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Abstract

Hybrid approximate linear programming (HALP) has recentlyemerged
as a promising approach to solving large factored Markov decision pro-
cesses (MDPs) with discrete and continuous state and actionvariables.
Its central idea is to reformulate initially intractable problem of comput-
ing the optimal value function as its linear programming approximation.
In this work, we present the HALP framework and discuss several repre-
sentational and computational issues that make the approach appropriate
for large MDPs. We compare three different methods for solving HALP
and demonstrate the feasibility of the approach on high-dimensional dis-
tributed control problems.

1 Introduction

A typical ’textbook’ Markov decision process (MDP) assumesflat state and action spaces.
However, real-world decision problems are more naturally represented in a factored form
using a mixture of discrete and continuous variables. In general, neither their optimal value
function nor the optimal policy can be written compactly. Asa result, hybrid problems are
often discretized and solved by the methods for discrete-state MDPs. The main contribution
of this paper is a principled, sound, and efficient approach to solving large-scale factored
MDPs that avoids discretization of their continuous components.

Our framework is based on approximate linear programming (ALP) [11], which has been
successfully applied to a wide range of complex decision problems with discrete state and
action variables [10, 1, 6]. This is the first application of ALP to factored MDPs in hybrid
state and action spaces. We demonstrate the feasibility of the approach and its potential to
address complex real-world optimization problems.

2 Hybrid factored MDPs

A hybrid factored MDP (HMDP)[4] is described by a 4-tupleM = (X,A, P,R), where
X = {X1, . . . ,Xn} is a state space represented by state variables,A = {A1, . . . , Am}
is an action space represented by action variables,P (X′ | X,A) is a stochastic transition
model of state dynamics conditioned on the preceding state and action, andR is a reward
model assigning immediate payoffs to state-action configurations1.

1The termhybrid refers to the components of state and action spaces, and not the dynamics of the
model. An alternative name for a hybrid MDP is ageneral state and action space MDP.



State variables: State variables are either discrete or continuous. Every discrete variable
Xi takes on values from a finite domainDom(Xi). Following Hauskrecht and Kveton [7],
we assume that every continuous variable is bounded to the[0, 1] subspace. In general, this
assumption is very mild and permits modeling of any closed interval onR. The state of the
system is observed and represented by a vector of value assignmentsx = (xD,xC) which
partitions along its discrete and continuous componentsxD andxC .

Action variables: The action space is distributed and defined by action variablesA. The
composite action is given by a vector of individual actionsa = (aD,aC) which partitions
along its discrete and continuous componentsaD andaC .

Transition model: The transition model is given by the conditional probability distribution
P (X′ | X,A), whereX andX

′ denote the state variables at two successive time steps. We
assume that the model factors alongX

′ asP (X′ | X,A) =
∏n

i=1 P (X ′
i | Par(X ′

i)) and
can be compactly represented by a DBN [3]. Typically, the parent setPar(X ′

i) ⊆ X ∪ A

is a small subset of state and action variables which allows for a local parameterization of
the transition model.

Parameterization of transition model: One-step dynamics of every state variable is de-
scribed by its conditional probability distributionP (X ′

i | Par(X ′
i)). If X ′

i is a continuous
variable, its transition function is represented by a mixture of beta distributions [7]:

P (X ′
i = x | Par(X ′

i)) =
∑

j

πij
Γ(αj + β)

Γ(αj)Γ(βj)
xαj−1(1 − x)βj−1, (1)

whereπij is the weight of thej-th component in the mixture, andαj = φα
ij(Par(X ′

i)) and

βj = φβ
ij(Par(X ′

i)) are arbitrary positive functions of the parent setPar(X ′
i). The mixture

of beta distributions is a very general class of transition functions that allows closed-form
solutions2 to the expectation terms in HALP (Section 3). Ifβj = 1, Equation 1 turns into a
polynomial inX ′

i. Due to the Weierstrass approximation theorem [8], such a polynomial is
sufficient to approximate any continuous transition density overX ′

i with any precision. If
X ′

i is a discrete variable, its transition model is parameterized by|Dom(X ′
i)| nonnegative

discriminant functionsθj = φθ
ij(Par(X ′

i)) [4]:

P (X ′
i = j | Par(X ′

i)) =
θj

∑|Dom(X′

i
)|

j=1 θj

. (2)

Reward model: The reward function is an additive functionR(x,a) =
∑

j Rj(xj ,aj) of
local reward functions defined on the subsets of state and action variablesXj andAj .

3 Hybrid approximate linear programming

Similarly to the discrete-state ALP,hybrid ALP (HALP)optimizes the linear value function
modelV w(x) =

∑
i wifi(x), wherew is a vector of tunable weights andfi(x) are basis

functions. Therefore, it transforms initially intractable problem of computingV ∗ to a lower
dimensional space of weightsw. The HALP formulation is given by a linear program:

minimizew
∑

i

wiαi (3)

subject to:
∑

i

wiFi(x,a) − R(x,a) ≥ 0 ∀ x ∈ X,a ∈ A;

2The termclosed-formrefers to a generally accepted set of closed-form operations and functions
extended by the gamma and incomplete beta functions.



wherew represents the variables in the linear program,αi denotesbasis function relevance
weight:

αi = Eψ(x)[fi(x)] =
∑

xD

∫

xC

ψ(x)fi(x) dxC , (4)

ψ(x) is astate relevance density functionweighting the quality of the approximation, and
Fi(x,a) = fi(x) − γgi(x,a) is the difference between the basis functionfi(x) and its
discountedbackprojection:

gi(x,a) = EP (x′|x,a)[fi(x
′)] =

∑

x′

D

∫

x′

C

P (x′ | x,a)fi(x
′) dx′

C . (5)

VectorsxD (x′
D) andxC (x′

C) correspond to the discrete and continuous components of a
value assignmentx (x′) to the state variablesX (X′).

The HALP formulation reduces to the discrete-state ALP [10,1, 6] if the state and action
variables are discrete, and to the continuous-state ALP [7]if the state variables are contin-
uous. The formulation is feasible if the set of basis functions contains a constant function
f0(x) ≡ 1. We assume that such a basis function is always present.

The HALP formulation comes with a number of concerns. First,what is the quality of this
approximation and how is the minimization of its objective value related to other commonly
used error metrics (Section 3.1). Second, HALP requires computation of expectation terms
in the objective function and constraints (Equations 4 and 5). These terms involve sums and
integrals over the complete state spaceX (Section 3.2), and therefore are hard to evaluate.
Finally, satisfying the constraint space in HALP is a challenging problem since every state-
action pair(x,a) has a corresponding constraint (Section 3.3).

3.1 Error bounds

For the HALP formulation (3) to be of practical interest, theoptimal value functionV ∗ has
to lie close to the span of basis functions. The quality of this approximation was studied by
Guestrinet al. [4] and bounded with respect tominw ‖V ∗ − V w‖∞,1/L, where‖·‖∞,1/L

is a max-norm weighted by the reciprocal of the Lyapunov function L(x) =
∑

i wL
i fi(x).

3.2 Expectation terms

Since our basis functions are often restricted to small subsets of state variables, expectation
terms (Equations 4 and 5) in the HALP formulation (3) should be efficiently computable.
Before we justify the claim, note that bothEψ(x)[fi(x)] andEP (x′|x,a)[fi(x

′)] are instances
of EP (x)[fi(x)], whereP (x) =

∏
j P (xj) is a factored probability distribution. Therefore,

it suffices to address a more general problem of estimatingEP (x)[fi(x)].

Based on two strong independence assumptions:

fi(xi) = fiD
(xiD

)fiC
(xiC

) and fiC
(xiC

) =
∏

Xj∈XiC

fij(xj), (6)

the expectation term:

EP (x)[fi(x)] = EP (xiD
)[fiD

(xiD
)]

∏

Xj∈XiC

EP (xj)[fij(xj)] (7)

factors along its discrete and continuous variablesXiD
andXiC

. The discrete component
EP (xiD

)[fiD
(xiD

)] involves summation in the space ofXiD
, and thus can be evaluated effi-

ciently. Therefore, an efficient solution toEP (x)[fi(x)] is guaranteed by efficient solutions



to its univariate partsEP (xj)[fij(xj)]. To get a closed-form solution toEP (xj)[fij(xj)], we
allow for three classes of univariate basis function factors: polynomials, beta distributions,
and piecewise linear functions [4, 7].

Since the expectation terms are of the formEP (x)[fi(x)], we can extend the current class
of basis functions by their linear combinations due to the identity:

EP (x)[wff(x) + wgg(x)] = wfEP (x)[f(x)] + wgEP (x)[g(x)] . (8)

Therefore, we can correct for the independence assumptionsin Equation 6. Furthermore,
if we assume that the univariate factorsfij(xj) are polynomials, the linear combination
of basis functionsfiC

(xiC
) is a polynomial. As a result of the Weierstrass approximation

theorem [8], such a polynomial is sufficient to approximate any continuous basis function
overXiC

with any precision.

3.3 Constraint space approximations

An optimal solutionw̃ to the HALP formulation (3) is determined by a finite set ofactive
constraintsat a vertex of the feasible region. Unfortunately, identification of this active set
is a hard computational problem. In particular, it requiressearching through an exponential
number of constraints, if the state and action variables arediscrete, and an infinite number
of constraints, if any of the variables are continuous. As a result, finding the optimal set is
in general intractable. Therefore, we resort to finite approximations to the constraint space
in HALP whose optimal solution̂w comes close tõw.

We consider three approximations to the constraint space: MC-HALP [2, 7], ε-HALP [4],
and MCMC-HALP [9]. Both MC-HALP andε-HALP methods involve a finite set of the
original constraints. These constraints are preselected in a systematic way, either by Monte
Carlo constraint sampling (MC-HALP) or by relaxing the constraint space to a regular grid
(ε-HALP). The MCMC-HALP algorithm is adaptive and satisfies constraints based on their
potential to improve the existing solution.

MC-HALP [2, 7] is the simplest of the three methods. Instead of considering the complete
constraint space, it takes a sample ofN constraints with respect to a proposal distribution
ϕ. In turn, these constraints define a relaxed HALP formulation that is solved. Theoretical
properties of this approximation were investigated by de Farias and Van Roy [2]. The main
advantages of MC-HALP are its simplicity and improvement with growing sample sizeN .
On the other hand, the method ignores the constraint space structure and is blind except for
the initial choice ofϕ.

Similarly to MC-HALP, theε-HALP [4] method approximates the constraint space with a
finite set of constraints. Unlike MC-HALP, the constraints over continuous state and action
subspaces are restricted to a regular grid. Therefore, the constraint set becomes exponential
in the number of discretized state and action variablesXC andAC . However, it preserves
its original factored structure, and consequently can be compactly satisfied by the methods
for discrete-state ALP [5, 10]. The limitation ofε-HALP is its space complexity, which is
exponential in the treewidth of the constraint space. This is a serious limitation since the
cardinality of discretized variables grows with the resolution of theε-grid. In particular, if
the discretized variables are replaced by binary, the treewidth increases by a multiplicative
factor of log2(1/ε + 1), where(1/ε + 1) is the number of discretization points in a single
dimension. As a result, even problems with a relatively small treewidth are intractable for
smallε. In addition, theε-grid discretization is done blindly and impacts the quality of the
approximation.

MCMC-HALP [9] satisfies the constraints space in HALP iteratively by using the cutting
plane method. The method starts with a small initial set of constraints. An optimal solution
to the relaxed HALP formulation is used to find a violated constraint, which is added to the



(a) (b)

Figure 1: Irrigation network topologies:a. 6-ring andb. 6-ring-of-rings. Irrigation chan-
nels and regulation devices are denoted by arrows and rectangles. Inflow and outflow nodes
are shown in light and dark gray colors.

linear program. The linear program is solved for new weightsw, and this iterative process
continues until no violated constraint is found. The main bottleneck of the algorithm is the
identification of violated constraints. The MCMC-HALP solver uses Markov chain Monte
Carlo (MCMC) optimization techniques to achieve this goal.

4 Experiments

In the experimental section, we compare the scale-up potential of three methods for solving
HALP (Section 3.3). This section is based on the results of Kveton and Hauskrecht [9]. A
comparison of HALP to alternative methods for solving hybrid factored MDPs was done
by Hauskrecht and Kveton [7].

Our scale-up experiments are conducted on two irrigation network problems with different
topologies and complexity (Figure 1). The objective of these problems is to select discrete
water-routing actionsAD to optimize water levelsXC in multiple interconnected irrigation
channels. The transition model is parameterized by beta distributions and represents water
flows conditioned on the operation modes of regulation devices. The reward function is
additive and given by a mixture of two normal distributions for each channel. The optimal
value function is approximated by a linear combination of four univariate piecewise linear
basis functions for each channel [4]. The state relevance density functionψ(x) is uniform.

We compare three methods for solving HALP. MC-HALP generates one million constraints
uniformly at random, and thus establishes a baseline for thecomparison to an uninforma-
tively behaving sampling method. Theε-HALP solver approximates HALP by discretizing
its constraints to regularε-grids. We apply the cutting plane method of Schuurmans and Pa-
trascu [10] to solve these relaxed problems. The MCMC-HALP solver employs a 500-step
annealed MCMC optimization routine for finding a violated constraint. A simple logarith-
mic cooling schedule was applied. All experiments were performed on a Dell Precision 340
workstation with 2GHz Pentium 4 CPU and 1GB RAM. All linear programs were solved
by the simplex method in the LPSOLVE package. Our experimental results are reported
in Figure 2.

Based on the results, we conclude that the HALP framework scales up with the dimension-
ality of the irrigation network problems. In particular, the time complexity of satisfying our
constraint space approximations is polynomial inn, which is proportional to the number of
state and action variables. The quality of policies grows linearly with the dimensionality of
the problems.

In terms of the quality of approximations, the MCMC solver (N = 250) achieves the high-



Ring topology n = 6 n = 12 n = 18

OV Reward Time OV Reward Time OV Reward Time
1/4 24.3 35.1 ± 2.3 11 36.2 54.2 ± 3.0 43 48.0 74.5 ± 3.4 85

ε-HALP ε = 1/8 55.4 40.1 ± 2.4 46 88.1 62.2 ± 3.4 118 118.8 84.9 ± 3.8 193

1/16 59.1 40.4 ± 2.6 331 93.2 63.7 ± 2.8 709 126.1 86.8 ± 3.8 1 285

10 63.7 29.1 ± 2.9 43 88.0 51.8 ± 3.6 71 113.9 57.3 ± 4.6 101

MCMC N = 50 69.7 41.1 ± 2.6 221 111.0 63.3 ± 3.4 419 149.0 84.8 ± 4.2 682

250 70.6 40.4 ± 2.6 1 043 112.1 63.0 ± 3.1 1 864 151.8 86.0 ± 3.9 2 954

MC 51.2 39.2 ± 2.8 1 651 66.6 60.0 ± 3.1 3 715 81.7 83.8 ± 4.3 5 178

Ring-of-rings topology n = 6 n = 12 n = 18

OV Reward Time OV Reward Time OV Reward Time
1/4 28.4 40.1 ± 2.7 82 44.1 66.7 ± 2.7 345 59.8 93.1 ± 3.8 861

ε-HALP ε = 1/8 65.4 48.0 ± 2.7 581 107.9 76.1 ± 3.8 2 367 148.8 104.5 ± 3.5 6 377

1/16 68.9 47.1 ± 2.8 4 736 113.1 77.6 ± 3.7 22 699 156.9 107.8 ± 3.9 53 600

10 68.5 45.0 ± 2.7 69 99.9 67.4 ± 3.8 121 109.1 39.4 ± 4.1 173

MCMC N = 50 81.1 47.4 ± 2.9 411 131.5 76.2 ± 3.7 780 182.7 104.3 ± 4.1 1 209

250 81.9 47.1 ± 2.5 1 732 134.0 78.2 ± 3.6 3 434 185.8 106.7 ± 4.1 5 708

MC 55.6 43.6 ± 2.9 2 100 73.7 74.8 ± 3.9 5 048 92.1 102.0 ± 4.2 6 897

Figure 2: Comparison of three HALP solvers on two irrigationnetwork topologies of vary-
ing sizes (n). The solvers are compared by the objective value of a relaxed HALP (OV),
the expected discounted reward of a corresponding policy, and computation time (in sec-
onds). The expected discounted reward is estimated by the Monte Carlo simulation of 100
trajectories. Theε-HALP and MCMC solvers are parameterized by the resolution of ε-grid
(ε) and the number of iterations (N ).

est objective value for every problem. Higher objective values can be interpreted as closer
approximations to the constraint space in HALP since the solvers operate on relaxed formu-
lations of HALP. Also, the quality of the MCMC-HALP policies(N = 250) surpasses the
MC-HALP ones while both methods consume approximately the same computation time.
This is a result of the informative search for violated constraints in the MCMC solver. The
quality of the MCMC-HALP policies (N = 250) is close to theε-HALP (ε = 1/16) ones.
Since theε-HALP policies (ε = 1/16) on the two irrigation networks problems are already
close to optimal, they are hard to improve.

Finally, we observe that the computation time of theε-HALP solver is significantly affected
by the topologies of tested networks. In particular, it grows by the rates of(1/ε + 1)2 and
(1/ε + 1)3 for the ring and ring-of-rings topologies, respectively. Asimilar comparison of
the MCMC solver shows that the computation times between thetwo topologies differ only
by a multiplicative factor of 2. This result is due to the increased complexity of sampling,
which is caused by more complex local dependencies, and not the treewidth.

5 Conclusions

Development of scalable algorithms for solving real-worlddecision problems is a challeng-
ing task. In this work, we have presented a theoretically sound framework that allows for a
compact representation and efficient solutions to hybrid factored MDPs. The objective of
our future research is to eliminate the assumptions placed on the transition model and basis
functions. Furthermore, automatic learning of basis functions is crucial for the application
of HALP to real-world domains.
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