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We propose an upper bound and a lower bound of the Helmholtz free energy in the 
statistical physics. A new approximate expression of the free energy is obtained. This 
approximate value of the free energy is proved to be greater than the lower bound and less 
than the upper bound. A systematic method which can be extended to improve the 
approximation is studied. The upper bound and the lower bound of the approximate free 
energy converge to the true free energy as the successive approximation proceeds. The 
method is first explained with the Ising ferromagnet and then applied to the Heisenberg 
ferromagnet. In the simplest approximation the result agrees with the Bethe-Peierls approxi
mation for the Ising model and the constant coupling approximation for the Heisenberg 
model. A more accurate approximation is studied for the Ising ferromagnet. 

§ 1. Introduction 

In the many-body theory there are two essentially different methods for obtain

ing the approximate Helmholtz free energy; (1) the perturbation methodn and 

(2) the variational method.') When the perturbation becomes large, the perturba

tion method is an inconvenient procedure and then the variational method is more 

appropriate. Bogolyubov' s variational principle') has been successfully applied to 

a wide range of problems in the theory of many-particle systems. If we adopt 

the one-particle model Hamiltonian that can be exactly solved in the Bogolyubov 

variational method, we get a self-consistent result such as the molecular field 

theory in the ferromagnet4l and the Hartree-Fock approximation in many-body prob

lems. Since the variational method yields a result which is always greater than 

the correct answer, the mathematical meaning for improving upon the approximation 

in the variational method is strictly defined by lowering the upper bound of the 

free energy. But these variational methods, the molecular field theory and the 

Hartree-Fock approximation, have the unhappy feature that the correlation effects 

cannot be evaluated. 

On the other hand we can calculate the correlation effects in the many-body 

system by using other approximate methods. For example, the Bethe-Peierls-Weiss 

approximation in the ferromagnet5l which treats somewhat more accurately the 

interaction of a given spin with its nearest neighbors than the molecular field 

theory, contains the correlation effects. A more accurate approximation from the 

physical point of view may be obtained by making the considered cluster larger and 
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Approximate 1\1ethod for the Free Energy 1443 

larger. But in a case of this kind the approximation does not show an order 
relation between the true free energy and the approximate free energy. Thus in 
contrast with the variational theory the mathematical meaning for improving on 
the approximation in this method is not clear. Thus we cannot show how the 

method can be extended to improve the approximation from the mathematical point 

of view. Such features appear in the perturbation theory and a cluster expansion 
method. 

When the model Hamiltonian cannot be explicitly expressed, Sawada's vari

ational method6l which is based on the Bogolyubov variational principle and includes 

the correlation effects, sometimes gives internal inconsistency results. 

In this paper we present the expression of an upper bound and a lower bound 
of the Helmholtz free energy in the statistical physics. Adopting the explicitly 

expressed model Hamiltonian, we propose a new approximate free energy form 
which includes the correlation effects and is proved to be less than the upper 
bound and greater than the lo~wer bound. We will also show a method which 
can be extended to improve the approximation. 

In § 2, \Ve y.;ill present an expression of the upper bound and the lower 

bound of the free energy and an approximate method for the free energy by 
adopting a model Hamil toni an. In § 3, we will show an expression of the lower 
bound of the free energy and the ground state energy. In § 4, we will apply 
this method to ihe Ising model and the Heisenberg model. 

§ 2. Formalism 

vVe start from the following two inequalities: 

(i) Any two positi\·e semi-definite, trace-class operators A and B on a separable 
Hilbert space satisfy the inequality 

Tr(A log A-A log B)>Tr(A..-B), (1) 

provided that the operator A log A~- ~1log B is of trace-class. The equal sign in 
Eq. (1) holds if and only if A..=B. 3l 

(ii) If real functions fi(x) (i=l, 2, ···, n) defined on the domain D and the 
summation L~~lfi (x) have the minimum values on the domain D, then one has 
the inequality 

n n 

L min fi (x) ::;min L fi (x), (2) 
t=l t=l 

where by minf(x) we mean the minimum value of the real function f(x). 
Normalizing Tr A= Tr B = 1, putting B = e-ilH /Tr e-ilH and substituting these 

into Eq. (1), we get 

F= _l_ log Tr e-m :s; Tr (AI-I+ l_A~ log A._), 
[3 - [3 

(3) 
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1444 A. Oguchi 

where His the Hamiltonian of the system and {3=1/kT. 
We now adopt the model Hamiltonian H 0 which is solved exactly and is close 

to the Hamiltonian H and we introduce the positive operator Y which satisfies 

[H0 , Y] =0. 

Putting 

A= e-~IIoYjTr e-~II, 

and inserting this into Eq. (3), we get 

F<- ~ log Tr e-f3Ho + (Yv + ~ Y logY) =Fo+J(Y), 

\vhere 

and 

( 4) 

(5) 

(6) 

Since TrA=1, the positive operator Y satisfies (Y) =1. The equal sign in Eq. (6) 
holds if and only if H = H 0 and Y = 1. 

(A) The case [H0 , V] =0 

First for simplicity we consider the case [H0 , V] = 0. The m1mmum value 

for J(Y) occurs where oJ(Y) =0, so that noting (Y)=1, we get 

min J(Y) =J(e-ilvj(e-av)). (8) 

Inserting this value of Y into J, we obtain 

F= - _!_ log Tr e-f3H = -_!_log Tr e-fJH,- _!_log (e-f3v) 
(3 (3 (3 

=Fo+min J(Y) 

<Fo+J(Y). (9) 

If we put Y = 1 in this last form, we get the Bogolyubov variational principle 

as follows: 

F<Fo+J(1) = _ _!_logTrc-f3Ho+(V). 
- (3 (10) 

Now, we assume that V can be decomposed into a sum of terms: 

q 

V=L: vi, (11) 
i=l 

where q is the number of the division of V. We have several methods to make 

this division of V, such as the method of cluster division or the decomposition of 
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Approximate Nlethod for the Free Energy 1445 

Y into one-body part and many-body parts. 
It is convenient to introduce two new functions g1 (r) and g2 (r; q) defined by 

gl (r) =-~log (e-rv) =min I YV + ~ Y logY), 
r \ r 

(12) 

and 

g2 (r;q)=-~i=log(e-rv')=I:.q min/YVi+~YlogY) for (Y)=1. (13) 
r i~l ,~1 \ r 

Then, the follo,ving theorem holds: 

Theorem 1. If we put 

Fz (q{3; q)-Fa +g2(q{3; q), F" ({3/q) =Fa +g1 ({3/q) and Fs- F0 +(ll); 

then we have 

and 

where 

Proof Using the inequality (2), we get 

and 

g2(q{3; q) = t min/YVi+ ~Ylog Y) 
i~l \ q{3 

=I: mm YVi+-Ylog Y +I: min _q_(Ylog Y) q • ( 1 ) q -1 
t~l qfJ i~l q{3 

gz(q{3; q) = t min/YVi+~Ylog Y) 
i~l \ q{3 

<min(YV+ ~ YlogY)=g1 ({1) 

=min(YV+ ~ Ylog Y)+minq~ 1 (Ylog Y) 

<min(Yv + ~ Y logY) =gl ({3/q) < (gl)Y~l= (V). 

(14) 

(15) 

(16) 
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1446 A. Oguchi 

Thus we have the following inequalities: 

(17) 

and 

(18) 

These prove Eqs. (14) and (15). Here we have used q>1 and the inequality 

(Ylog Y)~O=min(Ylog Y) (19) 

which is proved by using Jensen's inequality (F(x) )> F( (x)) for a convex func

tion F(x). Equation (19) is obtained by taking F(Y) =YlogYand using (Y)=l. 

Equation (14) shows that an upper bound of the free energy is F B = F 0 + ( V), 

which can be easily calculated and a more accurate upper bound is given by 

Fu ({3/ q) =F0 + g 1 ({3/ q), which unfortunately cannot be calculated in general. 

Equation (14) also shows that a lower bound of the free energy is F 1 (q{3; q) 
= F 0 + g2 ( q{3; q). We find from Eq. (15) that F mod has the same upper and the 

same lower bound of the true free energy. It therefore follows from Eqs. (14) 

and (15) that we can adopt the function F.mod which can be easily calculated as 

an approximation of the free energy. 

Next we consider two kinds of division of V named by Q1 and Q2• The 

numbers of the division in the case of Q1 and Q2 are q1 and q2 respectively, 

where we assume q1>q2. We now make each division of Q2 include q1/ q2 divisions 

of Q1 as follows: 

(20) 

\vhere 

(21) 

Then we obtain the following theorem: 

Theorem 2. If V is decomposed into two kinds of sum of terms defined 

by Eqs. (20) and (21), then we have 

F1 (q1f3; ql) <F1 (q2{3; q2) <Fmod, F<Fu (/3/ q2) <:::Fu (/3/ ql) <FB. (22) 

Proof. Using Eqs. (2) and (19), we obtain 

/yv +~Ylog Y)<f:/YVi+~Ylog Y)=lyv + q2 Ylog Y) 
\ {3 1~1\ {3 \ {3 

<(Yv + ~Ylog Y). 

Here we have used q1(Y log Y)>q2(Y logY) for the last inequality. Thus we get 
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Approximate 2\;Jethod for the Free Energy 1447 

Similarly we have 

( 1 ) I ~ (q,(q,) 1 ) 
min YV1 + -Y log Y = min\Y ~ V; + -Y logY 

(3q2 ;~L(l) (3q2 

=min ~ YV;+-Ylog Y > 2.:: min YV;+-Ylog Y . 
l(qlfq,)( 1 ) l(qlfq,) ( 1 ) 
i~L(l) (3q1 i~L(l) (3q1 

Summing over the index l in this inequality, we get 

gz(qzf3; q2)>gz(ql(3; ql). (24) 

From Eqs. (17), (18), (23) and (24), we obtain 

g2(ql{3; ql) <gz(qzf3; qz) <gz(/3; q,), gl (/3) <gl ((3jq2) <gl ({3/ql) <<V). 

This proves Eq. (22). Therefore it follows from Eq. (22) that we get the syste

matic method which can be extended to improve the approximation. In order to 

obtain a closer approximation of the free energy, we must make the division of 

V larger and each division includes several previous divisions of V like Eq. (21). 
Equation (22) shows that the new approximate energy F mod= F 0 + g2 (/3; q2), has a 

less upper bound and a greater lower bound than those of previous approximate 

free energy F mod= Fo + gz ((3; ql). 

(B) The case [H0 , V] =FO 

We start from the following inequality: 

F<- _!_log Tr e-f9Ho + / YV + _l Y log Y). 
- (3 \ (3 

By usmg the assumption of Eq. ( 4), we can write 

where VD is a diagonal element defined by 

VD= L..;[n)<nl V[n)<nl 
n 

and f n) is the eigenstate of the model Hamiltonian H 0 • 

Then we arrive at the following result: 

Theorem 3. If we put 

Fu'=- ~ log Tr e-f9H,- ~ log <e-f9VD), 

then we have 

F<F,/<FB. 

Proof. From Eqs. (25) and (26), we have 

F<min(- ~ logTre-!9H,+(YVD+ ~YlogY)) 

(25) 

(26) 

(27) 

(28) 
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1448 A. Oguchi 

= _ _.:!:_ log Tr e-f!Ho _ _.:!:_ log (e-flVD) = Fu' 
{3 {3 

<Fo+(Vn)=Fo+(V)=Fs. 

We can apply the results of case (A) to the upper bound F u' of the free energy. 

§ 3. The lower bound of the free energy and the ground state energy 

In the case [H0 , V] =0, Eq. (14) shows the lower bound of the free energy 

as F~(q{3; q) =F0+g2({3q; q). In this chapter, however, we consider the general 

case. 
From Eq. (3) we have 

F=min{Tr(AH+ ~AlogA)} for TrA=1. 

Then the following theorem holds: 

Theorem 4. If the Hamiltonian is decomposed into a sum of terms 

then we have 

and 
q 

Eg> :E (the lowest energy of Hi)= Eq , 
i=l 

where Eg is the ground state energy of H. 

Proof. Using Eqs. (2), (29) and (30), we get 

F=min{Tr(A tHi+l_A logA)}>:t min Tr(AHi+l_A log A) 
t~l {3 t~l {3q 

1 q 
= -- :E log Tr e-f!H,, 

{3q i~l 

which proves Eq. (31). In the limit T=O in Eq. (31) we get Eq. (32). 

(29) 

(30) 

(31) 

(32) 

Next we consider two kinds of division of H named by Qt and Qz. The 

number of the division of Q 1 and Q 2 are q1 and qz respectively. Applying a 

technique similar to that for theorem 2 to this case, we arrive at the following 

result: 
Theorem 5. If q1>q2 and each division of Q2 includes q1/q2 divisions of Qb 

then we have 

(33) 
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Approximate Method for the Free Energy 1449 

and 

(34) 

This theorem shows that we can get a more accurate lower bound of the ground 

state energy by making the division of the Hamiltonian large. 

§ 4. Applications 

(A) Ising model 

First as an example of Eqs. (15) and (16), we consider the Ising model. 

The Hamiltonian of the Ising model is given by 

J N 
H= -- 2:.: oio j- h 2:.: oi , 

2 (ij) i~l 
(35) 

where oi is the z-component of the Pauli spin operator at the i-th atom, N is the 

total number of atoms and the summation is taken over all nearest neighbor spins 

and h is the external field. Here we have put 9/iB = 1 in Eq. (35). 
In the present problem we take our model Hamiltonian H 0 as follows: 

N 

1-Io = - Io L 0 i , (36) 
i=l 

where ]0 is a variational parameter. The meaning of this variation is as follows: 

From Eqs. (15) and (16) we have 

F mod=- 2._ log Tr e-,8Ho- 2._ :t log (e-,ev,)<Fu = F0 + 91 ((J/ q). 
(J (J i~l 

We consider the minimum value of Fmod· This equation shows that the minimum 

value of Fmod is always less than the upper bound Fu of the free energy. And 

so the minimum value of F mod may be fairly good approximation of the free energy. 

As we are making the division of the Hamiltonian large, Fu is tending to the free 

energy. Therefore the minimum of F mod is also tending to the exact free 

energy. 

(i) We now consider the simplest case that the division of V is g1ven by 

zN /2 zN /2 { J 1 } 
V=L;Vij=I.: --oioj--(h-Io)(oi+oj), 

(ij) (ij) 2 z 

where z is the number of the nearest neighbors. 

From Eq. (36), we have 

(o)=tanh {310 • 

Using Eqs. (16) and (37), we get 

(37) 

(38) 
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1450 A. Oguchi 

= -1..(1-~)log 2-1..(1-z)log cosh{3l0 - 2 K 
{3 2 {3 2{3 

-;{]log [cosh ( 2~h + 2 (z: 1) {3[0) + e-2K], (39) 

where 

K={]J/2. (40) 

We differentiate Eq. (39) with respect to 10, and place fJF moct/810 equal to 

zero in accordance with the requirement of obtaining the minimum value of F mod· 

Thus we get 

tanh f3lo = sinh (2{3h/z ±_(2 (z -1) /z) {3[0)_ __ , 

cosh (2{3h/z+ (2 (z-1) /z){3l0) +e-2K 

(41) 

namely, 

e- 2K sinh {310 =sinh (2{3h/ z + (z- 2) /]10/ z). (42) 

By the differentiation of the free energy with respect to the magnetic field 

h, and by the use of Eq. ( 42), the magnetization is given by 

This is consistent with the result obtained by using Eqs. (38) and ( 41). In the 

case z = 2, Eq. ( 43) agrees with the exact result. 

From Eq. ( 42), the Curie temperature is given by 

kTc =- 1 
J log(z/(z-2)) 

(44) 

This result is in agreement with that of the Bethe-Peierls approximation. 51 

(ii) We next consider a larger division of V than that provided by Eq. (37). 

We only treat the plane square lattice (z = 4) and the simple cubic lattice (z = 6). 

We take the division of V as shown in Fig. 1 (A) for the square lattice and in 

Fig. 1 (B) for the simple cubic. 

Ia 

(A) (B) 

Fig. 1. 
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Approximate A1ethod for the Free Energy 1451 

Thus we can write 

(45) 

where 

Vi= - J (15i,l5i, + 15i,15i, + 15i,15i, + 15i,15i,) - _?_ (h- Io) (15i, + 15i, + 15i, + 15i.). ( 46) 
2 z 

Using Eqs. (16) and (46), we get 

Fmod= _ _!__log Tre-cm,_~ log (e-flVi) 
N (3N 8{3 

3z- 8 1 z- 2 l h DJ z 1 X =-~ -- og 2+-- og cos p 0-- og , 
8/3 2(3 8(3 

(47) 

where 

Again 10 is determined by setting i'JF moct/iYio = 0. This gives the following 

expression for 10 : 

tanh (310 = ~ [e4K sinh { 8!h - ( 4- :) 1%} + 2 sinh { 4!h + ( 2- ! ) ,310}]. ( 49) 

The magnetization is given by 

(15)= --~=- e4K smh --+ 4-- {310 +2 smh --+ 2-- (310 • 1 i'JF 1 [ . { 8,% ( 8 ) } . { 4(3h ( 4 ) } ] 
N i'Jh X z z z z 

(50) 

Here we have used Eq. (49). This result is also consistent with Eqs. (38) and 

(49). 
From Eqs. ( 48) and (50), the Curie temperature is given by 

kTc_ 2 
J -l~g (; +4 + 27 ;2 --4/(3z- 8)) · 

(51) 

The Curie temperatures evaluated by Eq. (51) are listed in Table I. 

Table I. Comparison of Curie temperatures ksT0 /J 

method z=4 z=6 
------ ------

mean field 2 3 

Bethea> 1. 443 2.466 

Kirkwoodtl 1. 476 2.469 

Kikuchicl 1. 213 2.382 

exact 1.135 

present result 1. 385 2.446 

a) See Ref. 5). b) See Ref. 7). c) See Ref. 8). 
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(B) Heisenberg ferromagnet 

We consider the Heisenberg ferromagnet. The Hamiltonian 1s giVen by 

N 

H= -2J~ si.sj-h ~ S/, (52) 
(ij) i~l 

where si is the spin operator of the i-th spin. 

We adopt the model Hamiltonian H 0 which IS g1ven by 

N 

Ha= -I0 ~ S;'. (53) 

Thus we get 

where 

i=l 

zN/2 

V=H-Ha= ~ Vij, 
(ij) 

Vij= -2JSi-Sj-}:__(h-Io) (S;'+S/). 
z 

From Eqs. (16) and (54), we obtain 

Fmod =-}:___log 2 cosh {3!0 - z log <e-f!V'1). 

N {3 2{3 

(54) 

(55) 

(56) 

This expression is in agreement with the two-spin cluster result of Stribe, Herbert 

and Callen9J and is identical to the constant coupling approximation. 

(C) Antiferromagnet 

As an example of Eqs. (32) and (34), we consider the antiferromagnet. The 

Heisenberg antiferromagnet is expressed by 

I-I=2IJI ~ Si-Sj= ~ Hij, (57) 
(ij) (ij) 

where 

(58) 

The lowest energy of Hij 1s 

(59) 

Inserting Eq. (59) into Eq. (32), we have 

(60) 

If we adopt a larger division of I-I which is composed of the cluster of nearest 

neighbor of a given spin 
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Approximate 1\,fethod for the Free Energy 1453 

where 

Hi= -2IJISi· :t·sj= iJI {(Si+ I: SjY-S/- CL.: sjy}, (61) 
j=l J j 

then the lowest energy of Hi is given by 

Ei= -IJJS(zS+1). (62) 

Substituting Eq. (62) into Eq. (32) and using Eqs. (34) and (60), we get 

Eg>-zNIJIS2 (1+ :s)>-zNIJIS2 (1+ ~)· (63) 

This result has already been obtained by Anderson. 10l 
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