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Abstract

The paper discusses the issue of estimation of exponential trend parameters in terms of its application in 
the forecast process. Due to the character of a random element, three models were considered: additive, 
multiplicative, and mixed. For estimating trend parameters, a log transformation method, least squares 
method, and approximate methods were applied. 
As a result of computer simulations, high sensitivity of the log transformation method with regard to the 
assumed random element model was noticed. This method yields the smallest value of ex post error for the 
multiplicative model but is burdened with a large error for the additive model, where the estimated parameter 
B takes large values (B > 0.24). In the paper, a new approximate method of estimation of exponential trend 
parameters is proposed. The method is compared with approximate formulas presented in the paper by 
Purczyński (2008).
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Introduction

An exponential trend has been widely used in economic forecasting (Cieślak, 2001; 
Zaród, 2017; Zeliaś, Pawełek, Wanat, 2003). Bearing it in mind, the paper discusses the issue 
of estimation of exponential trend parameters in terms of its application in the forecast process.

Due to the character of a random element, three models will be considered:
–– an additive model (Model I)
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–– a multiplicative model (Model II)

	
m
teeAy tB

t
ε⋅⋅= ⋅ 	 (2)

–– a mixed model (Model III)
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where: 
a
tε 	 –	 a random element with distribution N(0, σa);
m
tε 	 ‒	 a random element with distribution N(0, σm);

yt	 ‒	 empirical data.

In the case of Model II, a linear transform method is used (Zeliaś, 1997) as well as the least 
square method (LSM).

For the additive model (Model I), LSM is recommended with reference to equation (1), as 
a result of which the set of equations is obtained (Zeliaś, 1997):
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where: AS and BS refer to the estimation of parameters A and B obtained through LSM.
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In order to determine estimation BS, equation (4a) should be solved by means of a numerical 
method. Subsequently, estimation AS is calculated from equation (4b).

When discussing the issue of the estimation of nonlinear regression function parameters, 
including the exponential function, the authors of textbooks and books with problems to solve 
point out to the limited application of the log transform, which stems from the assumed form 
of the multiplicative model (equation (2)) (Kmenta, 1990). In Jurkiewicz, Plenikowska-Ślusarz 
(2001), the authors also highlight two other problems related to the application of the transform: 
the lack of the transfer of the characteristics of estimator ln(A) onto the estimator of parameter 
A and the inequivalence of the criteria of LSM used for the curvilinear function (equation (2)). 
Therefore, Jurkiewicz and Plenikowska-Ślusarz (2001) propose the solution of the set of equations 
(4) by means of a spreadsheet, e.g. Microsoft Excel. In our paper, approximate methods will 
be considered which enable the estimation of exponential trend parameters with characteristics 
similar to the parameter estimations obtained with LSM in relation to Model I (equation (1)). 
The proposed method will be compared with the formulas presented in Purczyński (2008). The 
aim of this paper is to propose the approximate method which yields a forecast error not larger 
than the error of the methods described in the paper by Purczyński (2008).

1.	 Simplified methods of the estimation of exponential trend parameters 

Let us assume that for the additive model (1) the following theoretical form was determined 

tŷ : 

 	  tB
t eAy ⋅⋅= ˆˆˆ 	 (5) 

where: Â  and B̂  refer to the estimation of trend parameters.

In the paper by Purczyński (2008), the following form of parameter B̂  estimation of 
model (5) was proposed:
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where: Ej is determined by the formulas:
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The estimation of parameter A is obtained from equation (4b):
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where  jB̂  is described by equation (6).

The method which refers to the case j = 1 in equations (6) and (7) will be referred to as 
Approximate Method I, and the case of j = 2 refers to Approximate Method II. 

It should be noticed that expression E1 (equation (6b)) was determined in the following 
way: function  tBeAty ⋅⋅=)(  fulfils a differential equation:

	  )()( tyBty ⋅=′ .	 (8)

By applying a symmetric equation to a derivative: 
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a recurrence equation is obtained:

	  ttt yBhyy ⋅⋅⋅=− −+ 211 	 (9)

By performing the summation on the left and right side of equation (9), expression E1 is 
obtained.

In the paper, the derivative is determined as:
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The derivative defined in this way refers to a half of interval [t; t + 1], which means that 

in equation (8), y(t) should be replaced by 
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mean of value yt and yt+1 can be assumed. Equation (8) takes the form:
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By finding the sums and assuming h = 1, we obtain: 
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The estimation of parameter A is derived from equation (7), where j = 3. The proposed 
method will be referred to as Approximate Method III. 

By analogy to equation (10), for elements yt–1 and yt, the following relation applies:
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By adding the sides of equations (10) and (12), we obtain:
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By finding the sums and assuming h = 1, we obtain:
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The estimation of parameter A is derived from equation (7), where j = 4 ‒ Approximate 
Method IV.

2.	 Results of computer simulations

In order to assess the usefulness of the proposed approximate formulas, a number of 
computer simulations were performed for various values of parameters A and B, and a number 
of observations n. The results for parameters A = 20, B = 0.12, 0.24, 0.36 and the number of 
observations n = 8 with forecast period T = 9, 10, 11, and also n = 12, T = 13, 14, 15 will be 
given below.

A similar numerical experiment was described in the paper by Purczyński (2003), where 
six approximate methods of the estimation of exponential trend parameters were verified. In the 
experiment, the quality of an econometric model was evaluated by means of the changeability 
coefficient and indeterminate coefficient (divergence coefficient). 
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For a given level of the random element, M = 20,000 simulations were performed using 
a random number generator with the normal distribution, calculating, according to equations 
(1‒3), the values of observations ym,t. For each simulation, the value of forecast YPm,T was 
determined:

	  ( )TBAYP mmTm
ˆexpˆ

, ⋅= 	 (14)

where: 
m = 1, 2, ..., M	 ‒	 the number of a subsequent simulation,
 

mÂ  and  mB̂ 	 ‒	 estimations of trend parameters for particular simulations,
T	 ‒	 a forecast period.

By analogy, the value of the realization of the predicted variable YRm,T was determined, 
substituting t = T in equations (1‒3). In order to evaluate the quality of the forecast, ex post 
relative forecast error bT was applied:
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Assuming the consistency of the error variance caused by the presence of a random 
element for Models I and II, in the paper by Purczyński (2003), the relation between the value 
of standard deviation σa and σm was determined:
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where: 
 tB

t eAyd ⋅= ,
E(yd2) mean value (ydt)2, 
V(yd) variance ydt.
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For small values of σm, the following approximate formula is applicable: 
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For the random element level analyzed in this paper, the application of equation (17) in 
place of (16) yields the relative error not exceeding 0.7%.

During the simulations, the random number generator of distribution N(0, σa) was 
activated, and then, using equation (1), the values of yt were calculated for Model I. During the 
realization of Model II, an equivalent value of standard deviation σm was determined based on 
equation (16). The mixed model (III) was realized as the arithmetic mean of series ym,t, which 
were generated for the additive and multiplicative models.

For a given level of the random element (σa), the value of the ex post forecast error depends 
on the values of trend parameters A and B. In order to minimize the influence of the values of the 
exponential function parameters, normalization was carried out introducing the relative value of 
the random element level σv: 
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As a result of the normalization, for all computer simulations, parameter σv belonged to 
the same interval [0; 0.1]. 

Figure 1 illustrates equation (18). The particular lines in Figure 1 correspond to the 
respective values of parameter B, i.e. 0.12; 0.24; and 0.36.

Since two forms of the approximate formula of parameter B estimation were proposed 
in the paper, (equations (11) and (13)), as the first step, it had to be decided which form yields 
a smaller value of the ex post error. Table 1 presents the ratio of the values of the ex post error b3/
b4 determined for sv = 0.1 and T = 9, where b3 indicates the error of the Approximate Method 
III and b4 ‒ the error of the Approximate Method IV. Table 1 proves that for all the considered 
cases, the ratio is larger than one, which means that Method IV yields a smaller error than 
Method III. Therefore, the rest of the paper will concentrate on Method IV only (equation (13)). 
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Figure 1. 	Values of the standard deviation of the random element σa as a function of the relative 
value of the level of the random element σvi. Solid line σ1,i corresponds to parameter 
B = 0.12, dotted line σ2,i corresponds to B = 0.24, dashed line σ3,i corresponds to B = 
0.36

Source: author’s own study.

Table 1. The ratio of the values of the ex post error for Methods III and IV (b3/b4)

B = 0.12 B = 0.24 B = 0.36

Model I 1.070 1.062 1.041
Model II 1.034 1.029 1.028
Model III 1.044 1.035 1.029

Source: author’s own study.

Figure 2 presents the results of the simulations made for the additive model of the random 
element – equation (1): A = 20, B = 0.24, n = 8 ‒ forecast period T = 9.

Figure 2 presents the values of ex post relative error (expressed in percentages) as 
a function of the level of random element σv. In Figure 2, it can be observed that the values of 
the errors for both LSM and approximate methods are similar. In order to differentiate between 
the effectiveness of particular methods, Table 2 was created. Table 2 includes ex post relative 
forecast error (equation (15)), expressed in percentages, for the number of observations n = 8, 
and the forecast period T = 9, T = 10, T = 11. The presented results represent parameter B = 0.24 
and B = 0.36 – the results for parameter B = 0.12 were not included in the table because of the 
limitations imposed on the volume of the paper. On the basis of the results presented in Table 2, 
it can be concluded that the smallest value of the ex post forecast error is provided by LSM, and 
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the largest value of the error is provided by the log transform method. The forecasts obtained 
for the approximate methods demonstrate similar values of the ex post error, where the smallest 
error (b4) is demonstrated by Method IV and the largest by Method II.
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svi .

Figure 2. 	Values of the ex post relative error (in percentages) for the additive model of the 
random element as a function of the level of random element σvi; parameter B = 0.24, 
forecast period T = 9. The following labelling was applied: solid line with circles bL ‒ 
log transform, dotted line bNK ‒ LSM, dashed line b1i – Approximate Method I, solid 
line b2i – Approximate Method II, dot-dashed line b3i ‒ Approximate Method III

Source: author’s own study.

Table 2. Ex post relative forecast error (equation (15)) expressed in percentages,  
for the random element level σv = 0 and the number of observations n = 8

Random element 
model

Parameter
B

Forecast 
period bNK bL b1 b2 b4

1 2 3 4 5 6 7 8

Additive

0.24 T = 9 6.864 12.066 7.122 7.165 7.106
0.24 T = 10 7.797 17.589 8.254 8.335 8.203
0.24 T = 11 9.123 28.112 9.754 9.921 9.666
0.36 T = 9 5.793 79.794 6.101 6.095 6.093
0.36 T = 10 7.081 163.29 7.606 7.673 7.535
0.36 T = 11 8.732 325.508 9.434 9.633 9.281

Multiplicative

0.24 T = 9 8.945 7.434 8.641 9.984 8.461
0.24 T = 10 10.466 8.204 9.989 12.111 9.696
0.24 T = 11 12.351 9.263 11.681 14.617 11.270
0.36 T = 9 8.878 6.230 8.147 9.824 7.803
0.36 T = 10 11.154 7.039 9.901 12.714 9.312
0.36 T = 11 13.756 8.103 11.941 15.930 11.086
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1 2 3 4 5 6 7 8

Mixed

0.24 T = 9 9.455 10.104 9.413 10.034 9.345
0.24 T = 10 10.482 11.448 10.438 11.462 10.309
0.24 T = 11 11.833 13.028 11.764 13.278 11.566
0.36 T = 9 8.711 14.944 8.492 9.246 8.376
0.36 T = 10 10.153 24.255 9.757 11.141 9.514
0.36 T = 11 11.981 43.446 11.353 13.461 10.958

Source: author’s own study.

Table 3 was created for the number of observations n = 12 and the forecast period T = 13, 
T = 14, T = 15. The values of the errors for LSM and Approximates Methods in Table 3 are 
smaller than in Table 2. However, for the log transform method, the values of errors in Table 3 
are larger than in Table 2. The following regularities can be observed in both tables: in the case 
of the additive model, the smallest error values are provided by LSM, and the largest – by the 
log transform method.

The other errors can be ordered b4 < b1 < b2. For the multiplicative model, the smallest 
error values are provided by the log transform method. The other methods can be ordered 
b4 < b1 < bMNK < b2. For the mixed model b4 < b1 < bMNK < b2 < bL, inequality is fulfilled.

Table 3. Ex post relative forecast error (equation (15)), expressed in percentages,  
for the random element level σv = 0.1 and the number of observations n = 12

Random element 
model

Parameter
B

Forecast 
period bNK bL b1 b2 b4

Additive

0.24 T = 13 4.870 45.343 5.166 5.303 5.159
0.24 T = 14 5.304 66.756 5.772 6.065 5.747
0.24 T = 15 6.057 96.542 6.686 7.167 6.640
0.36 T = 13 3.961 231.838 4.174 4.274 4.262
0.36 T = 14 7.743 405.713 5.023 5.377 5.156
0.36 T = 15 5.797 714.833 6.109 6.751 6.275

Multiplicative

0.24 T = 13 7.317 5.246 7.137 8.878 6.995
0.24 T = 14 8.425 5.473 8.149 10.807 7.923
0.24 T = 15 9.791 5.919 9.418 13.003 9.110
0.36 T = 13 7.356 4.163 6.716 8.429 6.460
0.36 T = 14 9.188 4.440 8.113 10.940 7.681
0.36 T = 15 11.222 4.893 9.692 13.658 9.075

Mixed

0.24 T = 13 7.672 11.035 7.687 8.491 7.461
0.24 T = 14 8.207 13.390 8.223 9.566 8.135
0.24 T = 15 9.112 16.551 9.129 11.065 8.998
0.36 T = 13 6.904 94.723 6.728 7.482 6.666
0.36 T = 14 7.887 146.042 7.527 8.953 7.393
0.36 T = 15 9.235 222.832 8.666 10.809 8.447

Source: author’s own study.
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Figure 3 is also related to Model I, yet here parameter B = 0.36. It should be noticed that 
the log transform method (bL) yields ten times larger value of the ex post error than the other 
methods.
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Figure 3. 	Values of ex post relative error (in percentages) for the additive model of the random 
element as a function of the level of random element σv ‒ parameter B = 0.36, T = 9. 
The labelling used is identical to Figure 2.

Source: author’s own study.
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Figure 4. 	Values of ex post relative error (in percentages) for the multiplicative model of the 
random element as a function of the level of random element σvi ‒ parameter B = 0.36, 
forecast period T = 9. The labelling used is identical to Figure 2.

Source: author’s own study.
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In the case of the multiplicative model (Figure 4), it can be observed that the largest error 
(b2) is yielded by Approximate Method II, and the smallest error (bL) – by the log transform 
method. The errors of the other methods fulfil inequality: b4 < b1 < bNK.

In the case of the mixed model (Figure 5), the three methods yield similar values of the 
ex post error. Therefore, the interval of the variability of the relative level of random element 
σvi ∈ [0.06; 0.1] was limited. 
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Figure 5. 	Values of ex post relative error (in percentages) for the mixed model of the random 
element as a function of the level of random element σvi ‒ parameter B = 0.24. The 
labelling used is identical to Figure 2

Source: author’s own study 

On the basis of the results presented in Figure 5, it can be observed that the largest error 
(bL) is yielded by the log transform method and the smallest error (b4) by Approximate Method 
IV. The errors of the other methods fulfil inequality: b1 < bN < b2.

Conclusions

The paper discusses certain aspects of the application of the exponential trend in the 
forecast process.

The computer simulations described in Part 2 proved high sensitivity of the log transform 
method to the assumed model of the random element. It is a well-known fact that the method 
works well for the multiplicative model and – to a lesser extent – for the mixed model. However, 
this method should not be used for the additive model if the estimated parameter B takes large 
values (B > 0.24), since it leads to a very large value of the ex post error. In Figure 3, created for 
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parameter B = 0.36, the relative error amounted to 79.8% (Table 2). It confirmed the reservations 
concerning limitations of the log transformation method expressed in papers by Kmenta (1990) 
and Jurkiewicz and Plenikowska-Ślusarz (2001).

In terms of the evaluation of the approximate methods, for all the three models of the 
random element, the smallest value of the ex post error was obtained for Approximate Method 
IV (b4). The largest error was obtained for Approximate Method II (b2). By drawing these 
conclusions, the author has reached the aim of the paper, showing that the proposed Approximate 
Method IV yields the forecast error lower than the errors obtained for the approximate methods 
presented in the paper by Purczyński (2008).

It should be noticed that LSM provides the smallest error only for the additive model. 
However, for the multiplicative and mixed models, the proposed method yields smaller error 
than LSM.
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