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We present a semianalytical model that quantitatively predicts the scattering of light by a single subwave-
length slit in a thick metal screen. In contrast to previous theoretical works related to the transmission prop-
erties of the slit, the analysis emphasizes the generation of surface plasmons at the slit apertures. The model
relies on a two-stage scattering mechanism, a purely geometric diffraction problem in the immediate vicinity of
the slit aperture followed by the launching of a bounded surface-plasmon wave on the flat interfaces surround-
ing the aperture. By comparison with a full electromagnetic treatment, the model is shown to provide accurate
formulas for the plasmonic generation strength coefficients, even for metals with a low conductivity. Limita-
tions are outlined for large slit widths ���� or oblique incidence ��30° � when the slit is illuminated by a plane
wave. © 2006 Optical Society of America

OCIS codes: 050.1220, 050.1940, 260.2110, 260.3910.

1. INTRODUCTION

Because of the advent of nanotechnology and the recent
applications of surface plasmon polaritons (SPPs) for ma-
nipulating light at a subwavelength scale, there has re-
cently been reawakened interest in the physics governing
the electromagnetic behavior of metal films perforated
with subwavelength apertures for visible light
operation.1–5 In that context, light scattering by an opti-
cally opaque metal film perforated by a single subwave-
length aperture, like a hole or a slit, represents the more
basic diffraction problem. Although it has been studied for
a long time (see the early references6–8), this problem is
still currently the subject of intense research from a the-
oretical point of view. Most of the earlier theoretical
works relied on semianalytic or on intensive computa-
tional approaches9–12 of the near-field patterns and well
reproduced or interpreted global experimental data such
as the transmission through the aperture. However, they
did not address the problem of the SPP generation at the
input or output nanoaperture sides in a quantitative
manner, although this generation has been evidenced ex-
perimentally through far-field measurements4,5 or direct
near-field measurements performed on a single nanohole
perforated in a thin metallic film.13,14 Recently, the SPP
generation at a metallic interface perforated by an iso-
lated subwavelength slit, when the slit is illuminated by
its fundamental guided mode [Fig. 1(a)] or by an incident
plane wave [Fig. 1(b)], has been tackled through a full
electromagnetic treatment and a semianalytical model.15

However, due to space limitations, the model has been
only briefly documented.

In this work we provide a detailed description of the
model and quantitatively test its domain of validity. It is
found that the model predictions are accurate even for
noble metal with a low conductivity, as encountered in the
visible region of the spectrum. In Section 2 we first
present a theoretical formalism for the rigorous calcula-

tion of the scattering coefficients between the incident
light and the SPP modes launched at the slit aperture.
This general formalism is rigorous in the sense that the
scattering coefficients are computed with high accuracy.16

It represents an important outcome of this work that will
be used to validate the model. Section 3 is devoted to the
derivation of the semianalytical model. Approximate but
accurate expressions for the SPP generation coefficients
are obtained for the two scattering problems shown in
Fig. 1. In Section 4, the model is applied to several geom-
etries of interest in practice such as grooves in a metallic
substrate. This allows us to discuss the influence of the
different parameters of the scattering problem. Addition-
ally, the model predictions are tested against data ob-
tained with the theoretical formalism, which allows an in-
depth test for the complex amplitude scattering
coefficients associated with the SPP generation mecha-
nisms. Section 5 summarizes the main results.

Hereafter, the metal is considered as a real metal with
a finite conductivity. Gold will be used to illustrate our
discussion, and its frequency-dependent permittivity � is
taken from Ref. 17. Let us emphasize that although gold
is used throughout the paper, the analysis and the ob-
tained results remain valid for other metals.

2. THEORETICAL FORMALISM

Let us consider the geometry shown in Fig. 1(a). The slit
has the same direction as the magnetic field Hy

(transverse-magnetic polarization) and is illuminated by
its fundamental guided mode at a fixed wavelength ��k
=2� /�=� /c�. In the figure, n1 and n2 refer to the refrac-
tive indices of the dielectric materials in the slit and be-
low the slit. We denote the slit width by w. Inside the slit
in medium 1, the magnetic field admits a modal expan-
sion of the form
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H1�x,z� = �0�x�exp�ikn0
effz� + �prp�p�x�exp�− iknp

effz�,

�1�

where p is an integer, �p is the magnetic field of mode p,
and np

eff is its normalized propagation constant. The sub-
script 0 refers to the fundamental propagative mode with
a weak attenuation Im�n0

eff��1. Similarly, below the slit
in medium 2, the magnetic field H2 can be expanded into
a plane-wave basis:

H2�x,z� =�
−	

	

dutu exp�ikn2ux�exp�ikn2
uz�, �2�

where u2+ �
u�2=1. Many numerical tools can be used to
rigorously solve for the reflection �rp� and transmission
�tu� amplitudes by matching the tangential field compo-
nents Hy and Ex at the metal–dielectric interface.12,13,18,19

Hereafter we use a frequency-domain modal method rely-
ing on Fourier-expansion techniques. The Fourier-
expansion method20 is a generalization of the rigorous
coupled-wave analysis21–24 initially used for grating
analysis for arbitrary nonperiodic structures. In brief, the
approach relies on an analytical integration of Maxwell’s
equations along the longitudinal z axis and on a supercell
approach in the x direction. Perfectly matched layers25

implemented as nonlinear coordinate transforms26 are
used in this direction to satisfy the outgoing wave condi-
tions at the supercell boundaries. Since these layers ab-
sorb nonevanescent radiations like the generated SPP
modes, the electromagnetic fields are null on the bound-
aries of the supercell and are thus periodic functions of
the transversal coordinates. This allows the calculation of
the radiated and guided modes in a Fourier (plane-wave)
basis inside and below the slit. By matching the tangen-
tial field components at the metal–dielectric interface, the
electromagnetic fields are calculated everywhere. Figures
2(a)–2(d) show the electromagnetic fields Hy�x ,z� and
Ez�x ,z�, which will be of main concern in the following for
two different wavelengths, �=1.5 and 0.6 �m, respec-
tively. Because a saturated scale is used to reinforce the
field in the vicinity of the slit, the standing-wave pattern
in the slit does not show up. However, this scaling allows
for the clear visualization of the near-field pattern, which
exhibits a marked expansion of several wavelengths away
from the slit aperture in medium 2. This is consistent
with the involvement of SPPs at the slit aperture, but
how do we recognize a quantitative signature of the SPP-
mode excitations in these near-field patterns?

To clarify this question, we have developed an original
approach that mainly exploits the completeness theorem
for the normal modes of optical waveguides.27 This theo-
rem has diverse applications in integrated optics, ranging
from the proof of mode orthogonality to the formulation of
coupled-mode equations, and provides a useful electro-
magnetic representation of light propagation in transla-
tionally invariant systems. It stipulates that any trans-
verse field pattern of such a system can be decomposed in
a linear combination of forward- and backward-traveling
bounded and radiative modes. For our slit geometry and
for w /2�x and x�−w /2, it results that the transverse
electromagnetic fields shown in Figs. 2(a)–2(d) can be ex-
panded into the set of normal modes of a flat gold–
dielectric interface:

Hy = �+�x� + −�x��HSP�z� + ��a��x�H�
�rad��z�, �3a�

Ez = �+�x� − −�x��ESP�z� + ��a��x�E�
�rad��z�. �3b�

In Eqs. (3a) and (3b), the transverse magnetic and electric
fields �HSP ,ESP� of the bounded SPP mode is the analog of
the guided mode of the waveguide theory, while the sum-
mation represents a continuum of radiation modes of the
flat metal–dielectric interface. The SPP fields are know
analytically28:

HSP�z� = �NSP�−1 exp�i
SPz�, �4�

with NSP a normalization constant such that the SPP en-
ergy flow is unity and 
SP= ��k2− �kSP�2�1/2 in the metal
and ��n2k�2− �kSP�2�1/2 in the dielectric, respectively. kSP is
the well-known SPP propagation constant along the
metal–dielectric interface and is given by28

kSP = k��n2
2/�� + n2

2�. �5�

In Eqs. (3a) and (3b) +�x� and −�x� are important coeffi-
cients that play a central role related to the SPP genera-
tion. The plus and minus superscripts refer to SPP propa-
gating forward and backward. The x dependence is known
analytically: +�x�=+�w /2�exp�ikSP�x−w /2�� and �x�
=�w /2�exp�−ikSP�x+w /2��, where +�w /2� and −�
−w /2� represent the complex unknown coefficients re-
lated to the strength of the SPP excitation at the exit
sides of the slit �x= ±w /2�. Using the mode orthogonality
condition,26 we obtain for + and −

�
−	

	

dzHy�x,z�ESP�z� = 2�+�x� + −�x��, �6a�

�
−	

	

dzEz�x,z�HSP�z� = 2�+�x� − −�x��. �6b�

Because we are concerned by lossy metals with a finite
conductivity, the modes are not orthogonal in the sense of
the power flow as is usually the case in waveguide theory
with weakly absorbing materials. This is the reason why
we have used the unconjugate general form of
orthogonality29 in Eqs. (6a) and (6b) with E H products in-
stead of the E H* product often used in waveguide theory.
The coefficients +�x� and −�x� are obtained by calculat-
ing numerically the overlap integrals on the left-hand

Fig. 1. SPP excitations at a metallic interface perforated by a
single slit under illumination by (a) the fundamental mode of the
slit or (b) a plane wave with an incidence angle �. The slit width
is denoted by w, and n1 and n2 refer to the refractive indices in-
side and below the slit. +�x�, −�x�, �+�x�, and �−�x� are the SPP
generation coefficients defined for an incident wave with a unit
power flow over the slit aperture area.
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sides of Eqs. (6a) and (6b). Figures 2(e) and 2(f) represent
the modulus squared of these coefficients for the scatter-
ing problems considered in Figs. 2(a)–2(d). The results
are obtained for an incident slit mode with a unit inten-
sity; thus 	+�x�	2 and 	−�x�	2 represent the normalized
SPP excitation strength. For −w /2�x�w /2, the coeffi-
cients are meaningless since there is no air–metal inter-
face. Let us consider 	+�x�	2; the discussion is similar for
	−�x�	2. For x�w /2, the computed 	+�x�	2 values per-
fectly fulfill the expected SPP attenuation law
	+�w /2�	2 exp�−2 Im�kSP��x−w /2��, which are shown as
circles in Fig. 2(f). For �=1.5 �m, 	+�x�	2 is found to be
nearly independent of x in the 2� large x scale used in Fig.
2(e). This is again consistent with the SPP attenuation
law since the 1/e SPP attenuation length at �=1.5 �m for
gold is 130 �. Further analysis, not reported here, has
shown that the phase dependence of +�x� exactly coin-
cides with the SPP propagation constant exp�−i Re�kSP�
��x−w /2��. In addition, let us note that, consistent with
the outgoing radiation condition at the slit output, 	+�x�	2

�resp. 	−�x�	2�	 is found to be approximately null ��10−6�
for x�w /2 �resp.x�w /2�.

Figure 3 shows the variation of the main relevant
quantities involved in the scattering problem as a func-
tion of the slit width. All results are obtained for an inci-
dent slit mode with a unitary power. The modal reflectiv-

ity R0= 	r0	2, shown with a thin solid curve, monotonously
decreases with w and reaches unity in the limit of w→0.
The total power EFF radiated into the far field in medium
2 exhibits a more intricate behavior (see the gray curve).
It strongly depends on the wavelength, i.e., on the dielec-
tric properties of the metal, and is maximum whenever w

is approximately a multiple of the wavelength that corre-
sponds to the passing off of symmetric evanescent slit
modes, which become propagative. This intricate behavior
reflects that of the total SPP excitation efficiency,
	+�w /2�	2+ 	−�−w /2�	2, which will be discussed in more
detail in Section 3 through a semianalytical model.

Fig. 2. (Color online) Validation of the rigorous formalism for the calculation of the SPP coupling coefficients. (a)–(d) Near-field patterns
generated at a gold interface under illumination by the fundamental slit mode. (a) and (b) 	Hy	; (c) and (d) 	Ez	. Red is high magnitude,
blue is low, and a saturated scale is used to reinforce the field in the vicinity of the slit. (e) and (f) SPP generation strengths 	+�x�	2 and
	−�x�	2 obtained from the near-field patterns shown in (a)–(d) by calculating the overlap integrals of Eqs. (6a) and (6b). In (f), the circles
are numerical data equal to 	+�w /2�	2 exp�−2 Im�kSP��x−w /2�� with 	+�w /2�	2=0.202. (a), (c), and (e) are obtained for �=1.5 �m and
w=0.35 �m; (b), (d), and (f) are for �=0.6 �m and w=0.14 �m. Other parameters are n1=n2=1.

Fig. 3. Variation of the main physical quantities associated with
the scattering problems considered in Fig. 2 as a function of the
slit width. 	+�x�	2+ 	−�x�	2 represents the total SPP excitation,
R0= 	r0	2 is the modal reflectivity, and EFF is the far-field energy
radiated in medium 2. The power of the incident slit mode is 1.
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3. APPROXIMATE MODEL

To obtain useful and analytical expressions for the SPP
generation without relying on a fully vectorial software to
solve Maxwell’s equations, we have developed an intuitive
approximate model. As suggested by the previous analy-
sis, the SPP generation results from a two-step mecha-
nism: a purely geometric diffraction problem followed by
the launching of the bounded SPP modes on the flat inter-
faces surrounding the slit. An analytic treatment has to
rely on assumptions. We assume that the diffraction prob-
lem that results in a specific nearfield distribution in the
immediate vicinity of the slit aperture [the Hy ,Ez fields of
Eqs. (6a) and (6b) at x= ±w /2] is weakly dependent on the
dielectric properties of the metal and that it can be esti-
mated by considering the metal as a perfect conductor
(PC). On the contrary, the launching of the bounded SSP
mode strongly depends on the intrinsic dielectric proper-
ties of the metal–dielectric interface [the HSP ,ESP fields of
Eqs. (6a) and (6b)]. In other words, the model takes into
account the main physical properties of the two-step
mechanism carefully and independently. Assuming that
the metal is perfectly conducting for solving the geometri-
cal scattering drastically reduces the complexity. We have
further assumed that the field inside the slit is composed
of the forward- and backward-reflected fundamental
mode. The approach developed below for calculating the
near-field distribution obtained for a slit in a perfect
metal largely follows that developed in Ref. 30 for light
diffraction by slit arrays.

A. Slit-Mode Illumination
Under the one-mode approximation, Eq. (1) becomes

H1�x,z� = �1 + r0��0�x,z�, �7�

where the fundamental mode �0�x ,z� is given by
�0�x ,z�= �N0�−1/2 rect�x /w�exp�−ikn1z�, with N0

=w / �2�0n1� a normalization constant such that the power
flow is unitary. The function rect�x� is defined by rect�x�
=1 if 	x 	 �1/2, and 0 otherwise. Equation (2) is un-
changed. By matching the PC boundary conditions at z

=0 (continuity of Ex for any x and continuity of Hy over
the slit apertures), one easily obtains for the field radi-
ated in medium 2

tu = �N0�−1/2
2�n2/n1�w�

�1 + �n2/n1�w�I0�

sinc��w�u�


u

, �8�

where w�=w / �� /n2� is the normalized slit width, I0

=
−	
	 du sinc2��w�u� /
u, and sinc�·�=sin�·� / �·�. Similarly,

the modal reflectivity coefficient r0 defining the field in
medium 1 is shown to be given by

r0 =
�n2/n1�w�I0 − 1

�n2/n1�w�I0 + 1
. �9�

Equations (7), (2), (8), and (9) completely determine the
electromagnetic fields scattered in media 1 and 2. From
this near-field distribution, the overlap integrals of
Eqs. (6a) and (6b) are now considered. These integrals
that hold for 	x 	 �w /2 are no longer valid for the perfectly
conducting case, but according to our ansatz, remains ap-
proximately valid in the close vicinity of the slit aperture.

By writing Eqs. (6a) and (6b) for x= ±w /2 and then by ex-
ploiting the mirror symmetry for Hy and Ez with respect
to the plane x=0, one obtains

2+�w/2� = 2−�− w/2� = −�
0

	

dzHy�x,w/2�ESP�z�,

�10�

where the integrand runs from 0 to +	 since the field in
the metal is equal to zero under the perfectly conducting
condition used in the model. To derive Eq. (10), we have
additionally assumed that +�−w /2�=−�w /2�=0; this is
reasonable according to Section 2. From Eqs. (2), (8), and
(10) and for NSP�	�	1/2 / �4��0n2

3�, one gets for the SSP gen-
eration strength  on both sides of the aperture

 = +�w/2� = −�− w/2�

= − i� 4

�

n2
2

n1

�	�	

�− � − n2
2�

w�1/2
I1

1 + �n2/n1�w�I0

, �11�

with

I1 =�
−	

	

du
sinc��w�u�exp�− i�w�u�


u�
u + �n2
2/�� + n2

2��
.

The corresponding efficiencies 		2 are given by

		2 = 	+�w/2�	2 = 	−�− w/2�	2

=
4w�n2

2

�n1
� �1/2

� + n2
2�� I1

1 + �n2/n1�w�I0
�2

. �12�

Equations (11) and (12) represent the semianalytical ex-
pressions for the complex SPP excitation coefficients and
the SPP excitation efficiencies when the slit aperture is il-
luminated by the fundamental slit mode. The integrals I1

and I0 are calculated numerically.

B. Plane-Wave Illumination
Let us now consider the scattering problem shown in Fig.
1(b). Inside the slit, the magnetic field H1 admits a modal
expansion of the form

H1�x,z� = t0�0�x,z�, �13�

where t0 is the unknown modal transmission coefficient.
In medium 2 below the slit, the magnetic field H2 can be
expanded into a plane-wave basis:

H2�x,z� = �NP�−1/2 exp�ikn2 sin���x − ikn2 cos���z�

+�
−	

	

duru exp�ikn2ux�exp�ikn2
uz�, �14�

where ru are unknown plane-wave reflection coefficients
and NP= �w cos���� / �2�0n2� is a normalization constant
such that the power flow of the incident plane wave on the
slit aperture is unitary. By matching the PC boundary
conditions at z=0, one obtains

t0 = �N0/NP�1/2
2 sinc��w� sin����

�n2/n1�w�I0 + 1
�15�

for the modal transmission and
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ru = ���� − t0�N0/NP�1/2w�

n2

n1

sinc��w�u�

�1 − u2�1/2
�16�

for the plane-wave expansion coefficients. In Eq. (16), �
represents the Dirac distribution. Using the same ap-
proach as that used in subsection 3.A, we obtain

� = �+�w/2� = �−�− w/2�

= − �N0/Np�1/2 sinc��w� sin����+�w/2�, �17�

where �+�w /2� and �−�−w /2� denote the SPP generation
coefficients for the plane-wave illumination case. The cor-
responding efficiencies are given by

	�	2 = 	�+�w/2�	2 = 	�−�− w/2�	2

=
4w�n2

3

� cos���n1
2� �1/2

� + n2
2�� I1 sinc��w� sin����

1 + �n2/n1�w�I0
�2

. �18�

C. Surface-Plasmon Polariton Generation at Slits and
Grooves in a Metal Film
The SPP generation coefficients  and � represent basic
scattering quantities that may be used to analyze more
sophisticated diffraction situations. For instance, let us
consider the scattering problem by a slit perforated in a
metal film deposited on a substrate with a refractive in-
dex n2 and illuminated by a plane wave incident from the
substrate; see Fig. 4 for a definition of the parameters.
Let us denote by a and b the unknown modal coefficients
of the fundamental mode in the slit traveling upward and
downward, respectively. If one neglects higher-order
modes in the slits,31 the master coupled-mode equations
for this system are easily derived using a Fabry–Perot
model. With obvious notation one gets

a = t21 + r12b exp�ikn0
effh�, �19a�

b = r13a exp�ikn0
effh�, �19b�

where n0
eff is the effective index of the fundamental mode

in the slit, and t21 ,r12, and r13 are slit-mode coupling co-
efficients related to the r0 and t0 coefficients defined in
Eqs. (9) and (15). From Subsections 3.A and 3.B, the SPP
generation coefficients s2 ,s2� ,s3 ,s3� are given by s2=s2�=�
+b exp�ikn0

effh� and s3=s3�=a exp�ikn0
effh�. From those

equations and after solving Eqs. (19a) and (19b) for a and

b, one obtains for the SPP generation coefficients at the
slit interfaces

s2 = s2� = � +
t21r13 exp�2ikn0

effh�

1 − r12r13 exp�2ikn0
effh�

, �20a�

s3 = s3� =
t21 exp�ikn0

effh�

1 − r12r13 exp�2ikn0
effh�

. �20b�

These equations show that the optimization of the SPP
generation efficiency s3=s3� on the upper side solely con-
sists in setting up a waveguide resonance in the slit by
fulfilling the Fabry–Perot condition, i.e., by choosing the
metallic film thickness so that 1−r12r13 exp�2ikn0

effh� is
minimal. On the illuminated side, the SPP generation ef-
ficiency s2=s2� takes a more complicated form, and its op-
timization additionally requires a phase matching be-
tween the two terms on the right side of Eq. (20a).

4. MODEL PREDICTIONS, VALIDATIONS,
AND LIMITATIONS

A. Model Predictions
The solid curves in Figs. 5 and 6 shows the SPP excitation
efficiencies predicted by the approximate model for the
two scattering geometries of Fig. 1 and for a broad range
of wavelengths from the visible to the thermal infrared.
The integrals I0 and I1 in Eqs. (12) and (18) are calculated
numerically.32 Table 1 provides numerical data of I0 and
I1 for several values of w� and for �=−26.27+1.85i (gold at
�=800 nm). Note that I0 depends on a single parameter
w�, whereas I1 depends on the metal permittivity and on
w�. All plots in Figs. 5 and 6 are relative to the total SPP
excitation efficiency eSP on both sides of the aperture, eSP

being equal to 	+�w /2�	2+ 	−�−w /2�	2 in Fig. 5 and to
	�+�w /2�	2+ 	�−�−w /2�	2 in Fig. 6. They are obtained for an

Fig. 4. SPP excitations at a slit perforated in a metal film
(thickness h) sandwiched between two uniform media of refrac-
tive indices n2 and n3 and illuminated by a plane wave with an
incidence angle �. Inside the slit the refractive index is denoted
by n1. The s2 ,s2� ,s3 ,s3� represent the SPP generation coefficients
at the top and bottom interfaces.

Fig. 5. Total SPP generation efficiencies eSP= 	+�x�	2+ 	−�x�	2 for
a slit illuminated by its fundamental guided mode as a function
of the slit width. Solid curves represent the model predictions.
The symbols represent the calculated data obtained with the rig-
orous formalism. (a) Influence of the metal (gold) permittivity,
n1=n2=1. (b) Influence of the substrate refractive index n2, n1

=1 and �=3 �m.
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incident light with a unit power per slit opening area. Fig-
ures 5(a) and 6(a) show the SPP excitation efficiencies for
illuminations by the slit mode and by the plane wave, re-
spectively. These efficiencies strongly depend on the slit
width and on the metal–dielectric properties. They are
maximum for an optimal slit width of w�0.23�, a value
nearly independent of the wavelength of interest. At vis-
ible wavelength, �=0.6 �m, the efficiency is fairly large
and reaches a value as high as �0.45 for the optimal slit
width; as much light is scattered into the SPPs as it is ra-
diated in the far field. This result is not specific to the gold
metal used in the example. Other noble metals used at
frequencies close to the plasma frequency exhibit similar
behavior, as shown by the �1/2 / ��+ �n2�2� dependence in
the expressions of Eqs. (12) and (18). For large wave-
lengths, the efficiency rapidly decreases; it is only 2.8%
for �=10 �m. From Eqs. (12) and (18), it is easily shown
that the efficiency scales as 	����	−1/2 since �n2�2� 	�	. Fig-
ure 5(b) shows the effect of the substrate refractive index
when the slit aperture is illuminated by the fundamental
slit mode. The predictions are obtained for �=3 �m and
n1=1. As n2 increases, narrower slits provide better SPP
excitations and the slit width w0=� /n2, which corre-
sponds to a null excitation shift toward smaller values of
w. This is a direct consequence of the w�=n2w /� depen-
dence of the I0 and I1 integrals in Eqs. (12) and (18). Ad-
ditionally we note that the peak value of the SPP excita-
tion increases with n2��n2 /n1�, and that the optimal slit

width slightly decreases. Figure 6(b) shows the influence
of the angle of incidence on the SPP excitation for �
=1.5 �m and w /�=0.3. A slight increase of the total exci-
tation eSP with � is predicted. Note that the model addi-
tionally predicts that 	�+�w /2�	2= 	�−�−w /2�	2 for any �
values, see Eq. (18). This questionable result will be
discussed below.

B. Model Validation
To validate the model predictions, we have provided ex-
tensive computational calculations for the SPP excitation,
strictly following the procedure described in Section 2.
The results of the theoretical formalism are shown by the
symbols in Figs. 5 and 6. Overall, the exact data quanti-
tatively agree with the model predictions and confirm the
general trends discussed previously, like the existence of
an optimal slit width, the influence of the angle of inci-
dence, and of the metal–dielectric properties. We first
note that the larger the wavelength, the better the agree-
ment, consistent with the PC metal approximation used
in the model. Some discrepancies between the model pre-
dictions and the calculated data are also observed. As
shown in Fig. 5(b), the null excitation predicted for w0

=� /n2 by the model is not observed for n2�1. Addition-
ally, the calculated data show a monotonous increase of
	�+�w /2�	2− 	�−�−w /2�	2 with �, see the circles in Fig. 6(b).

In Fig. 7 we provide a comparison between the model
predictions (solid curves) and data obtained with the rig-
orous formalism (squares) for SPP generation strengths
at a groove perforated in a metal substrate. This configu-
ration is interesting since groovelike scratches are often
used in practice to excite SPP waves for device character-
izations. Plots are shown as a function of the groove depth
h for �=0.8 �m and w /�=0.1 in Fig. 7(a) and for �
=1.5 �m and w /�=0.1 in Fig. 7(b). The model predictions
are obtained with Eq. (20a) for n1=n2=1 and n3=�1/2; the
effective index n0

eff is calculated using the Fourier modal
method described in Ref. 20. We further assume that the

Table 1. I1 and I0 for Gold at �=800 nm

„�=−26.27+1.85i…

w� 0.1 0.3 0.5 0.7

I0 3.09−4.09i 2.72−1.68i 2.13−0.63i 1.54−0.18i

I1 0.53−2.93i 1.75−1.80i 1.79−0.40i 1.01+0.35i

Fig. 6. SPP generation efficiencies for a slit illuminated by a
plane wave, (a) eSP= 	�+�w /2�	2+ 	�−�−w /2�	2 as a function of the
slit width for different wavelengths, �=0.6,1,3, and 10 �m, for
n1=n2=1 and �=0. (b) Influence of the incident angle for �
=1.5 �m; other parameters are n1=n2=1 and w /�=0.3. The
model does not predict any difference between 	�+�w /2�	2 and
	�−�−w /2�	2 for any �. In (a) and (b), the solid curves represent the
model predictions and the symbols represent the calculated data
obtained with the rigorous formalism.

Fig. 7. Total SPP generation efficiency at a groove perforated in
a gold substrate as a function of the groove depth h for normally
incident light ��=0�. Solid curves, model predictions obtained
with Eq. (20a) for n1=n2=1 and n3=�1/2. Squares, calculated data
using the rigorous formalism and the Fourier modal method. (a)
�=0.8 �m, w /�=0.1, and n0

eff=1.29+0.0098i. (b) �=1.5 �m, w /�

=0.1, and n0
eff=1.16+0.0084i.
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modal reflectivity r13 of the fundamental slit mode at the
metal–groove interface is equal to one. The model quanti-
tatively agrees with the calculated data and well predicts
the most interesting aspect, namely, the SPP generation
enhancement obtained for Fabry–Perot slit resonances.
At these resonances, the light generated into the two SPP
waves is two to three times larger than that which is di-
rectly incident onto the aperture area. We additionally
note that the excitation maxima are slightly overesti-
mated. This can be attributed to the fact that the model
overestimates the SPP generation efficiencies 	+�w /2�	2

and 	−�−w /2�	2 [see Fig. 5(a)] and to the unitary assump-
tion for r13. The resonance predicted by the model is also
shown to be shifted slightly toward large depth values.
This can be understood by considering that, within the
model, the phase of the r12 and r13 coefficients are only ap-
proximately predicted. For narrow grooves like those con-
sidered in Fig. 7, skin depth effects cannot be neglected,
and the phase delays for the modal reflectivity depart
from those predicted with a PC metal approximation.

So far, we have discussed only SPP generation efficien-
cies. To further validate the model, we now focus on the
phase factor arg�� and arg��� associated with the SPP
scattering processes as described by Eqs. (11) and (17).
Figure 8 shows a comparison between the model predic-
tions (solid curves) and the computational data obtained
with the rigorous formalism (plusses) for �=0.6, 0.8, and
3 �m. The model captures the general trend, i.e., the in-
crease of the phase factor with the slit width. As we pre-
viously noted for the SPP generation strengths, the model
is more accurate for  than for � and for large wave-
lengths.

C. Model Limitations
The inaccuracies of the model predictions are due to the
two approximations used to derive the near-field pattern
in the vicinity of the slit aperture: the perfectly conduct-
ing approximation and the one-mode model used to de-

scribe the field in the slit [see Eqs. (7) and (13)]. The per-
fectly conducting assumption contributes only weakly to
inaccuracies. Although they are all the more accurate as
the wavelength is large [see Figs. 5(a) and 6(a)], the
model predictions remain rather accurate even if the
metal permittivity is low, as is the case for gold at �
=0.6 �m. The more severe limitation results from the one-
mode approximation. This approximation does not hold
when several nonevanescent modes exist in the slit. The
cutoff of the second (antisymmetric) mode is w /�=0.5n1

and for the third (symmetric) mode is w /�=n1 under the
ideal metal approximation. Because of symmetry reasons,
the second mode is not excited when the slit aperture is
illuminated by the fundamental guided mode or by the
plane wave under normal incidence. This is the reason
why the model remains accurate even for large slit widths
up to w /�=1 in Figs. 5(a) and 6(a). For w /��1, a much
larger discrepancy is observed, especially for small wave-
lengths in the visible part of the spectrum. Another im-
portant consequence of the one-mode approximation is
the prediction of identical excitation efficiencies 	�+�w /2�	2

and 	�−�−w /2�	2 for a plane-wave illumination and for �
�0 [see Eq. (18)]. This is a direct consequence of the sym-
metry imposed by the one-mode approximation in the slit,
which reflects in the plane-wave expansion of the scat-
tered field [Eq. (14)] by matching the boundary condi-
tions. As shown in Fig. 6(b), oblique illumination indeed
results in a difference in the SPP excitation efficiencies on
the right and left sides of the slit aperture. Although we
have not performed a systematic rigorous study, we have
noted as a general trend that the difference increases as
the slit width increases. Let us note that although it can-
not predict any difference, the model accurately predicts
the total SPP excitation 	�+�w /2�	2+ 	�−�−w /2�	2 [see Fig.
6(b)]. Further improvements of the model may consist in
using surface impedance boundary conditions33 for en-
hancing the accuracy at visible wavelength or in using a
double-mode expansion in the slit. The latter leads again
to analytical expressions for the SPP excitation efficien-
cies at the expense of additional complexity.

5. CONCLUSION

We have studied the generation of SPP waves at a metal-
lic interface perforated by an isolated subwavelength slit.
We have derived semianalytical expressions for the SPP
scattering coefficients and efficiencies at the slit aperture.
The model, which provides a microscopic description for
SPP generation mechanisms at slit apertures, has been
applied to the analysis of a variety of slit and groove ge-
ometries that are of interest in practice. It provides a
comprehensive discussion of the influence of the main
scattering problem parameters, like the normalized slit
width, the angle of incidence, and the effect of the dielec-
tric properties of the metallic and dielectric materials. An
important outcome of the model is the prediction of a peak
SPP excitation efficiency for an optimal subwavelength
slit width of w�0.23�. This peak efficiency is fairly large
for metals with a low conductivity like gold in the visible
regime; in this case, the fraction of the incident radiation
that couples into the SPP reaches a value as high as the
total far-field radiated energy. This indicates that even

Fig. 8. Phase factors associated with the SPP scattering pro-
cesses. Solid curve, model predictions obtained with Eqs. (11) and
(17). Plusses, computational data obtained with the rigorous for-
malism. From top to bottom, �=0.6, 0.8, and 3 �m.
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simple metallic structures, like slits, may be used to effi-
ciently manipulate SPP visible waves at a nanoscale
level.

The model has been validated by comparisons with
computational data obtained with a theoretical formalism
relying on a rigorous solution of Maxwell’s equations. A
quantitative agreement has been obtained for the various
geometries analyzed in this work. The model limitations
or inaccuracies have been outlined and explained. We
have further evidenced that the phases of the SPP scat-
tering mechanisms at the slit aperture are correctly
handled within the approach.
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