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Abstract 

This paper presents an asymptotic approximation for the marginal density of a nonlinear 

function g( 6) that is applicable when the joint density of (J is dominated by a single mode 

and the gradient of g is nonzero or the Jacobian of g is of full rank near that mode. The 

approximation is based on Laplace's method and its asymptotic properties are similar to 

those of the saddlepoint approximation. The approximation is applied to the_ computation 

of a marginal posterior density, a marginal sampling density ~d a marginal density based 

on a multivariate saddlepoint approximation to a joint density. 



. 1 Intr<?duction and summary 

We consider a probability density function on Rm of the form 

p( 8) := cb( 8) exp{ -H ( 8)} (1) 

where H(8) = ·nh(8) and n is assumed to be large. The function His assumed to have a 

local minimum at 9 that is dominant in the sense that the probability assigned by p to the 

complement of any neighborhood of 9 is assumed to be of exponentially small order in n. 

In the derivations given below we will take the functions b and h to be fixed. However the 

arguments remain valid if they are replaced by well-behaved sequences of functions bn and 

hn• 

Leonar~ (1982), Phillips (1983), and Tierney and Kadane (1986) have considered the 

following approximation for marginal densities of coordinate functions for joint densities 

of the form (1): If 8 is partitioned as (81, 82), with 81 a k-dimensional vector and (}2 an 

(m - k)-dimensional vector, then the approximate.marginal density for 81 is given by 

1/2 "' 
... (8) ='(21rrk/2 (det~(81)) p(81,8~(81)) (2) 

Pl 
1 

det E p(8) 

where E is the inverse of the Hessian Qf H evaluated at 8, the vector 82(81) minimizes 

the function /(·) = H(81, ·), which is the function H with 81 held fixed, and E(81) is the 

inverse of the Hessian of the function H(81 , ·) evaluated at 82(81). Leonard and Tierney and 

Kadane a.re concerned with the approximation of marginal posterior densities while Phillips 

is primarily concerned with approximating marginal sampling distributions. As Sweeting 

(1987) points out, approximation {2) used as an approximate marginal posterior density is 

also closely related to the conditional profile likelihood of Cox and Reid (1987). 

Approximation (2) has what might be called saddlepoint accuracy. That is, its asymp­

totic properties are very similar to the properties of the saddlepoint approximation ( see, 

for example, Reid, 1988, and the references cited therein). In particular, (i) the relative 

errors of the approximation are uniformly of order O(n-1) on a fixed neighborhood of the 

joint mode; {ii) the approximations generally do not integrate exactly to one, but {iii) as a 

result of the uniformity in the error term numerical renormalization of the ·approximation 

produces an approximation with relative errors of order 0( n-312) in neighbor~oods of the 

joint mode that shrink in diameter ~t the rate D(n-112). Thus the local behavior of the 
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renormalized approximations is comparable to the behavior of an Edgeworth expansion with 

two terms in addition to the leading normal density term. Approximation (2) is, however, 

more accurate than an Edgeworth expansion in the tails since relative errors of Edgeworth 

expansions generally only tend to zero on n-112-neighborhoods of the mode. 

In thi~ note we are concerned with approximating the marginal density of more general 

functions g(9) than simple coordinate functions. The function g can be real-valued or k-

. dimensional vector-valued and is assumed to be smooth and have a gradient that does not 

vanish, ~r a Jacobian that is of rank k, near 8. In some cases it may be possible to reduce 

this problem to the coordinate margin case by finding an explicit global transformation 

</> = ¢(8) such that </> can be partitioned as </> = (g(8), </>2). This is the approach taken in 

Phillips (1983). However, in many cases it may be difficult or inconvenient to produce such 

an explicit reparameterization. We propose an approximation that does not depend on the 

explicit specification of a transformation. For a k-dimensional function g the approximation 

is given by 

.. _ -k/2 ( det(E(7)) )
1

'
2 

p(8('Y)) 
pg(7 ) - (

2
1r) det(E)det((Dg)TE(7)(Dg)) p(8) 

{3) 

where E is th~ inverse of the Hessian of H evaluated at 8, 8(7) minimizes the function 

H(·) subject to the constraint g(8) = 7, E(7) is the inverse of the Hessian of H evaluated 

at 8(7), and Dg is the gradient or Jacobian of g evaluated at 8(7). That is, if g is one­

dimensional then Dg is a column vector with components fr;o(8(7)) for i = 1, ... ,m, and 

if g is k-dimensional then Dg is an m by k matrix with elements fr;o;( 8( 7 )) for i = 1, ... , m 

and j = 1, ... , k. If g is one-dimensional then the argument to the second determinant in 

the denominator of {3) is a scalar. This approximation was stated for a one dimensional g, 

without proof, in Kass, Tierney a.nd Kadane {1987a). 

Approximation {3) requires that the gradient of g be non-zero, or the Jacobian.he of full 

rank, over the support of the joint density p. Note that, as in (2), the normalizing constant 

c in (1) need not be evaluated since it cancels from the numerator and denominator iil (3). 

Also note that (3) is equivariant under invertible transformations of g. That is, if</> is a 

differentiable, invertible transformation of R" and /(8) = <f,(g(8)) then the approximate 

marginal densities for /(8) and g(8) satisfy f>i(t) = pg(<J>-1(t))ldet(D<f,(</>-1(t)))l-1
• In 

general (3) is not invariant to transformations of the joint density (1). 

In the next section we derive this approximation and show that it has saddlepoint ac-
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curacy. In the third section we apply the approximation to the calculation of a marginal 

posterior density, a. marginal sampling density, and a. marginal density based on a. multi­

variate saddlepoint approximation to a. joint density. We conclude with a. brief discussion 

of a. related approximation of Hsu, Leonard and Tsui (1987) and some general remarks. 

2 Derivation and Asymptotic Properties 

The basic idea. behind the derivation of (3) is this. Asymptotically the joint density pis 

dominated by its behavior near 9. The density of g(9)"can therefore be computed from p 

restricted to a. neighborhood of 9. On a. sufficiently small neighborhood there exists a. local 

transformation </, = (<Pt, </,-J) s~ch that </, = (g( 9), </,-J). A pproxima.tion ( 3) is the:q. obtained 

by applying La.place's method in this parameterization in a. form that allows the Ja.cobians 

of the transformation to cancel. In this section we will treat the functions band Hin (1) 

as fixed. The approach of Kass, Tierney and Kadane ( 1987b) can be used to adapt the 

arguments ·given here to the case where b, H and 9 are replaced by well-behaved sequences. 

To complete the derivation we need the following three lemmas. The first lemma. is a. 

simple determinant identity for partitioned ma.trices, the second gives a. sufficient condi­

tion for the existence of a. suitable local reparam.eterization, and the third states La.place's 

method in the form we require. 

Lemma 1 Let A be a matrix partitioned as 

(4) 

and assume that A, An and A22 are nonsingular. Then the determinant of A22 satisfies 

the identity 

det(A22) = det(A) det((~-1 )11), 

where ( A-1 ) 11 is the upper lefthand comer of A-1
• 

(5) 

This result follows from equations (5) and (6) of Morrison (1976). Note that if An is a. 

one by one matrix then (5) follows from ,the adjoint form of the inverse of A. This lemma. 

also shows that {2) is equivalent to (3) when g is a. simple coordinate mapping.-
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Lemma 2 Let g be a function from: a set 0 ~ Rm into Rk and let 8 be an interior point of 

0. Assume that g is r-times continuously differentiable on an open neighborhood of 8, and 

that the derivative of g at 9 is of rank k. Then there exists an open neighborhood U of 8 

and a one-to-~me mapping ,J, : U --+ r ~ Rm such that ,J, = ( ,J,1 , ,J,2) is r-times continuously 
. . 

differentiable, of /ull rank (its Jacobian is nonsingular}, and ,Pi, the vector of the first k 

components of ,J,, satisfies ,J,i = g( 9) on U. 

Proof Without loss of generality we assume that the first k rows of Dg(9), the Jacobian of 

g at 8, are linearly independent (if not we simply introduce an appropriate permutation). 

Let ,J,(9) = (g(iJ),82). Then the Jacobian of ,J, is nonsingular at 8 and is continuous near 9. 

Thus there exists a neig4borhood U of 8 on which ,J, is of full rank. D 

Lemma 3 Let C be a compact subset of Rm and let z be an interior point of C. Let f 

and q be real valued functions defined on C and siz times continuously differentiable on the 

inte.rior of C. Assume that z uniquely minimizes q over C and let</' denote the Hessian 

of q. Then 

as n tends to infinity. If the functions / and q and their derivatives depend in a continuously 

differentiable way on a parameter taking values in a compact set then the error term and 

its derivative or gradient with respect to the parameter are uniformly of order 0( n-1 ). 

Versions of this result, known as Laplace's method, can be found in most texts on 

asymptotic analysis; see for. example Chapter 4 of De Bruijn (1970). 

We now return to the derivation of (3). The following regularity conditions are assumed 

to hold: 

(i) The functions b, h and g are defined on a s·ubset 0 of Rm. There exists a point 

{Jin the interior of 0 such that {J is a strict local minimum of h, b(9) > O, and 

b, hand g are six times continuously differentiable on a neighborhood of 8. 

(ii) For every neighborhood U of 8 the probability assigned by the joint density p 

to the complement of U is of order O(n-r) for every r > 0. 
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(iii) Let Ube a neighborhood of 8, let i' = g(8), let Pn denote the probability measure 

on 0 corresponding to the density (1) and letµ(·) denote Lebesgue measure on 

~. There exist an no > O, a 6 > 0 and a sequence of constants en with 

en, = 0( n-r) for every r > 0 such that for every measurable A ~ ( -y - 6,;, + 6) 

Pn{g(8)e:A, 8 ¢'U} ~ en,µ(A) 

for all ·n > no. 

Note that (iii) will hold if b is bounded, H has a unique global minimum at 8, and for 

some n the density of g( 8) under Pn is bounded in a neighborhood of -y. 

Theorem 1 Let pg(7) denote the marginal density of g(8), and let -y = g(B). Under 

the regularity conditions above there exists a 6 > 0 such that for all 1 in the open ball 

8 = {1: 111 - t II < c5} the posterior density approzimation {3} satisfies 

(6) 

where the functions en are continuously differentiable on 8, the sequence { en} and the 

sequence of derivatives or gradients {e~} are uniformly bounded on B, and O,,(n-r) is 

uniformly of order O(n-r) on 8 for every r > 0. 

Proof Let U and "P = (1P1,1P2) be as in Lemma 2 and let U(1) = {8eU: g(8) = ;} . Let 

V('Y) = '¢2(U(1)) and let J = J(8) be the Jacobian of "P· Let 6 > 0 be small enough to 

satisfy assumption (iii), to insure that for any ; e B there exists a strict minimizer 8(;) of 

Hover the set U(;), and to insure that 8(1) is continuous on B. Then for 7 e B 

( ) / P("P-1{1,</>2)) d"- {1 0 ( -r)} 
Pg 1 = fv("Y) det(J(1P-1(;,</>2))) ¥'

2 + 1' n 
(7) 

for every r > 0. By Lemma 3, with f =band nq = nh = H, we incur a ~elative error of 

order O(n-1 ) ifwe replace the constant c in (1) by (21r)-mf2(detE)-112b(0)-1exp(H(0)), 

where Eis the inverse of the Hessian of H (based on the 8 parameterization). Thus 

with the O(n-1
) term independent of 7. 
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Let :E4,22(;) denote the inverse of the Hessian of the function H( 1/J-1
( -y, ·)) evaluated 

at 8(;). Applying Lemma 3 once more, with e-n9(·) = p('l/J-1(1,·)) and/ equal to the 

remaining factor in ( 8), we have 

_ (det :E4,22(;))112 p(B(;)) 
1 

en(i) 
0 

-r 

Ps(i) - (2,r)k/2(det :E)1/ 2 det(J(B(;))) p(9) { + n + ..,(n )} 
(9) 

where the en are continuously differentiable on 8 and { en} and { e~} are uniformly bounded 

on 8. Let :Et!>(;) denote the inverse of the Hessian of the function H('l/J-1(·)) evaluated at 

6(1). Then det(:E4,(;)) = det(:E(;))(det(J(8(;))))2, and thus, by Lemma 1, 

det(:E4,22(;)) det(:E(;)) 

(det(J(6(;))))2 = det((Dg)T:E(;)(Dg))' 

which completes the proof. D 

To capture the relative error of approximation (3) on neighborhoods oft ~hat shrink_ 

in diameter at the rate 0( n-112) we compare the ratio of the actual marginal density at ;, 

and points near ;, to the corresponding ratio for ~h~ approximations. 

Corollary FixueRk and set;n = t+n-112u. Then unde~ the assumptions of the preceding 

theorem 

pg{;n) = f,g{;n){l + 0 ( -3/2)} 
pg{ i') pg( i') u n , 

with Ou(n-312) uniformly of order O(n-312) for bounded values of u. 

This result follows immediately from the form of the error gi~en in the preceding theo­

rem. 

3 Applications 

In the first two subsections of this section we use (3) to approximate a marginal posterior 

density anc;l a marginal sampling density. We have chosen simple, two dimensional problems 

in order to be able to verify the approximations using numerical integration and an exact 

expression for the marginal density, respectively. In the final subsection we use (3) to derive 

an approximation for a marginal density based on the saddlepoint approximation for the 

joint density of the sufficient statistic in a multidimensional exponential family given in 

Barndorff-Niels~n and Cox (1979). 

6 



3.1 A Marginal Posterior Density 

Feigl and Zelen (1965) examine the relationship between Leukemia survival and a concomi­

tant variable, the white blood cell count of a patient. They consider a model in which 

survival times are assumed to be exponentially distributed with a mean survival time of the 

form (Ji exp{82z}, where z is the natural logarithm of the white blood cell count measured 

in units of 10,000. Thus 81 represents the mean survival time for a patient with a white 

blood cell count of 10,000 and 82 rep~esents the approximate percentage change in mean 

survival time corresponding to a one percent increase in the white blood cell count. Their 

sample consisted of patients classified as AG positive or AG negative based on examination 

of the- leukemic cells. 

We consider the sample of 17 AG positive patients and are particularly interested in 

the two Y,ear survival probability of patients at a. white blood cell count of 50,000, a value 

slightly above the third quartile of the white blood cell counts for this sample of patients. 

We computed the approximate marginal posterior density (3) for this probability based on 

an improper uniform prior distribution· on 91 and 92• For this computation we chose b in 

equation (1) to be a constant and H equal to minus the log likelihood. The exact and 

approximate marginal densities for this survival probability are shown in Figure 1. Figure 

2 shows the same densittes transformed to the logit scale. The exact marginal density was 

calculated by reparameterizing the joint density in terms of the survival probability and 

92 ~d numerically int~gra.ting over 82 using a 200 point trapezoidal rule on the interval 

[-2, 0]. This interval contains essentially all the support of the posterior distribution on 82; 

use of a. larger interval or more .points did not change the graphs of the marginal density of 

the survival probability. / 

3.2 A Marginal Sampling Distribution 

Suppose we would like to estimate the proportion of a. normal population that falls below 

a point x0 • If the mean and variance of the population are unknown then a reasonable 

estimator might be 

.. (xo-X) p = f, 
s 

(10) 
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where X is the sample mean, S the sample standard deviation, and q; the cumulative 

distribution function of the standard normal distribution. 

The marginal density of this estimator can be approximated using (3). Taking b to be a 

constant and H to be minus the logarithm of the joint density of X and S the approximate 

marginal density at pis given by 

( 

n(n - l)n-1 . )1/2 sn-1 

1r(n - 2)"-2(n - 2(n - l)s2q,-l(p)2) rp(()-l(p)) 
. 1 . 
x exp{-2(n(zo - s()-1(p))2 + n - 2 - (n - l)s2

)} (11) 

.where 

n()-1(p)zo + Jn2()-1(p)2x~ + 4(n:.... 2)(n - 1 + n()-1(p)2) 

s=----------~---------~~------2(n - 1 + n()-1(p)2) 
(12) 

and rp is the standard normal density. 

. The exact density of P can be computed by noting that P is a function of a noncentral 

t random·variable with n - 1 degrees of freedom and noncentrality parameter '1n,x0 • The 

exact and approximate densities for xo = 1 and n = 5 are shown in Figure 3. Figure 3 also 

shows the approximate densities based on the joint density of X and log( S) and the joint 

density of X and S2
• Figure 4 shows the same densities transformed to the probit scale. 

All three approximations appear to perform reasonably. The choice of parameterization 

does have an effect;'in this case the parameterization based on S appears to perform better 

than the parameterization based on log( S), which is in turn superior to the parameteri­

zation based on S2• Note that the graphs for the approximation based on S are almost 

indistinguishable from the graphs of the exact density. 

3.3 Marginalizing a Saddlepoint Approximation 

As pointed out by Reid (1988), interest in saddlepoint methods has increased considerably 

in recent years, in particular since the publication of Barndorff-Nielsen and Cox (1979). 

Approximation (3) can be used to approximate marginal densities from saddlepoint ap­

proximations to joint densities. 

Suppose X1, ... ,Xn are independent and identically distributed random variables from 

an m-dimensional exponential family with density exp{ -xT q,} /( x )/ M( q, ). Let Tn = ¼ EXi 

denote the sufficient statistic for the family, let K ( </>) = log( M ( q,) ), and let K' ( q,) and K" ( q,) 
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denote the gradient and Hessian of K, respectively. Let 4> denote the maximum likelihood 

estimator of</,, which is the solution to the equation Tn = -K'(t/,). Then the saddlepoint 

approximation· to the joint density of Tn at t is 

(
2
,rnrm/2 exp{nK(4>) - nK(t/>} + ntT(4>- </,)} 

( det(K"( </, )))112 
{13) 

Here 4> represents the maximum. likelihood value corresponding to an observed value oft for 

Tn. The ma.tW,nal density of a function g(Tn) of the sufficient statistic can be approximated 

by applying {3) to (13). In this case it is convenient to choose b = (det(K"(4>)))-1 • Then 

H = -n(K(4>)-K(t/>)+tT(4>-4>)). Let i(-y) minimize H subjed to the constraint g(t) =; 

and let 4>( "Y) be the corresponding maximum likelihood point. Then E(-y) = K"( 4>(;)) and 

the approximate marginal density of g(Tn) at "Y is proportional to 

(
2
1rnr1c/2exp{nK(4'(-y))- nK(t/,~ + ni(1f(4>(1) - </,)} 

( det((Dg)T K"( t/,(-y))(Dg ))p/2 

4 A Related Approximation 

{14) 

A related approximation to the marginal posterior density of a nonlinear ~unction is de­

scribed in Hsu, Leonard and Tsui (1987). To facilitate comparison with their approximation, 

we write (3) without the normalizing constant as 

( 
det E(-y) )i/2 .. · 

pg{;) <X det((Dg)TE(-y)(Dg)) p(O(;)) {15) 

Let £,., denote the gradient of H at 8(-y), let 9(1) = 8(-y) - E(-y)i,.,, and let f(;jµ,C) 

denote the density of g(9) at; when 9 has a normal distribution with mean vectorµ and 

covariance matrix C. By expanding the logarithm of the joint density p about the point 

8(-y) up to second order, Hsu, Leo~ard and Tsui derive the intermediate approximation 

{16) 

This approximation is an intermediate step to a final approximation since the density f is 

generally not available in closed form -and needs to be approximated. 

The derivation of (16) does not assume that g is well behaved. In particular g need not be 

differentiable on a neighborhood of 8, though the asymptotic accuracy of the approximation 
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will depend on the degree of smoothness of g. As long as/ can be computed, (16) can thus be 

used to approximate the marginal density of quite general functions g. Since samples from 

normal distributions are easy to generate, a general strategy for approximating / might be to 

simulate observations from the density /. Hsu, Leonard and Tsui are particularly concerned 

with certain quadratic g that are used as measures of association in contingency tables. For 

that application they propose a particular gamma distribution as an approximation to /. 

IT the function g is differentiable and its Jacobian is of full rank near 8 then the error 

in using the intermediate approxim~tion (16) will be of order O(n-1
) on a fixed neighbor­

hood for 8. In this case one can then use (15) to approximate f for the special case of a 

joint normal distribution of 8. This will reproduce approximation (15). Hsu, Leonard and 

Tsui suggest the possibility of approximating /{1-18(7),E(,')) by the density of a normal 

distribution with mean g(8(7)) and variance (Dg)(8(7))TE(7)(Dg)(8(7)) evaluated at 7. If 

g is not linear this would generally result in an approximation with a relative erro~·of order 

O(n-112
) on neighborhoods of 8 that shrink in diameter ·at the rate O(n-112). 

Hg is not smooth or if its Jacobian is not of full rank near 8 then using (1$>) with 

a specialized approximation to / may produce better results than (15). In some of the 

examples considered by Hsu, Leonard and Tsui an independence model is close to the 

support of the joint posterior distribution p. The gradient of the quadratic measure of 

association they consider vanishes at an independence model, and as a result in these cases 

approximation (15) does not perform as well as their approximation, based on (16) with a 

gamma approximation to /. 

5 Discussion 

The approximations described in this paper are most useful for numerically evaluating and_ 

plotting approximate marginal densities. Though there are some exceptions, they do not in 

general produce simple closed form expressions that can be manipulated analytically. 

The computational requirements for these approximations are rather modest. If routines 

for determining the minimum and the Hessian of the function H are available then they 

c_an easily ·be adapted for computing approximation (3). For example, if a one dimensional 

approximate density is to be computed on a grid of points then one can start at ;, and work 
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outward along the grid and taking one or two Newton steps for the gradient and constraint 

equations, using the 8( 'Y) value for the· each grid point as the starting value for the next 

grid point. A set of programs that can be used for these computations from within the S 

system are described in Tierney, Kass and Kadane {1987). 

A weakness of these approxima~ions is that they generally do not integrate to one. 

Numerical integration has to be used to renormalize the approximations. This is a nuisance 

for higher dimensional margins but is not a serious problem for one and two dimensional 
G • 

margins. The approximations do integrate approximately to one, and if they are to be used 

primarily to obtain graphical representations of the marginal densities then the constant 

of integration is less important as it will affect only the scale on the density axis, not the 

shapes of the approximate densities. The implication of the corollary in Section 2 above is 

that the shape of the marginal density is approximated more accurately than. the constant 

of integration. 

Several practical issues require further investigation. The parameterization used in the 

joint density clearly affects the quality of the approximation. A parameterization in which 

·the joint density is closer to normal will usually produce a better approximation. At present 

only heuristic guidelines on the choice of a parameterization are available; it would be useful 

to place these on a firmer footing. Another issue requiring furt~er investigation is how close 

a zero of the gradient or a point of degeneracy of the Jacobian of g can be to the center of the 

joint distribution before the approximation breaks down. The computation of probabilities 

also needs to be explored further. Numerical integration of the approximate density appears 

to be the only alternative available at present. It may be possible to adapt some of the 

techniques for the evaluation of tail areas from saddlepoint approximations to the present 

setting. 

As a final remark we would like to point out the relation between (3) and modified or 

conditional profile likelihoods studied, for example, in Cox and Reid (1987). The formula 

for the conditional profile likelihood given by Cox and Reid is essentially the same as (2) 

if the joint density pis replaced by the likelihood. It may be possible to give (3) a similar 

interpretation for problems where there are ·many parameters, a function of the parameters 

is of interest, but an explicit decomposition of _the parameter vector into the quantity of 

interest and a nuisance parameter vector is either difficult or impossible. 
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Figure 1: Posterior Density of Survival Probability, Probability Scale 
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Figure 2: Posterior Density of Survival Probability, Legit Scale 
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Figure 3: Density of Normal Proportion Esti.mator, Probability· Scale 
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Figure 4: Density of Normal Proportion Estimator, Probit Scale 
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