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ApPROXIMATE LINEAR ANALYSIS OF CONCRETE 
FRACTURE BY R-CURVES 

By Zdenek P. Batant,' F. ASCE and Luigi Cedolin; M. ASCE 

ABSTRACT: Using linear elastic fracture analysis, the energy consumed per unit 
length of fracture (fracture energy) varies with the crack length, as described 
by the resistance curve (R-curve). This concept, originally proposed for metals, 
is developed here into a practical, applicable form for concrete. The energy 
release rate is determined by an approximate linear elastic fracture analysis based 
on a certain equivalent crack length, which differs from the actual crack length, 
and is solved as part of structural analysis. It is shown that such an analysis, 
coupled with the R-curve concept, allows achieving satisfactory fits of the pres­
ently existing fracture data obtained with three-point and four-point bent spec­
imens. Without the R-curve, the use of an equivalent crack length in linear 
analysis is not sufficient to achieve a satisfactory agreement with these data. 
The existing data can be described equally well with various formulas for the 
R-curve, and the material parameters in the formula can vary over a relatively 
broad range without impairing the representation of test data. Only the overall 
slope of the R-curve, the initial value, and the fina1 value ,are important. A 
parabola seems to be the most convenient shape of R-curve because the failure 
load may then be solved from a quadratic equation. For the general case, a 
simple algorithm to calculate the failure load is given. Deviations from test data 
are analyzed statistically, and an approximate relationship of the length param­
eter of the R-curve to the maximum aggregate size is found. 

INTRODUCTION 

Due to the large size of the fracture process zone at the crack front, 
concrete structures do not follow linear elastic fracture mechanics, ex­
cept when the cross section is extremely large compared to the aggregate 
size. Nevertheless, engineers need to be able to use linear elastic fracture 
mechanics at least in some approximate, equivalent sense because non­
linear fracture analysis is much more complicated. Since concrete does 
not behave plastically under tensile situations, the exterior of the frac­
ture process zone is essentially elastic. Therefore, the stress field farther 
away from the fracture process zone should be dose to that correspond­
ing to a linear fracture mechanics solution for a certain equivalent crack 
length. 

As it turns out, however, this does not suffice to achieve good agree­
ment with fracture test results. Evaluating these results by linear elastic 
fracture mechanics, one finds that the fracture energy, i.e., the energy 
consumed by fracture per unit crack length, is variable. Thus, in addi­
tion to considering a certain equivalent crack length instead of the actual 
crack length, one must also take into account the variation of the fracture 
energy. The situation for concrete happens to be the same as for ductile 
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fracture of metals, for which the fracfure energy variation has been Sttid· 
ied extensively (6). This variation is described by the plot of fracture 
energy (or fracture toughness) versus the crack extension, c, from a notch 
or smooth surface. This plot is called the resistance curve or R~e. 

As is well known, the R~e for any given material cannot be unique 
unless the crack length, c, is negligible compared to the dimensions of 
the cross section, the li~ament, and the distance to the nearest applied 
load. Otherwise, the shape of the R~e depends on these parameters 
and on the geometrical shape of the stru~ and the nature of loading. 
The shape of the R~e can be approximately calculated by various 
methods (for concrete, see Ref. 28, 3). 

As it appears, however, the shape of the R<UrVe does not vary strongly 
from one type of structure (specimen) to another, and also it does not 
have a strong effect on calculation results, as will be seen later. Thus, 
one may postulate a priori a certain suitable fixed shape of the R~e 
for all situations, which allows a great simplification of analysis. This was 
proposed for metals by Krafft, et al. (6,16) and has been widely used in 
ductile fracture. 

The present study shows that the R~e approach, combined with 
linear elastic fracture analysis for a certain effective crack length, which 
differs from the actual crack length, allows achieving a goOd agreement 
with the available fracture test data for concrete. 

REVIEW OF R-CuFlVE CoNCEPT 

Let c = a - Ilo in which Ilo = length of the notch [Flg. l(a»; and a = 
total length of crack and notch. Consider that the fracture energy, Gc , 
is a certain given function of crack extension, c, i.e., G. = Gc(c). The 
energy that must be supplied to the structure to produce the crack is U 
= JGc(c)da - Weal if the thickness of the structure in the third dimen­
sion is considered as unity; here W is the total release of strain energy 
from the structure (or specimen). An equilibrium state of fracture occurs 
when no energy needs. to be supplied .to change a by 8a and none is 
released, i.e., when 8W = O. Since 8U = (au/aa)8a = 0, in which au/ 
aa = Gc - W' = 0, and W' = aw laa, it follows that fracture equilibrium 
occurs when 

W' (a) = G.(c) (equilibrium) .................................... (1) 

The equilibrium fracture state is stable if the second variation 82U is 
positive. Since 82U = (alu/aal)8a2 and a2u/aal = aGc/aa - aW'/aa, the 
cOi\dition for stability of fracture and the limit of stability, i.e., the fail­
ure, are given by 

aGc(c) _ aw' (a) > 0 (stable) ................................... (2a) 
ac iJa 

= 0 (critical)................... . . . . . . . . . . . . . .. (2b) 

For most structures, the strain energy release rate increases as th~ 
crack grows, i.e., W' (a) > O. By elastic structural analysis, one can cal~ 
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FIG. 1.-R-CUrva and Dlagrama of Energy R.' .... Rate 

late the curve WI (a) corresponding to a unit load, P = 1. Then, for any 
load P 

W'(a) = p 2WI(a) .................•............................. (3) 

as can be deduced by dimensional analysis. Fig. l(a) shows the curves, 
W' (a), for a succession of increasing P-values, PI, P2 , P3 , •••• According 
to Eq. 1, the equilibrium states of crack extension for various load values 
are given by the intersections of these curves with the given curve Gc(c). 
~cco~g to Eq. 2, these equilibrium states are stable if at the point of 
mtersection the slope of the Gc(a)-curve is larger than the slope of the 
W' (a)-curve (see Fig. 1). As the crack grows, the difference between the 
slopes, 8Gclaa and aW'laa, gradually diminishes qntil, at a certain point, 
the slopes become equal (Fig. 1); this is then the critical state at which 
the structure fails. Beyond this point the crack extension is unstable and 
occurs dynamically since there is an excess of energy release that must 
go into kinetic energy. 

In the rare case that W' < 0 for all a, Eq. 2 is always satisfied, and 
the crack is then stable for all a [Fig. l(b». . 

In the case that Gc is constant, Eq. 2 reads 0> aW'laa. This condition 
can never be satisfied if W' increases with a [Fig. l(c)]. Thus, if a stable 
crack growth from a notch is observed in experiments, it implies that Gc 
cannot be constant but must increase, provided the test specimen ge­
ometry is such that W' increases with a. 

Comparing structures that are geometrically similar (including their 
notches) but of different sizes, the curves of W'(C) are also of similar 
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shape (i.e. related by affinity transformation), while the curve Ge(c) re­
mains the same. This causes failure to occur at a larger C for a larger 
structure, as shown in Fig. l(d). 

CALCULATJON OF FAILURE LOAD AND ANALYSIS OF FRACTURE DATA 

The energy release rate, W', to be used in Eq. 2 may be determined 
by linear elastic fracture analysis using various methods. For typical frac­
ture specimens, highly accurate approximations are available (see Refs. 
6, 15, 19, 24). For example, for an infinitely long strip of width Land 
unit thickness, containing a symmetric crack of length 2a normal to the 
strip sides, and loaded at infinity by axial load P, the stress intensity 
factor is 

K1 = f (L tan ~a) 1/2 ............................................ (4) 

from which W'(a) = KUE in which E = Young's modulus (15). For the 
three-point bent specimen and the four-point bent specimen (Fig. 2) 

.. r- PL 
K1 = V 'Ira bd 2 /3(o.), 

/3(0.) = 1.635 - 2.6030. + 12.300.2 - 21.270.3 + 21.860.4 
••••••••••••••• (5} 

.. r- PL 
K1 = V 'Ira bd2f4 (o.), 

/4(0.) = 1.12 - 1.390. + 7.320.2 - 13.070.3 + 13.990.4 
•••••••••••••••••• (6) 

in which a = aid; d = beam depth; L = beam span, b = beam width; 
and for the four-point bent specimen, the loads are applied symmetri­
cally at distances L/3 from the supports (15,20,24). These expressions 
have been used in the analysis of the test data described later. 

For structures of arbitrary geometry, one may determine the values of 
W I (a) for various small a by finite element analysis. Highly accurate re­
sults can be obtained with the use of singular elements, however, for 
concrete it makes no sense to strive for errors less than about 1 %. Then 
it suffices to use a regular grid of nonsingular elements, for which the 
crack may be modeled with about the same accuracy either as a sharp 
interelement crack or as a band of cracked elements of a single-element 
width (1-5,19), the latter being usually easier for programming. W'(a) 
may be estimated either from the difference between the total potential 

FIG. 2.-three-Point Bent and Four-Point Bent SpecImene 
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energies of the structure for two adjacent values of a, or from the field 
of displacements or stresses near the crack front. 

Further, one needs to choose a priori a suitable formula for the frac­
ture energy, Ge , of the material. Experiments show (25-28) that for con­
crete, similarly to other materials,Ge increases as a function of C and 
seems to approach a certain asymptotic value, Gf . Existence of the 
asymptotic value is also indicated theoretically (28). Measurements are, 
however, quite scattered and do not permit distinguishing too well be­
tweel': various possible expressions for Ge(c). The following three for­
mulas have been examined in calculations: 

Ge(C) = Gf (1 - ~-e/em) . .......................................... (7) 

Ge(c) = Gf [ 1 - ~ (:m _ 1) 2] 
for O:s C :s Cm, Gc(c) = Gf for C ~ Cm •••••••••••••••••••••••••• (8) 

for O:s C :s Cm, Ge(c) = Gf for C ~ Cm •••••••••••••••••••••••••• (9) 

in which Gf , ~, and Cm = material parameters to be found empirically. 
A more complicated formula with two additional parameters, q and r, 
Ge(c) = Gf{1 - ~ exp [-(clcm)q]}" was also tried; however, no appreciable 
improvement in the fits of test data could be achieved. 

Parameter Cm characterizes the length over which Gc approaches its 
final value, Gf • Since the dimensions of the fracture process zone in con­
crete appear to be in a certain fixed ratio to the maximum aggregate size, 
d., as suggested by various recent analyses (1,3), it seems reasonable to 
assume that 

Cm = md • ..................................................... (10) 

in which m may be considered the same for all concretes. 
When Cm is fixed, the formulas in Eqs. 7-9 may be written in the form 

Ge(c) = Gf - bx ...................... " .......................... (11) 

in which b = Gf~ and x = exp (-clcm) for Eq. 7; x = (clcm - 1)2 or x = 
(clcm - 1) for c < cm; and x = 0 for c ~ Cm in the case of Eq. 8 or 9. Since 
Eq. 11 is linear, linear statistical regression analysis may be used to ana­
lyze test data on the R-curves reported in the literature (9,23,25,27). Such 
analyses have been carried out first for each data set taken individually, 
and the coefficients of variation Wi for the deviations of measured data 
from the regression line (Eq. 11) have been evaluated for each data set 
by a computer for a series of values of Cm ranging from 1 to 50. A few 
examples of such plots are demonstrated in Figs. 3-5, respectively, fo' 
Eqs.7-9. 

Subsequently, for each Cm value, the combined coefficient of variation 
for all data sets was calculated as Ii> = ~iwf In) 1/2 in which i = 1, 2, ... 
n are the data sets used. It appeared tnat the smallest Ii> occurs for the 
exponential formula (Eq. 7) roughly for Cm = 12, and for the parabolic 
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shape (i.e. related by affinity transformation), while the curve Gc(e) re~ 
mains the same. This causes failure to occur at a larger c for a larger 
structure, as shown in Fig. l(d). 

CALCULATION OF FAILURE LOAD AND ANALYSIS OF FRACTURE DATA 

The energy release rate, W', to be used in Eq. 2 may be determined 
by linear elastic fracture analysis using various methods. For typical frac~ 
ture specimens, highly accurate approximations are available (see Refs. 
6, 15, 19, 24). For example, for an infinitely long strip of width Land 
unit thickness, containing a symmetric crack of length 2a normal to the 
strip sides, and loaded at infinity by axial load P, the stress intensity 
factor is 

KI ==f (Ltan ~a)I/2 ............................................ (4) 

from which W'(a) = KVE in which E = Young's modulus (15). For the 
three-point bent specimen and the four-point bent specimen (Fig. 2) 

.. r- PL 
KI == V 1ra bd2h (a), 

Mo.) = 1.635 - 2.6030. + 12.300.2 
- 21.270.3 + 21.860.4 ............... (5) 

.. r- PL 
KI == V1ra bd2/ 4(a), 

/4(0.) = 1.12 - 1.390. + 7.320.2 
- 13.070.3 + 13.990.4 .................. (6) 

in which a = aid; d = beam depth; L = beam span, b = beam width; 
and for the four-point bent specimen, the loads are applied symmetri­
cally at distances L/3 from the supports (15,20,24). These expressions 
have been used in the analysis of the test data described later. 

For structures of arbitrary geometry, one may determine the values of 
W'(a) for various small a by finite element analysis. Highly accurate re­
sults can be obtained with the use of singular elements, however, for 
concrete it makes no sense to strive for errors less than about 1%. Then 
it suffices to use a regular grid of nonsingular elements, for which the 
crack may be modeled with about the same accuracy either as a sharp 
interelement crack or as a band of cracked elements of a single-element 
width (1-5,19), the latter being usually easier for programming. W' (a) 
may be estimated either from the difference between the total potential 

FIG. 2.-Three-Point Bent and Four-Point Bent Specimens 

1339 

energies of the structure for two adjacent values of a, or from the field 
of displacements or stresses near the crack front. 

Further, one needs to choose a priori a suitable formula for the frac~ 
ture energy, Gc , of the material. Experiments show (25-28) that for con­
crete, similarly to other materials, Gc increases as a function of e and 
seems to approach a certain asymptotic value, Gf . Existence of the 
asymptotic value is also indicated theoretically (28). Measurements are, 
however, quite scattered and do not permit distinguishing too well be­
tween various possible expressions for Gc(e). The follOwing three for­
mulas have been examined in calculations: 

Gc(e) = Gf (1 - ~e-c/c .. ) ........................................... (7) 

Gc(e) = Gf [1 - ~ (:m _ 1)2] 
for 0 s e s em, Gc(e) = Gf for e ~ em .......................... (8) 

Gc(e) = Gf [ 1 - ~ ( 1 - e:) ] 
for 0 s e s Cm, Gc(c) = Gf for c ~ Cm •••••••••••••••••••••••••• (9) 

in which Gf , ~, and em = material parameters to be found empirically. 
A more complicated formula with two additional parameters, q and " 
Gc(c) = Gf{1 - ~ exp [-(elem)4JY, was also tried; however, no appreciable 
improvement in the fits of test data could be achieved. 

Parameter Cm characterizes the length over which Gc approaches its 
final value, Gf • Since the dimensions of the fracture process zone in con­
crete appear to be in a certain fixed ratio to the maximum aggregate size, 
d., as suggested by various recent analyses (1,3), it seems reasonable to 
assume that 

em = md • ..................................................... (10) 

in which m may be considered the same for all concretes. 
When em is fixed, the formulas in Eqs. 7-9 may be written in the form 

Gc(e) = Gf - bx ................................................ (11) 
in which b = Gf~ and x = exp (-clem) for Eq. 7; x = (clem - 1)2 or x = 
(clem - 1) for e < em; and x = 0 for c ~ em in the case of Eq. 8 or 9. Since 
Eq. 11 is linear, linear statistical regression analysis may be used to ana­
lyze test data on the R-curves reported in the literature (9,23,25,27). Such 
analyses have been carried out first for each data set taken individually, 
and the· coefficients of variation Wi for the deviations of measured data 
from the regression line (Eq. 11) have been evaluated for each data set 
by a computer for a series of values of em ranging from 1 to 50. A few 
examples of such plots are demonstrated in Figs. 3-5, respectively, for 
Eqs.7-9. I 

Subsequently, for each em value; the combined coefficient of variation 
for all data sets was calculated as w = (IiW~ In)I/2 in which i = I, 2, .. , 
n are the data sets used. It appeared that the smallest w occurs for the 
exponential formula (Eq. 7) roughly for em = 12, and for the parabolic 
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and any value of Cm between 12 and 30 is acceptable for the parabolic 
formula. 

To sum up, the test data available in the literature permit obtaining 
optimum Cm for all concretes. However, its value is quite uncertain, and 
only a certain range is indicated clearly. 

Until less scattered experimental information is acquired, it is rec­
ommended to use 

em = 12d. for Eq. 7, Cm = 20d. for Eq. 8 ....................... (12) 

For these values, the measured values of Gc for the test data from the 
literature (9,23,25,27) were plotted versus the theoretical value of Gc given 
by Eq. 7 or 8. These plots, along with the coefficient of variation of the 
deviations from the regression line, are shown in Fig. 6(d-f). If the ma­
terial showed no scatter and the theory were perfect, this plot would 
have to be a straight line of slope 1 passing through the origin. Devia­
tions from such a straight line give an idea of the error. 

'qle attempt has been made to obtain information on the value of Cm 

from the data on maximum loads in fracture tests available in the lit­
erature. However, these data appear to be almost insensitive to the value 
of Cm within a large range. 

After determining functions W' (a) and Gc(c), the maximum load (fail­
ure load) may be calculated with a computer by the following simple 
algorithm. 

1. Set the values of Gf , ~, and Cm • Assign a small crack length incre­
ment, .:1a, e.g., O.Olao, and set a = 120. 

2. Increment a, replacing it with a + .:1a. Set C = a - ao . 
3. For each a, calculate Wl(a) and Gc(c). Since W' = WIp2, the load 

corresponding to a is found as P = [Gc(c)/WI (a)p!2. If this value of P is 
larger than the previous P-value, return to step 2. 

4. Now aGclac < aW'/aa, i.e., the specimen fails. Set PrrtIIX :::= P. (More 
accurately, one could interpolate for the exact a at which aGclac = aW'1 
aa, but this is not necessary if .:1a is chosen to be as small as O.Olao.) 

5. Print P max and, in the case of test data analysis, evaluate the de­
viation from test data as .:1P error = Pm - P max in which Pm is the measured 
value of maximum load. 

6. When several test series are to be fitted, repeat steps 1-5 for an­
other case (e.g., another notch depth, ao, or another beam depth, h, or 
another test series), and accumulate the sum, '" = I(.:1P etrOtIPo)2, in which 
Po is the prediction of the failure load according to the bending strength 
theory, based on the net ligament section. 

The foregoing algorithm (computer subroutine) is then used, together 
with a library optimization subroutine, such as the Marquardt-Leven­
berg's algorithm, to vary the values of Gf , ~, and Cm until those values 
which give min '" are found. 

A much Simpler calculation of P max is possible if the curve WI (a) 
can be approximated by a straight line within the range of interest, and 
if the parabolic formula for the R-curve (Eq. 8) is used. Suppose an es­
timate, c = co, of the crack extension at failure has been made (the sim­
plest estimate is Co "" 0). Then Wl(a) :::= WID + WID(c - Co) in which 
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Wlo is the value of WI at a = 120 + co; and Wlo is the slope of the curve 
WI at that point. Eqs. 1 and 2b may then be written as 

p2 [Wlo + Wio (c - co)] = Gf [1 - 13 (:m - 1) 2] .................... (13) 

p 2 WID = -2Gf ! (~ - 1) .................................... " (14) 
Cm Cm 

Elimination of P then yields 

2 (WID ) C~_ (Cm - c) - 2 -" + Cm - Co (cm - c) + - - 0 ..................... (15) 
WID ~ 

which is a quadratic equation for c. After determining its smallest real 
solution, Eq. 13 or 14 yields P = P max • 

Alternatively, one maI eliminate C from Eqs. 13-14, which yields a 
quadratic equation for P : 

c2 . 

WI':_m_ p4 - [WID(cm - co) + WIo] p2 + Gf = 0 .................... (16) 
413 Gf 

from which the failure load P = Pmax may be solved directly (the smaller 
one of two real positive solutions applies). 

Even if Gc is not given as a parabola, one may use the same procedure 
if the curve, Gc , is approximated by a parabola in the vicinity of the 
estimate, C = Co. Such an approximation must be satisfactory if the es­
timate, Co, is close. 

TABLE 1.-Parameterl for Teat Data UHd 

E., in pounds 
Bent t:, in pounds per square 

Test series points per square inch inch times 10e 
(1 ) (2) (3) (4) 

Walsh-No.1 three 524* 3.299* 
Walsh-No.2 three 538* 4.082* 
Walsh-No.3 three 378* 2.593* 
Walsh-No.4 three 377* 2.715* 
Walsh-No.5 three 686* 4.696* 
Walsh-No.6 three 594* 3.928* 
Mindess four 707* 6.260 
Huang three 410* 3.122* 
Carpinteri three 661* 4.173* 
Kaplan-No. 1 three 370* 4.190 
Kaplan-No. 2 three 630* 5.470 
Kaplan-No. 3 four 370* 4.190 
Kaplan-No.4 four 630* 5.470 
Shah three 378* 3.000* 
Gjsrv-No.l three 482* 3.000* 
Gjsrv-No.2 three 542* 3.180* 

* Asterisk indicates numbers estimated by calculations. 
Note: psi = 6,895 N/m2, in. = 25.4 mm. 

1346 

d., in 
inches 

(5) 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.375 
0.5 
0.75 
0.75 
0.75 
0.75 
0.75 
0.375 
0.375 
0.63 



The more general six-step numerical algorithm described previously 
was used to analyze the fracture data from the literature (8,10,11,14, 
17,21,22,25,26) concerning three-point and four-point bent specimens 
(Table 1). AIl these data were fitted jointly under the condition that Cm 

and ~ have the same value for all the data, while Gf may vary from one 
concrete to another. Table 1 lists all the parameter values needed for the 
analysis. Table 2 lists the optimum values of fracture energy, Gf , which 
yields (in the least-square sense) the optimum fit of the measured max­
imum loads, based on various choices of parameters Cm and~. The Young's 
modulus, if not reported by the experimentalist, was estimated as E = 
57,000 Vfc in which f~ and E are in pounds per square inch. Only bent 
specimens were analyzed since, for them, very accurate expressions for 
the energy release rate are known (Eqs. 5-6). Note also that Eq. 5 is 
more accurate than that used by Walsh (26). Huang and Carpinteri also 
reported a second series of tests which was not considered because of 
an inexplicably large scatter. For some of the test data, P max was not 
reported directly, but it could be calculated from the reported nominal 
stress at failure. 

An idea of how closely the theory can describe the maximum load data 
can be obtained from Figs. 7-8, in which the calculated value, P" of 
maximum load P max is plotted versus the measured value Pm • The values 
are normalized with regard to the failure loads, Po, predicted by the 
engineering bending theory based on the ligament cross section. For the 
three-point bent specimen (Fis.. 2), Po = 2(bd2/L) fU3, and for the four­
point bent specimen Po = t: btfl/L. 

If the theory were perfect, the plots in Figs. 7-8 would be straight 
lines of slope 1 passing through the origin. Thus, deviations from the 
straight line represent errors, and linear statistical regression analysis 

TABLE 2.-Valu" of Fracture Energy G," 

Equation 7 Equation 8 

13 = 0.72 13 = 0.458 13 = 0.665 13 = 0.780 13 = 0.845 13 = 0.911 
Test series em = 1.85 em = 1 em = 3 em = 6 em = 10 em = 20 

(1) (2) (3) (4) (5) (6) (7) 

Walsh-No.1 0.456 0.245 0.378 0.565 0.806 1.409 
Walsh-No.2 0.375 0.199 0.311 0.467 0.666 1.166 
Walsh-No.3 0.290 0.156 0.240 0.358 0.511 0.893 
Walsh-No.4 0.190 0.101 0.158 0.237 0.339 0.593 
Walsh-No.5 0.3% 0.210 0.328 0.493 0.705 1.234 
Walsh-No.6 0.449 0.240 0.372 0.557 0.794 1.389 
Mindess 0.348 0.174 0.292 0.455 0.657 1.161 
Huang 0.649 0.355 0.532 0.797 1.145 2.018 
Carpinteri 0.390 0.198 0.327 0.505 0.728 1.287 
Kaplan-No. 1 0.362 0.184 0.303 0.465 0.668 1.178 
Kaplan-No. 2 0.591 0.301 0.494 0.759 1.090 1.921 
Kaplan-No. 3 0.397 0.202 0.332 0.510 0.733 1.293 
Kaplan-No.4 0.536 0.273 0.448 0.689 0.989 1.743 
Shah 0.165 0.083 0.138 0.212 0.303 0.533 
Gjfill"V-No.1 0.192 0.098 0.160 0.246 0.351 0.616 
Gjfill"V-No.2 0.262 0.135 0.219 0.334 0.476 0.835 

"Expressed in pounds per inch (lIb/in. = 175.17 N/m). 
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FIG. 7.-Examplea of Regressions of Theoretical versus Measured Values of Max­
Imum Load for Parabolic R-Curve Formula (Eq. 8) and for Various Parameter Values 

can be applied. The basic statistical parameters are: s = [~i(Yi - y)2/(n 
- 2)]1/2 = standard deviation of the deviations Y j - Y from the regression 
line; n = number of all data points; w = slY = coefficient of variation; 
in which Y = ~j Yin = ordinate of the centroid of all data points. These 
statistical parameters, along with optimum slope band Y-intercept Q, are 
listed in Figs. 7-8. 

From extensive statistical computer calculations and data plotting it 
appears that the presently available fracture data for the maximum load 
can be roughly equally well approximated by both the exponential and 
parabolic formulas (Eqs. 7-8), and that a relatively wide range of pa-
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... meter c~ yield ...... ,Iy equally good results [Fig. 7(0_0»). This finding 
is the .. me as thai from the aforementioned analysis of the ""pertmental 
R-<:Ul'V". 'The value m c", previously determined from u... experimental 
R-curve (Sq. 12) appears to be near optimum for th" IJliIximum load data 
olso. Due to u... broad range of possible c~ values, the", is considerable 
u;u:ertamty in the value of c" since different value, of eM yield rather 
different values of G,. The .. values of course correspond 10 different 
crack extenslorul. To detemtine G, with mo<e certainty, one would need 
test .data for really large spe<:imens, reaching into mud. larger crack ""_ 
te","oo., 4 - ... , and also, if possible, <lin:ct mea."""""nl$ of crack length 
a at faUure. The difficulty of the laller i. notoriou" and u... definition 
of what oo:nstilules Ih<! crack 1ength is frought with ambiguity in decid­
ing: the crack opening value that delineates. m • ..........rnc crack from microcracldng. -'---r' 

Despite the un=tainty in deIennining >., the present analysis achieves 
a substantial futprovement in the CIlpabilities 10 fit the exiating fracture 
_ data. Using the concept of equivalent or "effective" crack length 
..mn.., i.e .. without the R-curve, the existing test data cannot be fitted 
.. Iiafactorily, as demo ... trated in Appendi>: I. 

Co!ocIlI8 ... 

1. Approximate linear eJastio fracture analysis allows acltieving .. tis­
factory fits of exiating fracture data for ronaete. 

2. Two .. """tial features are needed, (a) The analys;. must use on 
equivalent rnu:k length instead of the .ctual notoh or crack length as 
observed; ond (b) the fracture energy mu.t be considered a •• function 
0/ the orad extension (R-curve). 

3. The exisling test data CIln be described equaUy well with the uoe 
of different formulas for the R-auve and different parameter value. in 

,~ 

!he BalM formula.. The fracture energy value. depend strongly on the 
type of fonnula used for data evaluation. Thi, doe, nol .eem to be a 
problem. however. If the same formula is used for both data evaluation 
and sIructttral anal)lSlS. 

4. 'The p:n;ciae .hape of the R~e i. not important from the practical 
viewpoint, however, who!.re important an! the overaU '!ope. the initial 
value, and the final value . 

5. Coruequently. oophisli<aled analyse. of the precise shape of R...-.uves 
by differential or intogral equations make practloally "" .. nse for con­
crete and canno! be verified by e>isling experimental tedmique •. 

6. A parabola is • convenient ""pre.sion for the R.-rurve becallS" il 
aI10ws solving the failure ]""d from a quadratic equation, If the energy 
release rate is considered to ""I}' Unearly with the crack length . 

7. For an R<tII'Ve <Jf any shape, a oimple computer algorithm to de­
"',mine the failure 10ad is p~ted. 

8. The length pa!'ilttleler of the R..::urve is approximately related to the 
maximum aggregate size. 
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AI'HIIDIx l.--c..r. THE fi.Cu1lV!. ... DIs! ElIED W1n11 
An inquisitive reader might ask whether the available teot data rould 

nol be "'presented equally well by 90IIte still simpler theory. The I"""""nt 
themy i. chara<"lel'ized by two katureo, (I) An equivalent ,ather than 
actual crack length; and (2) the R-curve. Let 110 now e><amine two pos­
sil;>1" klrmuJations in whim the oerond leature, i.@., tha concept of the 
R-curve, is deleted. 

UN of Loca1 Size Parameter._The length of th@equivalentcrack to 
be used in approximate linear onaly5is m.oy be ""peeled to be between 
"and (. + d,l in which a ~ the length of the complete orack; and d, _ 
tho length of the fracture pro<5$ zone ahead of the ",ack. Therefore, 
fracture propagation may depend not only on the energy re1ease ",te, 
W', klr crack length., but also on il$ increment over length d

" 

4W' _ 
(iJW'/iJa)~ [FIg. 9(al]. By arguments similar to those used by Irwin (13) 
to estimate the size of the yielding zone in metal fracture, it can be shown 
thot dr must equal c,(K.,/f;)' in which 1(,. - tho! criticat val"" of Mode I 
s!r@s.intensityfactor,K,;f;- the direct ", ... ile strength of ron<reIE; 
and <, - a nondlmensiona.l ronslant. R=lling that K;' _ EG, (19), we 
<an '""that 4W'!C, - c,S In whim we introduce 

EiJW' ,--­ti' iN! 
... (11) 
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FIG. 9.-Loca1 Size Parameter (Eq" 17, 18) and Best Data fits Attainable without 
R-Curves 

as a nondimensional local size parameter 'Characterizing the change of 
the energy release rate of the structure over the length of the fracture 
process zone. Thus, since fracture growth should depend on both W' 
(at len~ !') and W' + AW' (at length a + d,), we may assume the frac­
ture cntenon as 

W' = GfF(S) ................................................ " (18) 

instead of the form W' = Gf used in the classical linear fracture me-
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chamcs (19). J'(S) is an empirical function, to be determined by fitting 
test data., ,<, 

Note"\'~gh S, the criterion in Eq. 18 involves f; in addition to 
Gf • AIIoliolethatparameler S is equivalent to similar parameters in­
volvinaawvat. which were recently introduced by Paris and Hutchin­
son (U,ta)~and others to approximately characterize the effect of large­
scale yieldiag in ductile fracture of metals. 

For an illustration of parameter S, we may consider an infinite center­
cracked strip subjected to ~ tensile stress a at infinity [Fig. 9(b)]. 
According to Eq. 4 and the relation W' = KUE, we get. from Eq. 17 S 
= -rrP2E2 [L cos (-rra/L)f;]-2. We see that, for similar specimens, S == 1/ 
L, and that 5 -+ 00 for vanishing ligament length, i.e., for a -+ L/2. Ac-

,cordingly, F(S) should tend to an asymptote as S -+ 00. For small S (large 
structures) [Fig. 9(c)], F(S) should approach 1.0 since Eq. 18 must reduce 
to the linear fracture mechanics criterion W' = Gf • The foregoing prop­
erties are exhibited, e.g., by the following simple functions 

G = Gfexp [-(cfS)I'] ........................................... (19) 

G == G,[1 + (c,S)pr' ............................................ (20) 

in which c" p, T = empirical constants. 
To check the applicability of Eqs. 1~20, the data by Walsh involving 

three-point bent specimens and six different concrete mixes, were used 
first. In fitting the data, different values of Gf were allowed for each 
concrete mix, while the values of the parameters c" p, T in Eqs. 19-20 
were considered the same for all concretes. Optimum fits [Figs. 9(d-e)] 
were obtained by computer minimization of a sum of squared deviations 
from data, using a library subroutine for Marquardt-Levenberg algorithm. 

For Eq. 19 the deviations were determined in the plot of In (W'/Gc) 

versus S as shown in Fig. 9(d) for the six test series. The coefficient of 
variation for all data points, w, and for the deviations of all data points 
from the regression line, WW' al!d the correlation coefficient p are also 
listed !It Fig. 9(d); w =_ [Ij(Yj - Yt/(n - 1)]1/2, WyJ:r = [Ij(Yj - y)2/(n -
2)]1/2/y, p= [Ij(Yj - YilIj(Y - Y)2p/2, in which Yj = ordinates of data 
points; Y = ordinates of regression line (at same S); Y = mean of Yj ; 

and n = number of all points. 
For Eq. 20, the deviations were determined in the plot of (Gf/W')1 /' 

versus S, as shown in Fig. 8(e). The regression line (solid line) slightly 
differs from the optimum fit line (dashed line) obtained by Marquardt­
Levenberg algorithm. 

If classical linear fracture mechanics were used, then the fits in Figs. 
9(d-e) would have to be made by horizontal lines. So, the improvement 
of the fit due to the slope of the line, as indicated by the decrease in 
WyJ:r compared to w, indicates the improvement attained by virtue of Eq. 
18. We see that the improvement is not insignificant. However, the re­
sulting fits are distinctly inferior to those achieved with the R-curve. Note 
also that the deviations from the optimum fit lines in Figs. 9(d-e) reveal 
a certain systematic trend; see the bend on each of the lines connecting 
the three points for the same test series. Therefore, we will now examine 
another possible formulation. 

Equivalent Crack Length Based on Aggregate Size.-If the compli-
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cated stress distribution on the crack line is replaced by an elastic dis­
tribution, the effect should be insignificant at distances from the crack 
tip which exceed the size of the fracture process zone, provided the re­
sultants of the distributions are the same. This follows from Saint-Ven­
ant's principle. The same location of the resultants can be achieved by 
replacing the actual crack length ao with a certain equivalent crack length 
a > ao. In the Dugdale-Barenblatt model of crack tip yielding (19) the 
equivalent crack length can be calculated, but for concrete we can hardly 
do that because the stress-strain law for the fracture process zone is not 
known weIl and also the stress distribution is highly random. Therefore, 
it seems appropriate to consider a - ao to be an empirical function of 
the fracture process zone size, df . For that, we could use again the es­
timate df = CI (Kcrlf!i; however, to try another approach, we will exploit 
the fact that a fully developed fracture process zone has normally the 
size of several times the maximum aggregate size, da • The use of da is 
convenient since, in contrast to Kcr and f:, no experiments need be made 
to determine it. 

Thus, we assume that a = ao + fda, in which f = empirical parameter 
to be determined by fitting test data, and ao = actual crack length, in­
terpreted as the notch length in our subsequent fitting of test data. Since 
the stress distribution along the fracture process zone should depend 
also on the change of W', we may assume f to depend on 5, and so we 
set 

a = ao + f(S)da • •••••••••••••••••••••••••••••••••••••••••••••••• (21) 

and use, instead of Eq. 18, the failure criterion W' (a) = Gf , in which Gf 
= evaluated at length a, rather than ao. For the definition of 5 (Eq. 17), 
we now evaluate aW'laa at ao rather than at a, since otherwise Eq. 21 
would become an implicit equation in a. For function 1(5), one may sim­
ply choose 

1(5) = CI + C2 exp (-C35) ........................................ (22) 

The values of Gf obtained by fitting the data of Walsh's six concretes 
are plotted in Fig. lO(a) against the W'-values calculated from measured 
failure loads. (Note that the Grvalues are also affected by optimization, 
because they depend on a.) A perfect fit would, in this plot, produce a 
straight line of slope 1 passing through the origin. The regression line 
is plotted in Fig. lO(a) as the solid line, and the 95% confidence limits 
are plotted as the dashed lines. As is seen, the scatter is small. Thus, 
the hypothesis in Eqs. 21-22 works well for Walsh's data, much better 
than the previous hypothesis (Eqs. 17-20). 

Subsequently, other data available in the literature were fitted sepa­
rately, giving a higher scatter than Walsh's data but still acceptable. 
However, the values of CI, C2, C3 obtained by optimizations made indi­
viduaIly for each data set differ greatly from each other. Moreover, for 
the combined optimization of all data, the results of which are shown 
in Fig. lO(b), the exponential decay of the optimized function 1(5) = CI 

+ C2 exp (-C3S) comes out to be so slow (small C3) that 1(5) is almost a 
straight line. Therefore, the combined optimization of all data sets has 
also been tried using a simpler linear expression 1(5) = CI + C2S, and the 
regression analysis yielded about the same standard error. It has also 
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FIG. 10.-Equlvalent Crack Length after Eq. 21 and Data Fits Attainable without 
R-Curves 

been tried whether CI , C2' C3 are perhaps some simple functions of con­
crete properties, rather than constants. In particular, analyses were made 
with the function f(S) = C1X + C2Y + (C3X + C4Y) 5 and several other more 
complicated functions, in which x = 1 - 1;;(1,500 psi) and y = 1 - E/ 
(2 X 107 psi). The rationale behind assuming these functions was the 
fact that, for very high t: or very high E, the fracture process zone be­
comes smaller since the stiffness of the matrix approaches that of the 
aggregate. However, no improvement in the combined regression of all 
data could have been achieved in this manner. 

We must, therefore, conclude that, without the R-curve concept, the 
representation of test results attainable with a linear elastic analysis is 
much worse, although still better than that attainable when the actual 
crack length is considered. 
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