 13, 14 

∫
1

𝑦2−1
√(𝑦 − 𝑦1)(𝑦2 − 𝑦)𝑑𝑦

𝑦2
𝑦1

=
𝜋

2
[√(𝑦1 + 1)(𝑦2 + 1) − √(𝑦1 − 1)(𝑦2 − 1) + 2]            (27) 

where the limits 𝑦
1
, 𝑦
2
 are real numbers, with 𝑦1 < 𝑦2. Comparing equation (27) with 

equation (26), and solving for 𝐸𝑛𝑙 gives 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇

{
 
 

 
 
2𝜇𝑉0

𝛼ћ2
− (𝑙 +

1

2
)
2

[
 
 
 
 
2(𝑙+

1

2
)
2
−
2𝜇𝐶

∝2ћ2
+(𝑛+

1

2
)
2
−
2𝜇𝑉0
𝛼ћ2

+
2𝜇𝑉1
𝛼ћ2

+(2𝑛+1)√(𝑙+
1

2
)
2
−
2𝜇𝐶

∝2ћ2
−
2𝜇𝐷

𝛼2ћ2

2𝑛+1+2√(𝑙+
1

2
)
2
−
2𝜇𝐷

𝛼2ђ2
−
2𝜇𝐶

𝛼2ђ2 ]
 
 
 
 
2

}
 
 

 
 

   (28) 
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2.2  Discussion 

Case 1:  If 𝑉0 = 𝑉1 = 0 in eq. (3), we obtain the energy equation of Manning-Rosen 

potential in the non-relativistic limit 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇

{
 
 

 
 

[
 
 
 
 
2(𝑙+

1

2
)
2
−
2𝜇𝐶

∝2ћ2
+(𝑛+

1

2
)
2
+(2𝑛+1)√(𝑙+

1

2
)
2
−
2𝜇𝐶

∝2ћ2
−
2𝜇𝐷

𝛼2ћ2

2𝑛+1+2√(𝑙+
1

2
)
2
−
2𝜇𝐷

𝛼2ђ2
−
2𝜇𝐶

𝛼2ђ2 ]
 
 
 
 
2

− (𝑙 +
1

2
)
2

}
 
 

 
 

   (29) 

Case 2:  If 𝐶 =  𝐷 = 0 in eq. (3), we obtain the energy equation of the Hellmann potential 

in the non-relativistic limit 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇
{
2𝜇𝑉0

𝛼ћ2
− (𝑙 +

1

2
)
2

[
2(𝑙+

1

2
)
2
+(𝑛+

1

2
)
2
−
2𝜇𝑉0
𝛼ћ2

+
2𝜇𝑉1
𝛼ћ2

+(2𝑛+1)√(𝑙+
1

2
)
2

2(𝑛+𝑙+1)
]

2

}  (30) 

Case 3:  If 𝑉1 = 0, 𝐶 = 𝐷 = 0 in eq. (3), we obtain the energy equation of the coulomb 

potential in the non-relativistic limit 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇
{
2𝜇𝑉0

𝛼ћ2
− (𝑙 +

1

2
)
2

[
2(𝑙+

1

2
)
2
+(𝑛+

1

2
)
2
−
2𝜇𝑉0
𝛼ћ2

+(2𝑛+1)√(𝑙+
1

2
)
2

2(𝑛+𝑙+1)
]

2

}  (31) 

Case 4:  If one 𝑉0 = 0, 𝑉1 = −𝑉1, 𝐶 = 𝐷 = 0  in eq. (3), we obtain the energy equation of 

the Yukawa potential in the non-relativistic limit 

𝐸𝑛𝑙 = −
𝛼2ћ2

2𝜇
{[

2(𝑙+
1

2
)
2
+(𝑛+

1

2
)
2
−
2𝜇𝑉1
𝛼ћ2

+(2𝑛+1)√(𝑙+
1

2
)
2

2(𝑛+𝑙+1)
]

2

− (𝑙 +
1

2
)
2

}  (32) 

3.0  CONCLUSION 

In this paper, we present the approximate energy spectrum for Manning-Rosen plus 

Hellmann potential using the Wentzel-Kramers-Brillouin WKB approach. The energy 

eigenvalues and the corresponding total normalized wave functions expressed in terms of 

the hypergeometric functions for the system are also obtained. 
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