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APPROXIMATE LINEAR ANALYSIS OF CONCRETE
FRACTURE BY R-CURVES

By Zdenék P. Bazant,' F. ASCE and Luigi Cedolin,? M. ASCE

Asstract: Using linear elastic fracture analysis, the energy consumed per unit
length of fracture (fracture energy) varies with the crack length, as described
by the resistance curve (R-curve). This concept, originally proposed for metals,
is developed here into a practical, applicable form for concrete. The energy
release rate is determined by an approximate linear elastic fracture analysis based
on a certain equivalent crack length, which differs from the actual crack length,
and is solved as part of structural analysis. It is shown that such an analysis,
coupled with the R-curve concept, allows achieving satisfactory fits of the pres-
ently existing fracture data obtained with three-point and four-point bent spec-
imens. Without the R-curve, the use of an equivalent crack length in linear
analysis is not sufficient to achieve a satisfactory agreement with these data.
The existing data can be described equally well with various formulas for the
R-curve, and the material parameters in the formula can vary over a relatively
broad range without impairing the representation of test data. Only the overall
slope of the R-curve, the initial value, and the final value are important. A
parabola seems to be the most convenient shape of R-curve because the failure
load may then be solved from a quadratic equation. For the general case, a
simple algorithm to calculate the failure load is given. Deviations from test data
are analyzed statistically, and an approximate relationship of the length param-
eter of the R-curve to the maximum aggregate size is found.

INTRODUCTION

Due to the large size of the fracture process zone at the crack front,
concrete structures do not follow linear elastic fracture mechanics, ex-
cept when the cross section is extremely large compared to the aggregate
size. Nevertheless, engineers need to be able to use linear elastic fracture
mechanics at least in some approximate, equivalent sense because non-
linear fracture analysis is much more complicated. Since concrete does
not behave plastically under tensile situations, the exterior of the frac-
ture process zone is essentially elastic. Therefore, the stress field farther
away from the fracture process zone should be close to that correspond-
ing to a linear fracture mechanics solution for a certain equivalent crack
length.

As it turns out, however, this does not suffice to achieve good agree-
ment with fracture test results. Evaluating these results by linear elastic
fracture mechanics, one finds that the fracture energy, i.e., the energy
consumed by fracture per unit crack length, is variable. Thus, in addi-
tion to considering a certain equivalent crack length instead of the actual
crack length, one must also take into account the variation of the fracture
energy. The situation for concrete happens to be the same as for ductile
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fracture of metals, for which the fracture energy variation has been stud-
ied extensively (6). This variation is described by t_he plot of fracture
energy (or fracture toughness) versus the crack extension, c, from a notch
or smooth surface. This plot is called the resistance curve or R-curve.

As is well known, the R-curve for any given material cannot be unique
unless the crack length, ¢, is negligible compared to the dimensions of
the cross section, the ligament, and the distance to the nearest applied
load. Otherwise, the shape of the R-curve depends on these parameters
and on the geometrical shape of the structure and the nature of loading.
The shape of the R-curve can be approximately calculated by various
methods (for concrete, see Ref. 28, 3).

As it appears, however, the shape of the R-curve does not vary strongly
from one type of structure (specimen) to another, and also it does not
have a strong effect on calculation results, as will be seen later. Thus,
one may postulate a priori a certain suitable fixed shape of the R-curve
for all situations, which allows a great simplification of analysis. This was
proposed for metals by Krafft, et al. (6,16) and has been widely used in
ductile fracture. : ; ] )

The present study shows that the R-curve approach, combined with
linear elastic fracture analysis for a certain effective crack length, which
differs from the actual crack length, allows achieving a good agreement
with the available fracture test data for concrete.

Review oF R-Curve ConcePT

Let ¢ = a — gy in which 4 = length of the notch [kig. 1(9)]; and 2 =
total length of crack and notch. Consider that the fracture energy, G.,
is a certain given function of crack extension, ¢, i.e., G. = G.(c). :Ihe
energy that must be supplied to the structure to produce the. cracl‘< isU
= [G.(c)da — W(a) if the thickness of the structure in the tlurd dimen-
sion is considered as unity; here W is the total release of strain energy
from the structure (or specimen). An equilibrium state of fracture occurs
when no energy needs to be supplied to change 4 by 8 and none is
released, i.e., when 3W = 0. Since 3U = (3U/da)da = 0, in which U/
da=G,— W'=0, and W = dW/éa, it follows that fracture equilibrium
occurs when

W (@) = Gelc) (equilibrium) .........ouvurereneneeeeneneanenenns 1))

The equilibrium fracture state is stable if the second variation U is
positive. Since 8*U = (°U/da’)8a” and 5*U/da* = 8G./da — 3W'/da, the
condition for stability of fracture and the limit of stability, i.e., the fail-
ure, are given by

€9 _W@ >0 (stable) .........ccoviiiiiiiiats e (2a)
dc da _
=0 (critical) ............oiiiel teeeneaaa s @b

For most structures, the strain energy rel_easé rate increases as the

crack grows, i.e., W'(a) > 0. By elastic structural analysis, one can calcty
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FIG. 1.—R-Curves and Diagrams of Energy Release Rate

late the curve W (a) corresponding to a unit load, P = 1. Then, for any
load P

W@=PWi@)......c.cvvr.... e, @)

as can be deduced by dimensional analysis. Fig. 1(a) shows the curves,
W' (a), for a succession of increasing P-values, P;, P,, P,, .... According
to Eq. 1, the equilibrium states of crack extension for various load values
are given by the intersections of these curves with the given curve G.(c).
According to Eq. 2, these equilibrium states are stable if at the point of
intersection the slope of the G.(a)-curve is larger than the slope of the
W' (a)-curve (see Fig. 1). As the crack grows, the difference between the
slopes, 8G./da and dW"' /a, gradually diminishes until, at a certain point,
the slopes become equal (Fig. 1); this is then the critical state at which
the structure fails. Beyond this point the crack extension is unstable and
occurs dynamically since there is an excess of energy release that must
go into kinetic energy.

In the rare case that W' < 0 for all 4, Eq. 2 is always satisfied, and
the crack is then stable for all a [Fig. 1(b)]. '

In the case that G, is constant, Eq. 2 reads 0 > 4W'/da. This condition
can never be satisfied if W’ increases with a [Fig. 1(c)]. Thus, if a stable
crack growth from a notch is observed in experiments, it implies that G,
cannot be constant but must increase, provided the test specimen ge-
ometry is such that W’ increases with 4. ,

Comparing structures that are geometrically similar (including their
notches) but of different sizes, the curves of W'(c) are also of similar
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shape (i.e. related by affinity transformation), while the curve G.(c) re-
mains the same. This causes failure to occur at a larger c for a larger
structure, as shown in Fig. 1(d).

CaLcuLaTiON OF FAILURE LOAD AND ANALYSIS OF FRACTURE DATA

The energy release rate, W', to be used in Eq. 2 may be determined
by linear elastic fracture analysis using various methods. For typical frac-
ture specimens, highly accurate approximations are available (see Refs.
6, 15, 19, 24). For example, for an infinitely long strip of width L and
unit thickness, containing a symmetric crack of length 22 normal to the
strip sides, and loaded at infinity by axial load P, the stress intensity
factor is :

P 'n'al/2 ‘
Kim = L tan = | i i i it et et i 4
1 L( I\L> @

from which W' (@) = K}/E in which E = Young’s modulus (15). For the
three-point bent specimen and the four-point bent specimen (Fig. 2)

PL
Ky=Vma @)

f(e) = 1.635 — 2.603a + 12.3002 — 21.276% + 21.860% ..o 'vv.n.... .. )
PL
Kl = vmna _2f4(u')l
Y™ b |
fi(@) = 1.12 — 1.39 + 7.326% — 13.070° + 13.99a* +.\'vvvvrnennn.s .. ©)

in which a = a/d; d = beam depth; L = beam span, b = beam width;
and for the four-point bent specimen, the loads are applied symmetri-
cally at distances L/3 from the supports (15,20,24). These expressions
have been used in the analysis of the test data described later.

For structures of arbitrary geometry, one may determine the values of
W' (a) for various small a by finite element analysis. Highly accurate re-
sults can be obtained with the use of singular elements, however, for
concrete it makes no sense to strive for errors less than about 1%. Then
it suffices to use a regular grid of nonsingular elements, for which the
crack may be modeled with about the same accuracy either as a sharp
interelement crack or as a band of cracked elements of a single-element
width (1-5,19), the latter being usually easier for programming. W’ (a)
may be estimated either from the difference between the total potential

b v P L P
1/[ P {T Tp343
L v

p +

e

FIQ. 2.—Three-Point Bent and Four-Point Bent Specimens
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energies of the structure for two adjacent values of 4, or from the field

. of displacements or stresses near the crack front.

Further, one needs to choose a priori a suitable formula for the frac-
ture energy, G., of the material. Experiments show (25-28) that for con-
crete, similarly to other materials, G, increases as a function of ¢ and
seems to approach a certain asymptotic value, G;. Existence of the
asymptotic value is also indicated theoretically (28). Measurements are,
however, quite scattered and do not permit distinguishing too well be-
tween various possible expressions for G.(c). The following three for-
mulas have been examined in calculations:

Gel©) = GHL = BE™ ™) e @)
for OSC;C,,;“, Gl)) =G5 fOr CZCpoevrriinneeineinnnann., ®)
for OSC-SC,,,, Gl€) =G fOr CZCpvennrriinnannanannnnn., )

in which G;, B, and c,, = material parameters to be found empirically.
A more complicated formula with two additional parameters, 4 and 7,
Ge(c) = G1 — B exp [—(c/cn)']Y, was also tried; however, no appreciable
improvement in the fits of test data could be achieved. ‘

Parameter c,, characterizes the length over which G, approaches its
final value, G;. Since the dimensions of the fracture process zone in con-
crete appear to be in a certain fixed ratio to the maximum aggregate size,
d,, as suggested by various recent analyses (1,3), it seems reasonable to
assume that

in which m may be considered the same for all concretes.
When c,, is fixed, the formulas in Egs. 7-9 may be written in the form

Gl =G =bX e eeeaneannann. R 11)

in which b = G and x = exp (—c/c,) for Eq. 7; x = (c/c, — 1)>or x =
(¢/cw — 1) for c < ¢,; and x = 0 for ¢ = ¢, in the case of Eq. 8 or 9. Since
Eq. 11 is linear, linear statistical regression analysis may be used to ana-

lyze test data on the R-curves reported in the literature (9,23,25,27). Such

analyses have been carried out first for each data set taken individually,
and the coefficients of variation w; for the deviations of measured data
from the regression line (Eq. 11) have been evaluated for each data set
by a computer for a series of values of ¢, ranging from 1 to 50. A few
examples of such plots are demonstrated in Figs. 3-5, respectively, fo’
Egs. 7-9.

Subsequently, for each ¢, value, the combined coefficient of variation
for all data sets was calculated as & = (T;0w?/n)"? in whichi =1, 2, ...
n are the data sets used. It appeared that the smallest @ occurs for the
exponential formula (Eq. 7) roughly for c,, = 12, and for the parabolic
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shape (i.e. related by affinity transformation), while the curve G, (c) re-
mains the same. This causes failure to occur at a larger ¢ for a larger
structure, as shown in Fig. 1(d). '

CaLcuLATION OF FAILURE LOAD AND ANALYSIS OF FRACTURE DATA

The energy release rate, W’, to be used in Eq. 2 may be determined
by linear elastic fracture analysis using various methods. For typical frac-
ture specimens, highly accurate approximations are available (see Refs.
6, 15, 19, 24). For example, for an infinitely long strip of width L and
unit thickness, containing a symmetric crack of length 24 normal to the
strip sides, and loaded at infinity by axial load P, the stress intensity
factor is

P ma\
Ki=— | Ltan— i i e e e e e 4
1 L( nL) @

from which W’ (g) = K}/E in which E = Young’s modulus (15). For the
three-point bent specimen and the four-point bent specimen (Fig. 2)

~— PL
Kl = vma —2f3 (a)/
bd
fs(a) = 1.635 ~ 2.603c + 12.300% — 21.270% + 21.860* ............... (5)
PL
Ki=Vma—fia),
bd _
fale) = 1.12 - 1.39a + 7.320> — 13.070®> + 13.99a* ...........o...... (6)

in which a = a/d; d = beam depth; L = beam span, b = beam width;
and for the four-point bent specimen, the loads are applied symmetri-
cally at distances L/3 from the supports (15,20,24). These expressions
have been used in the analysis of the test data described later.

For structures of arbitrary geometry, one may determine the values of
W' (a) for various small a by finite element analysis. Highly accurate re-
sults can be obtained with the use of singular elements, however, for
concrete it makes no sense to strive for errors less than about 1%. Then
it suffices to use a regular grid of nonsingular elements, for which the
crack may be modeled with about the same accuracy either as a sharp
interelement crack or as a band of cracked elements of a single-element
width (1-5,19), the latter being usually easier for programming. W' (a)
may be estimated either from the difference between the total potential
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energies of the structure for two adjacent values of a, or from the field
of displacements or stresses near the crack front.

Further, one needs to choose a priori a suitable formula for the frac-
ture energy, G., of the material. Experiments show (25-28) that for con-
crete, similarly to other materials, G, increases as a function of ¢ and
seems to approach a certain asymptotic value, G;. Existence of the
asymptotic value is also indicated theoretically (28). Measurements are,
however, quite scattered and do not permit distinguishing too well be-
tween various possible expressions for G.(c). The following three for-
mulas have been examined in calculations:

Gel(€) = GHl = Be ™) et @)
[ c 2
G =G |1-B(=-1
for 0scscp, G(©)=G; fOr CZCpoevrvvrvirnnnniunninnnnn.. (8)
Q@=GJ1—BG—£>]
B Com
for 0=<c=<cm, Gi(€)=Gf fOr C=Cpovvuvevrnnruniiiiniunnnns. 9

in which Gy, B, and ¢,, = material parameters to be found empirically.
A more complicated formula with two additional parameters, g and 7,
Ge(c) = GH1 — B exp [—(c/cn)']}, was also tried; however, no appreciable
improvement in the fits of test data could be achieved.

Parameter c,, characterizes the length over which G, approaches its
final value, Gy . Since the dimensions of the fracture process zone in con-
crete appear to be in a certain fixed ratio to the maximum aggregate size,

- d,, as suggested by various recent analyses (1,3), it seems reasonable to

assume that

in which m may be considered the same for all concretes.
When c,, is fixed, the formulas in Egs.. 7-9 may be written in the form

Gl = Grm b oot (11)

in which b = GB and x = exp (—c/c,) for Eq. 7; x = (c/c,, — 1)’ or x =
(¢/cw — 1) forc < c,; and x = 0 for ¢ = ¢, in the case of Eq. 8 or 9. Since
Eq. 11 is linear, linear statistical regression analysis may be used to ana-
lyze test data on the R-curves reported in the literature (9,23,25,27). Such
analyses have been carried out first for each data set taken individually,
and the coefficients of variation w; for the deviations of measured data
from the regression line (Eq. 11) have been evaluated for each data set
by a computer for a series of values of c,, ranging from 1 to 50. A few
examples of such plots are demonstrated in Figs. 3-5, respectively, for
Egs. 7-9. : - v
Subsequently, for each c,, value,(~ the combined coefficient of variation
for all data sets was calculated as @ = (S;w?/n)"? in whichi =1, 2, ...
n are the data sets used. It appeared that the smallest @ occurs for the
exponential formula (Eq. 7) roughly for ¢, = 12, and for the parabolic
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FIG. 4—Linear Regression of R-Curve Data from Literature According to Eqs. 8
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formula roughly for c,, = 20. However, these results are not very precise
due to the scatter of data. This is apparent from Fig. 6(a—c) in which the
values of & are plotted for various chosen values of ¢, . Obviously, any
value of c,, between 5 and 25 is acceptable for the exponential formula,
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and any value of c, between 12 and 30 is acceptable for the parabolic
formula.

To sum up, the test data available in the literature permit obtaining
optimum c,, for all concretes. However, its value is quite uncertain, and
only a certain range is indicated clearly.

Until less scattered experimental information is acquired, it is rec-
ommended to use

cn=12d, forEq.7, c,=20d, forEq.8....................... (12)

For these values, the measured values of G, for the test data from the
literature (9,23,25,27) were plotted versus the theoretical value of G, given
by Eq. 7 or 8. These plots, along with the coefficient of variation of the
deviations from the regression line, are shown in Fig. 6(d-f). If the ma-
terial showed no scatter and the theory were perfect, this plot would
have to be a straight line of slope 1 passing through the origin. Devia-
tions from such a straight line give an idea of the error.

The attempt has been made to obtain information on the value of ¢,
from the data on maximum loads in fracture tests available in the lit-
erature, However, these data appear to be almost insensitive to the value
of ¢, within a large range.

After determining functions W’ (a) and G.(c), the maximum load (fail-
ure load) may be calculated with a computer by the following simple
algorithm.

1. Set the values of G, B, and c, . Assign a small crack length incre-
ment, Aag, e.g., 0.01a,, and seta = a.

2. Increment 4, replacing it with a + Aa. Setc = a — a,.

3. For each 4, calculate Wi() and G.(c). Since W' = W{P? the load
corresponding to 4 is found as P = [G.(c)/W](a)]'/%. If this value of P is
larger than the previous P-value, return to step 2.

4. Now 8G./dc < 9W'/da, i.e., the specimen fails. Set P,, = P. (More
accurately, one could interpolate for the exact a at which 8G./ac = dW'/
da, but this is not necessary if Aa is chosen to be as small as 0.014,.)

5. Print P, and, in the case of test data analysis, evaluate the de-
viation from test data as AP,.;; = P,y — Pux in which P, is the measured
value of maximum load.

6. When several test series are to be fitted, repeat steps 1-5 for an-
other case (e.g., another notch depth, 4,, or another beam depth, h, or
another test series), and accumulate the sum, ¢ = Z(APeyee/Po)’, in which
P, is the prediction of the failure load according to the bending strength
theory, based on the net ligament section.

The foregoing algorithm (computer subroutine) is then used, together
with a library optimization subroutine, such as the Marquardt-Leven-
berg’s algorithm, to vary the values of G;, B, and c,, until those values
which give min ¢ are found.

A much simpler calculation of P, is possible if the curve Wi(a)
can be approximated by a straight line within the range of interest, and
if the parabolic formula for the R-curve (Eq. 8) is used. Suppose an es-
timate, ¢ = ¢,, of the crack extension at failure has been made (the sim-
plest estimate is ¢; = 0). Then Wi(@) = W{, + Wi (c - ¢, in which
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Wj, is the value of Wi at a = 4y + ¢;; and W1, is the slope of the curve
Wi at that point. Egs. 1 and 2b may then be written as

P2[W;, + WY, (c — )] = G; [1 -8 (—Cc— - 1) ] .................... 13)
2 B(c
P*Wj, = -2G, - (;- - 1) ...................................... (14)

Elimination of P then yields

' 2
(€m — ¢ - <2w1°+c,,,—co>(c,,-c)+%=o ..................... (15)

1p

which is a quadratic equation for c. After determining its smallest real
solution, Eq. 13 or 14 yields P = P, .
Alternatively, one mag eliminate ¢ from Eqgs. 13-14, which yields a
quadratic equation for P*:
2 .
Wi S P4 (W, (= C0) + WU P2+ Gy = 0. (16)
4G,
from which the failure load P = P, may be solved directly (the smaller
one of two real positive solutions applies).

Even if G, is not given as a parabola, one may use the same procedure
if the curve, G, is approximated by a parabola in the vicinity of the
estimate, ¢ = ¢y. Such an approximation must be satisfactory if the es-
timate, ¢, is close.

TABLE 1.—Parameters for Test Data Used

E., in pounds
Bent fi, in pounds per square d., In
Test series points per square inch inch imes 10° inches

(1) (4] () 4 (5)
Walsh—No. 1 three 524* 3.299+ 0.5
Walsh—No. 2 three 538+ 4.082* 0.5
Walsh—No. 3 three 378+ 2.593* 0.5
Walsh—No. 4 three 377 2.715* 0.5
Walsh—No. 5 three 686* 4.696* 0.5
Walsh-—No. 6 three 594+ 3.928* 0.5
Mindess four 707* 6.260 0.375
Huang three 410* 3.122% 0.5
Carpinteri three 661* 4,173 0.75
Kaplan—No. 1 three 370* 4.190 0.75
Kaplan—No. 2 | three 630* - 5.470 0.75
Kaplan—No. 3 four 370+ 4.190 0.75
Kaplan—No. 4 four ) 630* 5.470 0.75
Shah three 378+ 3.000* 0.375
Gjerv—No. 1 three . 482* 3.000* 0.375
Gjerv—No. 2 three 542+ 3.180* 0.63

* Asterisk indicates numbers estimated by calculations.
Note: psi = 6,895 N/m?, in. = 25.4 mm.
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The more general six-step numerical algorithm described previously
was used to analyze the fracture data from the literature (8,10,11,14,
17,21,22,25,26) concerning three-point and four-point bent specimens
(Table 1). All these data were fitted jointly under the condition that c,,
and B have the same value for all the data, while G; may vary from one
concrete to another. Table 1 lists all the parameter values needed for the
analysis. Table 2 lists the optimum values of fracture energy, Gy, which
yields (in the least-square sense) the optimum fit of the measured max-
imum loads, based on various choices of parameters c,, and B. The Young’s
modulus, if not reported by the experimentalist, was estimated as E =
57,000 V/f; in which f! and E are in pounds per square inch. Only bent
specimens were analyzed since, for them, very accurate expressions for
the energy release rate are known (Eqs. 5-6). Note also that Eq. 5 is
more accurate than that used by Walsh (26). Huang and Carpinteri also
reported a second series of tests which was not considered because of
an inexplicably large scatter. For some of the test data, P, was not
reported directly, but it could be calculated from the reported nominal
stress at failure.

An idea of how closely the theory can describe the maximum load data
can be obtained from Figs. 7-8, in which the calculated value, P,, of
maximum load P,,,, is plotted versus the measured value P,, . The values
are normalized with regard to the failure loads, P,, predicted by the
engineering bending theory based on the ligament cross section. For the
three-point bent specimen (Figz. 2), P, = 2(bd*/L) fi/3, and for the four-
point bent specimen P, = f;bd*/L.

If the theory were perfect, the plots in Figs. 7-8 would be straight
lines of slope 1 passing through the origin. Thus, deviations from the
straight line represent errors, and linear statistical regression analysis

TABLE 2.—Values of Fracture Energy G,*

Equation 7 Equation 8

B=072 |[B=0458|p =0665|p =0.780|B = 0.845|B = 0.911
Test series =185 c, =1 cw=3 Cn=6 cn=10 | ¢, =20
L)) ) 3) 4) (5) (6) @)

Walsh—No. 1 0.456 0.245 0.378 0.565 0.806 1.409
Walsh—No. 2 0.375 0.199 0.311 0.467 0.666 1.166
Walsh—No. 3 0.290 0.156 0.240 0.358 0.511 0.893
Walsh—No. 4 0.190 0.101 0.158 0.237 0.339 0.593
Walsh—No. 5 0.396 0.210 0.328 0.493 0.705 1.234
Walsh—No. 6 0.449 0.240 0.372 0.557 0.794 1.389
Mindess 0.348 0.174 0.292 0.455 0.657 1.161
Huang 0.649 0.355 0.532 0.797 1.145 2.018
Carpinteri 0.390 0.198 0.327 0.505 0.728 1.287
Kaplan—No. 1 0.362 0.184 0.303 0.465 0.668 1.178
Kaplan—No. 2 0.591 0.301 0.494 0.759 1.090 1.921
Kaplan—No. 3 0.397 0.202 0.332 0.510 0.733 1.293
Kaplan—No. 4 0.536 0.273 0.448 0.689 0.989 1.743
Shah : 0.165 0.083 0.138 0.212 0.303 0.533
Gjerv—No. 1 0.192 0.098 0.160 0.246 0.351 0.616
Gjerv—No. 2 0.262 . 0.135 0.219 0.334 0.476 0.835

“Expressed in pounds per inch (1 Ib/in. = 175.17 N/m).
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can be applied. The basic statistical parameters are: s = [Z,(Y; — Y)*/(n
- 2)]'” = standard deviation of the deviations Y; — Y from the regression
line; n = number of all data points; o = s/Y = coefficient of variation;
in which Y = 2,Y,/n = ordinate of the centroid of all data points. These
statistical parameters, along with optimum slope b and Y-intercept 4, are
listed in Figs. 7-8.

From extensive statistical computer calculations and data plotting it
appears that the presently available fracture data for the maximum load
can be roughly equally well approximated by both the exponential and
parabolic formulas (Eqs. 7-8), and that a relatively wide range of pa-
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rameter ¢, yielde nearly equally good results [Fig. 7(a—#)]. This findin
is the same as that from the aforementioned analysis of the experimen:
R-curves. The value of ¢, previously determined from the experimental
B-curve (Eq. 12) appears to be near optimum for the maximum load data
also. Due to the broad range of possible ¢, values, there is considerable
uncertamty in the value of Gy, since different values of c,, yield rather
different values of (. These values of course correspond to different
crack extensions. To determine G, with more certainty, one would need
test data for really large specimens, reaching inte much larger crack ex-
tensions, & — &, and alsa, if possible, direct measurernents of ack

a at fallure. The difficulty of the latter i3 nototjous, and the definition
of what comstitutes the crack length is frought with ambiguity in decid-
ing the crack opening value that delineates a macroscopic crack from

Despite the uncertainty in determining ¢, the present analysis achieves
a substantal improvement in the capabilities to At the exisbing fracture
test data. Using the concept of equivalent or “effective” crack length
slone, i.e., without the R-curve, the existing test data cannot be Fitted
satisfactorily, as demonstrated in Appendix I

ConcLumons

L. Approximate linear elastic fracture analysis allows achieving satis-
factory fits of exigting fracture data for concrete.

2. Two essential features are needed: {a) The analysis must use an
equivalent crack length instead of the actual noitch or crack length as
observed; and (b) the fracture energy must be considered as a function
of the erack extension {R-curve).

3. The existing lest data can be described equally weil with the use
of different forroulag for the R-curve and different parameter values in
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the same formula. The fracture energy values depend strongiy on the
type of formula used for data evaluation. This does not seem to be a
problem, hewever, if the same formula is used for both data evaluation
and structtiral analysis.

4, The precise shape of the R-curve {s not important from the practical

i . however, what are important are the overall slope, inditial
value, and the final value.

%. Consequently, sophisticatad analyses of the precise shape of R-curves
by differential or integral equations make practically no sense for con-
crete and cannot be verified by existing experimental techniques.

b. A parabola is & convenient expression for the K-curve because it
allows solving the failure Joad from 2 quadratic equation. if the energy
reiease rate is considered to vary linearly with the crack length.

7. For an Rcurve of any shape, a simpie computer algorithm to de-
termine the failuee load is presented.

B. The length parameter of the R~curve is approximately related to the
maximum agpregate size.
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ArpEnnly | —Can ™THE R-Curve B DhapenaeDp WTHT?

An inquisitive reader might ask whether the available test data could
not be represented equally weli by some still simpler theory. The present
theory is characterized by two features: (1) An equivalent rather than
actual cack length; and (2) the R-curve. Lel us now examine two pos-
sible formulations it which the second feature, ie., the concept of the
R-curve, is deleted.

Lise of Locdl Size Parameter.—The length of the equivalent crack to
be ugzed in approdmate linear analysis may be expected to be between
a and {4 + d;) in which 2 = the length of the complete crack; and d; =
the langth of the fracture proces: zone ahead of the crack. Therefore,
fracture prepagation may depend not only on the energy release mte,
W', for crack length a4, but also on its increment over length d;, AW’ =
(6W' faa)d; [Fig. 9()]. By arguments similar to those used by lrwin (13)
to estimabe the size of the vielding zone in metal frachure, it can be shown
that d must equal ¢; (K./f1P in which K, = the critical value of Mode I
strege intensity facter, K,; f/ = the direct tensile strength of concrete;
and £, = a nondimensional constant. Recalling that K% = FG, (19), we
can see that AW’ /Gy = ;5 in which we introduce
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FIG. 9.—Local Size Parameter (Eqs. 17, 18) and Best Data Fits Attainabie without
R-Curves

as a nondimensional local size parameter characterizing the change of
the energy release rate of the structure over the length of the fracture
process zone. Thus, since fracture growth should depend on both W'

(at length 2) and W’ + AW’ (at length a + ds), we may assume the frac-
ture criterion as

W' =GF(S)......... R U (18)
instead of the form W' = Gy used in the classical linear fracture me-
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chanics (19). F(S) is-an empirical function, to be determined by fitting
testdata. ... - 0 o .

Note that; through S, the criterion in Eq. 18 involves f/ in addition to
Gy. Also note that parameter S is equivalent to similar parameters in-
volving: 9W' /3a which were recently introduced by Paris and Hutchin-
”“%.M»:m others to approximately characterize the effect of large-
scalé yielding in ductile fracture of metals. o
. For an illustration of parameter S, we may consider an infinite center-
cracked strip subjected to uniaxial tensile stress o at infinity [Fig. 9(b)].
According to Eq. 4 and the relation W’ = Ki/E, we get from Eq. 17 5
= @P2E? [L cos (ma/L)f{]"> We see that, for similar specimens, 5 = 1/
L, and that S — o for vanishing ligament length, i.e., for a > L/2. Ac-

_cordingly, F(S) should tend to an asymptote as S — «. For small 5 (large

structures) [Fig. 9(c)], F(S) should approach 1.0 since Eq. 18 must reduce
to the linear fracture mechanics criterion W’ = G;. The foregoing prop-
erties are exhibited, e.g., by the following simple functions

G=Grexp [—(GS)P] .vorevvrnn i (19)
G = G+ ()] e uevneeeeneneeene et (20)

in which ¢, p, r = empirical constants. . .
To check the applicability of Eqs. 18-20, the data by Walsh involving
three-point bent specimens and six different concrete mixes, were used
first. In fitting the data, different values of G; were allowed for each
concrete mix, while the values of the parameters ¢;, p, r in Eqs. 19-20
were considered the same for all concretes. Optimum fits [Figs. 9(d-e)]
were obtained by computer minimization of a sum of squared deviations
from data, using a library subroutine for Marquardt-Levenberg algorithm.
For Eq. 19 the deviations were determined in the plot of In (W'/G)
versus S as shown in Fig. 9(d) for the six test series. The coefficient of
variation for all data points, », and for the deviations of all data points
from the regression line, v, , and the correlation coefficient p are also
listed in Fig. 9(d); o = [Z:i(Y; — Y)*/(n - 1)]"’c oy = [Z(Y: = Y)*/(n -
AI/Y, p = [Z(Y; - Y)2/2:(Y = V)’ in which Y; = ordinates of data
points; Y = ordinates of regression line (at same S); Y = mean of Y;;
and n = number of all points. ' .

For Eq. 20, the deviations were determined in the plot of (G/W') I
versus S, as shown in Fig. 8(¢). The regression line (solid line) slightly
differs from the optimum fit line (dashed line) obtained by Marquardt-
Levenberg algorithm. :

If classical linear fracture mechanics were used, then the fits in Figs.
9(d—e) would have to be made by horizontal lines. So, the improvement
of the fit due to the slope of the line, as indicated by the decrease in
w,; compared to w, indicates the improvement attained by virtue of Eq.
18. We see that the improvement is not insignificant. However, the re-
sulting fits are distinctly inferior to those achieved with the R-curve. Note
also that the deviations from the optimum fit lines in Figs. 9(d-e) reveal
a certain systematic trend; see the bend on each of the lines connecting
the three points for the same test series. Therefore, we will now examine
another possible formulation. . . _

Equivalent Crack Length Based on Aggregate Size.—If the compli-
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cated stress distribution on the crack line is replaced by an elastic dis-
tribution, the effect should be insignificant at distances from the crack
tip which exceed the size of the fracture process zone, provided the re-
sultants of the distributions are the same. This follows from Saint-Ven-
ant’s principle. The same location of the resultants can be achieved by
replacing the actual crack length 4, with a certain equivalent crack length
4 > d4o. In the Dugdale-Barenblatt model of crack tip yielding (19) the
equivalent crack length can be calculated, but for concrete we can hardly
do that because the stress-strain law for the fracture process zone is not
known well and also the stress distribution is highly random. Therefore,
it seems appropriate to consider a — 4, to be an empirical function of
the fracture process zone size, d;. For that, we could use again the es-
timate d; > ¢, (K./f{)’; however, to try another approach, we will exploit
the fact that a fully developed fracture process zone has normally the
size of several times the maximum aggregate size, d,. The use of 4, is
convenient since, in contrast to K; and f;, no experiments need be made
to determine it.

Thus, we assume that @ = g + fd,, in which f = empirical parameter
to be determined by fitting test data, and 4, = actual crack length, in-
terpreted as the notch length in our subsequent fitting of test data. Since
the stress distribution along the fracture process zone should depend
also on the change of W', we may assume f to depend on S, and so we
set

A () I A 1)

and use, instead of Eq. 18, the failure criterion W' (a) = Gy, in which G;
= evaluated at length a, rather than a,. For the definition of S (Eq. 17),
we now evaluate dW'/da at a, rather than at g, since otherwise Eq. 21
would become an implicit equation in a. For function f(S), one may sim-
ply choose

f8) =14 G eXP (=038 oo e e (22)

The values of G; obtained by fitting the data of Walsh's six concretes
are plotted in Fig. 10(a) against the W'-values calculated from measured
failure loads. (Note that the G;-values are also affected by optimization,
because they depend on a.) A perfect fit would, in this plot, produce a
straight line of slope 1 passing through the origin. The regression line
is plotted in Fig. 10(a) as the solid line, and the 95% confidence limits
are plotted as the dashed lines. As is seen, the scatter is small. Thus,
the hypothesis in Eqs. 21-22 works well for Walsh’s data, much better
than the previous hypothesis (Eqs. 17-20).

Subsequently, other data available in the literature were fitted sepa-
rately, giving a higher scatter than Walsh’s data but still acceptable.
However, the values of ¢;, ¢;, ¢; obtained by optimizations made indi-
vidually for each data set differ greatly from each other. Moreover, for
the combined optimization of all data, the results of which are shown
in Fig. 10(b), the exponential decay of the optimized function f(S) = ¢,
+ ¢; exp (—c35) comes out to be so slow (small ¢;) that (S) is almost a
straight line. Therefore, the combined optimization of all data sets has
also been tried using a simpler linear expression f(S) = ¢; + ¢,S, and the
regression analysis yielded about the same standard error. It has also

1353

%) )

absin &
s
030 e
(a)
by
b/in) .
0.40 0.20 Y
: IV
7 o WALSH
Gt | * KAPLAN
o GJIRV
0.10 = HUANG
o3o0r a CARPINTER}
« MINDESS
4 SHAH
¥
% 1 I P
020 0 0.10 0.20 030 (b/im

FIG. 10.—Equivalent Crack Length after Eq. 21 and Data Fits Attainable without
R-Curves

been tried whether ¢;, ¢;, ¢; are perhaps some simple functions of con-
crete properties, rather than constants. In particular, analyses were made
with the function f(S) = ¢;x + ¥ + (c3x + c4y) S and s.everal other more
complicated functions, in which x = 1 - f;/(1,500 psi) and y = 1 — E/
(2 X 107 psi). The rationale behind assuming these functions was the
fact that, for very high f; or very high E, the fracture process zone be-
comes smaller since the stiffness of the matrix approaches that of the
aggregate. However, no improvement in the combined regression of all
data could have been achieved in this manner.

We must, therefore, conclude that, without the R-curve concept, the
representation of test results attainable with a linear elastic analysis is
much worse, although still better than that attainable when the actual
crack length is considered.
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