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Abstract

Hybrid approximate linear programming (HALP) has recemtifyerged
as a promising approach to solving large factored Markovsitat pro-

cesses (MDPs) with discrete and continuous state and agitables.
Its central idea is to reformulate initially intractableoptem of comput-
ing the optimal value function as its linear programmingragpnation.

In this work, we present the HALP framework and discuss s#vepre-
sentational and computational issues that make the agpepgopriate
for large MDPs. We compare three different methods for sgHALP

and demonstrate the feasibility of the approach on highedsional dis-
tributed control problems.

1 Introduction

A typical 'textbook’ Markov decision process (MDP) assurflasstate and action spaces.
However, real-world decision problems are more natura@fpresented in a factored form
using a mixture of discrete and continuous variables. Ireganneither their optimal value

function nor the optimal policy can be written compactly. @eesult, hybrid problems are

often discretized and solved by the methods for discrete 8DPs. The main contribution

of this paper is a principled, sound, and efficient approactotving large-scale factored
MDPs that avoids discretization of their continuous congus.

Our framework is based on approximate linear programmirlg®(411], which has been
successfully applied to a wide range of complex decisiomlpras with discrete state and
action variables [10, 1, 6]. This is the first application dffAto factored MDPs in hybrid
state and action spaces. We demonstrate the feasibiliheadpgproach and its potential to
address complex real-world optimization problems.

2 Hybrid factored MDPs

A hybrid factored MDP (HMDPJ4] is described by a 4-tupla1 = (X, A, P, R), where
X = {Xy,...,X,} is a state space represented by state varialdles; {A;,..., A}
is an action space represented by action variai’¢X’ | X, A) is a stochastic transition
model of state dynamics conditioned on the preceding stateetion, andR is a reward
model assigning immediate payoffs to state-action cordigpms.

1The termhybrid refers to the components of state and action spaces, and not the dyweéthie
model. An alternative name for a hybrid MDP igi@neral state and action space MDP



State variables. State variables are either discrete or continuous. Evegretie variable
X; takes on values from a finite domdirom (X;). Following Hauskrecht and Kveton [7],
we assume that every continuous variable is bounded o tihpsubspace. In general, this
assumption is very mild and permits modeling of any clos¢éeriml onR. The state of the
system is observed and represented by a vector of valueassitsx = (xp, x¢) which
partitions along its discrete and continuous componeptandxc.

Action variables. The action space is distributed and defined by action vasakl The
composite action is given by a vector of individual actians: (ap, ac) which partitions
along its discrete and continuous componerisandac.

Transition model: The transition model is given by the conditional probayititstribution
P(X’ | X, A), whereX andX'’ denote the state variables at two successive time steps. We
assume that the model factors aldgasP(X’ | X, A) = [[;-, P(X/ | Par(X})) and

can be compactly represented by a DBN [3]. Typically, theepasetPar(X)) € X U A

is a small subset of state and action variables which allowa focal parameterization of
the transition model.

Parameterization of transition model: One-step dynamics of every state variable is de-
scribed by its conditional probability distributid®(X! | Par(X7})). If X! is a continuous
variable, its transition function is represented by a nritof beta distributions [7]:

P(X] = x| Par(X])) = Zﬂj%

wherer;; is the weight of thgj-th component in the mixture, and; = ¢ (Par(.X;)) and

B = ¢fj(Par(X; )) are arbitrary positive functions of the parent Bet(X). The mixture
of beta distributions is a very general class of transitiomctions that allows closed-form
solutiong to the expectation terms in HALP (Section 3)glf = 1, Equation 1 turns into a
polynomial inX. Due to the Weierstrass approximation theorem [8], sucHympmial is
sufficient to approximate any continuous transition dgnsiter X/ with any precision. If
X] is a discrete variable, its transition model is paramegerizy | Dom(X/)| nonnegative
discriminant functions); = ¢¢; (Par(X))) [4]:
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Reward model: The reward function is an additive functidi(x,a) = >, R;(x;, a;) of
local reward functions defined on the subsets of state aimhagiriablesX ; andA ;.

P(X] = j | Par(X})) = )

3 Hybrid approximate linear programming

Similarly to the discrete-state ALRybrid ALP (HALP)optimizes the linear value function
model V"V (x) = Y. w; fi(x), wherew is a vector of tunable weights arfd(x) are basis
functions. Therefore, it transforms initially intractalgroblem of computing ™ to a lower
dimensional space of weights. The HALP formulation is given by a linear program:

minimize,, Zwio‘i 3)

2

subjectto: Y w;Fi(x,a) — R(x,a) >0 Vx€X,ac A;

3

2The termclosed-fornrefers to a generally accepted set of closed-form operations antidos
extended by the gamma and incomplete beta functions.



wherew represents the variables in the linear prograpgenotesasis function relevance
weight

= By [fi(x Z x) dxc, 4)

1(x) is astate relevance density functlmmghtmg the quality of the approximation, and
Fi(x,a) = fi(x) — vg:(x,a) is the difference between the basis functifix) and its
discountedackprojection

6i(%,8) = Epupealfi(x Z/P | x, ) fi(x) A (5)

Vectorsxp (x,) andx¢ (x() correspond to the discrete and continuous components of a
value assignment (x’) to the state variableX (X’).

The HALP formulation reduces to the discrete-state ALP (] if the state and action
variables are discrete, and to the continuous-state ALR {fi¢ state variables are contin-
uous. The formulation is feasible if the set of basis funicontains a constant function
fo(x) = 1. We assume that such a basis function is always present.

The HALP formulation comes with a number of concerns. Fis$tat is the quality of this
approximation and how is the minimization of its objectiadue related to other commonly
used error metrics (Section 3.1). Second, HALP requiregpcation of expectation terms
in the objective function and constraints (Equations 4 gnd Bese terms involve sums and
integrals over the complete state spac€Section 3.2), and therefore are hard to evaluate.
Finally, satisfying the constraint space in HALP is a chadieg problem since every state-
action pair(x, a) has a corresponding constraint (Section 3.3).

3.1 Error bounds

For the HALP formulation (3) to be of practical interest, tiygimal value functiorl’* has
to lie close to the span of basis functions. The quality of #pproximation was studied by
Guestrinet al. [4] and bounded with respect toiny, [|[V* = V¥ | . where|-[| ;1

is a max-norm weighted by the reciprocal of the Lyapunov fiamcL (x) = >, w? fi(x).

3.2 Expectation terms

Since our basis functions are often restricted to smalletslisf state variables, expectation
terms (Equations 4 and 5) in the HALP formulation (3) showddelfficiently computable.
Before we justify the claim, note that bdihy, ) [ fi (x)] andE p(x/|xa) [ fi(x")] are instances
of Ep(x)[fi(x)], whereP(x) = [, P(z;) is a factored probability distribution. Therefore,
it suffices to address a more general problem of estimating, [ f; (x)].

Based on two strong independence assumptions:
fixi) = fip (Xip) fic (Xie) and fio(xic) = [ fij(as), (6)
X;€Xiq
the expectation term:
Epuo[fi(X)] = Epe, ) lfin Xin)] [] Epylfij (@) @)
X;€Xiq

factors along its discrete and continuous variabeg andX, . The discrete component
Ep(x;,)[fin (xip )] involves summation in the spaceXf,,, and thus can be evaluated effi-

ciently. Therefore, an efficient solution Ky [ fi(x)] is guaranteed by efficient solutions



to its univariate partE p(, [ f:;(z;)]. To get a closed-form solution p .. [ f;;(x;)], we
allow for three classes of univariate basis function factpolynomials, beta distributions,
and piecewise linear functions [4, 7].

Since the expectation terms are of the fdfip,)[f;(x)], we can extend the current class
of basis functions by their linear combinations due to trentity:

Epuo[ws f(x) + weg(x)] = wiEpn) [f(%)] + weEpuo[g(x)] . 8)

Therefore, we can correct for the independence assumptidéguation 6. Furthermore,
if we assume that the univariate factgfg(z;) are polynomials, the linear combination
of basis functions; . (x;. ) is a polynomial. As a result of the Weierstrass approxinmtio
theorem [8], such a polynomial is sufficient to approximatg eontinuous basis function
overX, . with any precision.

3.3 Constraint space approximations

An optimal solutionw to the HALP formulation (3) is determined by a finite setaative
constraintsat a vertex of the feasible region. Unfortunately, iderdificn of this active set
is a hard computational problem. In particular, it requsearching through an exponential
number of constraints, if the state and action variableslseete, and an infinite number
of constraints, if any of the variables are continuous. Assalt, finding the optimal set is
in general intractable. Therefore, we resort to finite apjpnations to the constraint space
in HALP whose optimal solutiofv comes close tev.

We consider three approximations to the constraint space:HALP [2, 7], e-HALP [4],
and MCMC-HALP [9]. Both MC-HALP and:-HALP methods involve a finite set of the
original constraints. These constraints are preselentagystematic way, either by Monte
Carlo constraint sampling (MC-HALP) or by relaxing the cast space to a regular grid
(e-HALP). The MCMC-HALP algorithm is adaptive and satisfiemstraints based on their
potential to improve the existing solution.

MC-HALP [2, 7] is the simplest of the three methods. Instead of camiid the complete
constraint space, it takes a sampleNdotonstraints with respect to a proposal distribution
. Inturn, these constraints define a relaxed HALP formutetiwat is solved. Theoretical
properties of this approximation were investigated by déasand Van Roy [2]. The main
advantages of MC-HALP are its simplicity and improvemerttvgrowing sample sizéy.

On the other hand, the method ignores the constraint spamdse and is blind except for
the initial choice ofp.

Similarly to MC-HALP, thes-HAL P [4] method approximates the constraint space with a
finite set of constraints. Unlike MC-HALP, the constraint®pcontinuous state and action
subspaces are restricted to a regular grid. Thereforeptigm@int set becomes exponential
in the number of discretized state and action variallgsand A . However, it preserves
its original factored structure, and consequently can loepawtly satisfied by the methods
for discrete-state ALP [5, 10]. The limitation efHALP is its space complexity, which is
exponential in the treewidth of the constraint space. This $erious limitation since the
cardinality of discretized variables grows with the resiolu of thee-grid. In particular, if
the discretized variables are replaced by binary, the idtbvincreases by a multiplicative
factor oflog,(1/e + 1), where(1/e + 1) is the number of discretization points in a single
dimension. As a result, even problems with a relatively s$tnegwidth are intractable for
smalle. In addition, thez-grid discretization is done blindly and impacts the quyadit the
approximation.

MCM C-HALP [9] satisfies the constraints space in HALP iteratively byngshe cutting
plane method. The method starts with a small initial set ost@ints. An optimal solution
to the relaxed HALP formulation is used to find a violated d¢raist, which is added to the



(@ (b)

Figure 1: Irrigation network topologiest. 6-ring andb. 6-ring-of-rings. Irrigation chan-
nels and regulation devices are denoted by arrows and ggetannflow and outflow nodes
are shown in light and dark gray colors.

linear program. The linear program is solved for new weightgnd this iterative process
continues until no violated constraint is found. The maittlboeck of the algorithm is the
identification of violated constraints. The MCMC-HALP setwses Markov chain Monte
Carlo (MCMC) optimization techniques to achieve this goal.

4 Experiments

In the experimental section, we compare the scale-up patefthree methods for solving
HALP (Section 3.3). This section is based on the results at#w and Hauskrecht [9]. A
comparison of HALP to alternative methods for solving hglfactored MDPs was done
by Hauskrecht and Kveton [7].

Our scale-up experiments are conducted on two irrigaticwars problems with different
topologies and complexity (Figure 1). The objective of thpeoblems is to select discrete
water-routing actiond p, to optimize water levelX in multiple interconnected irrigation
channels. The transition model is parameterized by betalditons and represents water
flows conditioned on the operation modes of regulation dvicThe reward function is
additive and given by a mixture of two normal distributions €éach channel. The optimal
value function is approximated by a linear combination afrfonivariate piecewise linear
basis functions for each channel [4]. The state relevanesiggfunctiony(x) is uniform.

We compare three methods for solving HALP. MC-HALP generatee million constraints
uniformly at random, and thus establishes a baseline focahgparison to an uninforma-
tively behaving sampling method. TheHALP solver approximates HALP by discretizing
its constraints to regulargrids. We apply the cutting plane method of Schuurmans and P
trascu [10] to solve these relaxed problems. The MCMC-HAbRer employs a 500-step
annealed MCMC optimization routine for finding a violatedstraint. A simple logarith-
mic cooling schedule was applied. All experiments weregrenéd on a Dell Precision 340
workstation with 2GHz Pentium 4 CPU and 1GB RAM. All lineapgrams were solved
by the simplex method in the LBOLVE package. Our experimental results are reported
in Figure 2.

Based on the results, we conclude that the HALP frameworkesce with the dimension-
ality of the irrigation network problems. In particulargttime complexity of satisfying our
constraint space approximations is polynomiakjmwhich is proportional to the number of
state and action variables. The quality of policies growsdrly with the dimensionality of
the problems.

In terms of the quality of approximations, the MCMC solvaf & 250) achieves the high-



Ring topology n =6 n =12 n = 18
oV Rewar Time oV Rewar Time oV Rewar Time
1/4| 24.3] 35.1 £2.3 11 36.2| 54.2 + 3.0 43 48.0 74.5 £ 3.4 85
e-HALP e= 1/8| 55.4| 40.1+2.4 46 88.1| 62.2 4+ 3.4 118| 118.8 84.9 + 3.8 193
1/16| 59.1| 40.4 + 2.6 331 93.2| 63.7 + 2.8 709| 126.1 86.8 + 3.8 1285
10| 63.7| 29.1 £2.9 43 88.0| 51.8+ 3.6 71| 113.9 57.3 £ 4.6 101
MCMC N = 50| 69.7| 41.1 +2.6 221| 111.0| 63.3 +£3.4 419| 149.0 84.8 +4.2 682
250 70.6| 40.4 + 2.6 1043| 112.1| 63.0 £+ 3.1 1864| 151.8 86.0 + 3.9 2954
MC 51.2] 39.2 + 2.8 1651 66.6| 60.0 + 3.1 3715 81.7 83.8 4.3 5178
Ring-of-rings topology n =6 n =12 n = 18
oV Rewar Time)] [ Rewar Time| [} Rewar Time
1/4| 28.4| 40.1 £2.7 82 44.1| 66.7 £ 2.7 345 59.8 93.1 + 3.8 861
e-HALP e= 1/8| 65.4| 48.0£2.7 581| 107.9| 76.1 £+ 3.8 2367| 148.8| 104.5 + 3.5 6377
1/16| 68.9| 47.1 +£2.8| 4736| 113.1| 77.6 +£3.7| 22699| 156.9| 107.8 + 3.9| 53 600
10| 68.5| 45.0 £2.7 69 99.9| 67.4 + 3.8 121| 109.1 39.4+4.1 173
MCMC N = 50| 81.1| 47.4+2.9 411 131.5| 76.2 3.7 780| 182.7| 104.3 £4.1 1209
250 81.9| 47.1 +2.5| 1732| 134.0| 78.2+ 3.6 3434| 185.8| 106.7 +4.1 5708
MC 55.6| 43.6 + 2.9 2100 73.7| 74.8+ 3.9 5048 92.1| 102.0 +4.2 6 897

Figure 2: Comparison of three HALP solvers on two irrigatimiwork topologies of vary-
ing sizes ). The solvers are compared by the objective value of a rdl&&LP (OV),
the expected discounted reward of a corresponding poliey,camputation time (in sec-
onds). The expected discounted reward is estimated by thnéeMarlo simulation of 100
trajectories. The-HALP and MCMC solvers are parameterized by the resolutfangrid
(¢) and the number of iteration$V().

est objective value for every problem. Higher objectiveueal can be interpreted as closer
approximations to the constraint space in HALP since thessloperate on relaxed formu-
lations of HALP. Also, the quality of the MCMC-HALP policigsV = 250) surpasses the
MC-HALP ones while both methods consume approximately émescomputation time.
This is a result of the informative search for violated caaists in the MCMC solver. The
quality of the MCMC-HALP policies V = 250) is close to the-HALP (¢ = 1/16) ones.
Since thes-HALP policies € = 1/16) on the two irrigation networks problems are already
close to optimal, they are hard to improve.

Finally, we observe that the computation time oftHd ALP solver is significantly affected
by the topologies of tested networks. In particular, it gsday the rates of1 /e + 1)? and
(1/e + 1)3 for the ring and ring-of-rings topologies, respectivelysifilar comparison of
the MCMC solver shows that the computation times betweetwbéopologies differ only
by a multiplicative factor of 2. This result is due to the ieased complexity of sampling,
which is caused by more complex local dependencies, andhadtaewidth.

5 Conclusions

Development of scalable algorithms for solving real-watétision problems is a challeng-
ing task. In this work, we have presented a theoreticallpnddtamework that allows for a

compact representation and efficient solutions to hybritbfzd MDPs. The objective of

our future research is to eliminate the assumptions planebentransition model and basis
functions. Furthermore, automatic learning of basis fiemst is crucial for the application

of HALP to real-world domains.
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