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Abstract

Model selection is critical to least squares support vector machine (LSSVM). A major prob-
lem of existing model selection approaches of LSSVM is that the inverse of the kernel matrix
need to be calculated with O(n?®) complexity for each iteration, where n is the number of
training examples. It is prohibitive for the large scale application. In this paper, we pro-
pose an approximate approach to model selection of LSSVM. We use multilevel circulant
matrices to approximate the kernel matrix so that the fast Fourier transform (FFT) can be
applied to reduce the computational cost of matrix inverse. With such approximation, we
first design an efficient LSSVM algorithm with O(nlog(n)) complexity and theoretically
analyze the effect of kernel matrix approximation on the decision function of LSSVM. We
further show that the approximate optimal model produced with the multilevel circulant
matrix is consistent with the accurate one produced with the original kernel matrix. Under
the guarantee of consistency, we present an approximate model selection scheme, whose
complexity is significantly lower than the previous approaches. Experimental results on
benchmark datasets demonstrate the effectiveness of approximate model selection.
Keywords: Model Selection, Matrix Approximation, Multilevel Circulant Matrices, Least
Squares Support Vector Machine

1. Introduction

Support vector machine (SVM) (Vapnik, 1998) is a learning system for training linear learn-
ing machines in the kernel-induced feature spaces, while controlling the capacity to prevent
overfitting by generalization theory. It can be formulated as a quadratic programming prob-
lem with linear inequality constraints. The least squares support vector machine (LSSVM)
(Suykens and Vandewalle, 1999) is a least squares version of SVM, which considers equality
constraints instead of inequalities for classical SVM. As a result, the solution of LSSVM
follows directly from solving a system of linear equations, instead of quadratic programming.

Model selection is an important issue in LSSVM research. It involves the selection of
kernel function and associated kernel parameters and the selection of regularization param-
eter. In spite of regularization parameter, Micchelli and Pontil (2006) proposed a kernel
selection method to obtain an optimal kernel by minimizing a cost functional over a set
of kernels; Crammer et al. (2003) used the boosting paradigm to construct kernel function
from data. Typically, the form of kernel function will be determined as several types, such
as polynomial kernel and radial basis function (RBF) kernel. In this situation, the selec-
tion of kernel function amounts to tuning the kernel parameters. Model selection can be
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reduced to the selection of kernel parameters and regularization parameter which minimize
the expectation of test error (Chapelle and Vapnik, 2000). We usually refer to these param-
eters collectively as hyperparameters. Common model selection approaches mainly adopt a
nested two-layer inference (Guyon et al., 2010), where the inner layer trains the classifier
for fixed hyperparameters and the outer layer tunes the hyperparameters to minimize the
generalization error. The generalization error can be estimated either via testing on some
unused data (hold-out testing or cross validation) or via a theoretical bound (Vapnik and
Chapelle, 2000; Chapelle et al., 2002).

The k-fold cross validation gives an excellent estimate of the generalization error (Duan
et al., 2003) and the extreme form of cross validation, leave-one-out (LOO), provides an al-
most unbiased estimate of the generalization error (Luntz and Brailovsky, 1969). However,
the naive model selection strategy based on cross validation, which adopts a grid search
in the hyperparameters space, unavoidably brings high computational complexity, since it
would train LSSVM for every possible value of the hyperparameters vector. Minimizing the
estimate bounds of the generalization error is an alternative to model selection, which is
usually realized by the gradient descent techniques. The commonly used estimate bounds
include span bound (Vapnik and Chapelle, 2000) and radius margin bound (Chapelle et al.,
2002). Generally, these methods using the estimate bounds reduce the whole hyperparame-
ters space to a search trajectory in the direction of gradient descent, to accelerate the outer
layer of model selection, but multiple times of LSSVM training have to be implemented in
the inner layer to iteratively attain the minimal value of the estimates. Training LSSVM
is equivalent to computing the inverse of a full n x n matrix, so its complexity is O(n?),
where n is the number of training examples. Therefore, it is prohibitive for the large scale
problems to directly train LSSVM for every hyperparameters vector on the search trajec-
tory. Consequently, efficient model selection approaches via the acceleration of the inner
computation are imperative.

As pointed out in (Chapelle et al., 2002; Cawley and Talbot, 2010), a model selection
criterion is not required to be an unbiased estimate of the generalization error, instead
the primary requirement is merely for the minimum of the model selection criterion to
provide a reliable indication of the minimum of the generalization error in hyperparameters
space. Therefore, we argue that it is sufficient to calculate an approximate criterion that
can discriminate the optimal model from the candidates. Such considerations drive the
proposal of approximate model selection approach for LSSVM.

Since the high computational cost for calculating the inverse of a kernel matrix is a
major problem, we consider to approximate a kernel matrix by a “nice” matrix with a
significantly lower computational cost when calculating its inverse. The multilevel circulant
matrix is a good choice since its built-in periodicity allows the multi-dimensional fast Fourier
transform (FFT) to be utilized in calculating its inverse with complexity of O(nlog(n))
(Song and Xu, 2010b; Song, 2010). Taking advantage of computational virtue of such
approximation, we propose an efficient algorithm for solving LSSVM and derive an upper
error bound to measure the effect of such approximation on the decision function of LSSVM.
We further take a model selection criterion as an example to demonstrate the consistency
of approximate model selection. With the guarantee of consistency, we present an efficient
approximate model selection scheme. It conforms to the two-layer iterative procedure,
but the inner computation can be realized in O(nlog(n)) complexity instead of O(n?).
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By experiments on 10 benchmark datasets, we show that approximate model selection
can significantly improve the efficiency of model selection, and meanwhile guarantee low
generalization error.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of
LSSVM and a reformulation of it. In Section 3, we present an efficient algorithm for solving
LSSVM. In Section 4, we analyze the effect of kernel matrix approximation on the decision
function of LSSVM. In Section 5, we demonstrate the consistency of approximate model
selection. In Section 6, we propose an approximate model selection scheme for LSSVM. In
Section 7, we report experimental results. The last section gives the conclusion.

2. Least Squares Support Vector Machine

We use X to denote the input space and ) the output domain. Usually we will have X C R,
Y = {—1,1} for binary classification. The training set is denoted by

S=((@1,m),.-, (@) € (X x V).

We seek to construct a linear classifier, f(x) = w-¢(x)+b, in a feature space F, defined
by a feature mapping of the input space, ¢ : X — F. The parameters of the linear classifier,
(w,b), are given by the minimizer of a regularized least-squares training function

1 1<
L= 2HU’H2+w;[yi—w'¢($i)—b]2, (1)

where p > 0 is called regularization parameter. The basic training algorithm for LSSVM
(Suykens and Vandewalle, 1999; Van Gestel et al., 2004) views the regularized loss function
(1) as a constrained minimization problem

l
1 1
min w2+ 32,
2 2u ; ! (2)
st. g =y —w-o(x;) —b.

Further, we can obtain the dual form of Equation (2) as follows
l
> aid(m;) - dla) + b+ poy =i, =121 (3)
j=1

where Zi’:l a; = 0. Noting that ¢(x;) - ¢(x;) corresponds to the kernel function K (z;, z;),
we can write Equation (3) in a matrix form

o -1

where K| = [K(z;, x;)]! I; is the [ x [ identity matrix, 1 is a column vector of [ ones,

ij=1)
a = (a1, 00,...,00)" € Rl is a vector of Lagrange multipliers, and y € ' is the label

vector.
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If we let K,,; = K; + pl;, Equation (4) is equivalent to

K, 1| | ]
l’b7 —
o] [51- 0] ®
The matrix on the left-hand side is not positive definite, so Equation (5) cannot be directly
solved. However, we can write the first row of Equation (5) as

K, (a+ K, 1b) = y. (6)

Therefore, a« = K ;} (y — 1b) and replacing a in the second row of Equation (5) we can
obtain
'K, 1b=1"K |y (7)

The system of linear equations (5) can then be re-written as

-1
[K%,z TIgil } [a—kKu,llb} = [ Tng } , (8)
0 1 u,ll b 1 ulY
Equation (8) can be solved as follows: First solve
K,p=1 and K,v=y. (9)

Since K,,; = K; + ul; is positive definite, the inverse of the matrix K, ; exists.
The solution (e, b) of Equation (5) are then given by
1Tv
b= —— and a=v — pb. 10
1, p (10)
The decision function of LSSVM can be written as f(x) = Zle a; K (x;, @) + b.
If Equation (9) is solved, we can easily obtain the solution of LSSVM. However, the
complexity of calculating the inverse of the matrix K, ; is O({%). In the following, we will
demonstrate that multilevel circulant matrices can be used to speed up this process.

3. Approximating LSSVM using Multilevel Circulant Matrices

We first review the notion of multilevel matrices (Tyrtyshnikov, 1996). For m,n € N, let

N, = {0,1,...,n — 1} and R™*"™ be the set of m x n real-valued matrices. For a fixed
positive integer p and n = [ng,n1,...,np—1] € NP, we set
Il :==ngny...np_1, Np :=Npg X Npy X oo xX Npp ;.

A multilevel matrix is defined recursively. According to (Tyrtyshnikov, 1996), a matrix
Ay, is called a p-level matrix of level order m if it consists of ng x ng blocks and each block is a
(p—1)-level matrix of level order [n1,ns,...,np—1]. To point to the entries of the multilevel
matrix Ay, we use multi-indices. For any j := [js : s € Np|, 1 := [l5 : s € N,|] € Ny, we write

Ap i=laj1: 3,1 € Ny,

168



APPROXIMATE MODEL SELECTION FOR LARGE SCALE LSSVM

where (js,15),s € N, is the location at level s.

In the following, we restrict the kernel to be radial basis function (RBF) kernel. We
assume that there exists a real-valued function k € L'(R) on X such that K(t,s) = k(||t —
sl|2) for all t, s € X, where || -||2 denotes the Euclidean norm. We point out that k is always
an even function, since we have K (t,s) = K(s,t), s,t € X, from the definition of kernels.

We present the kernel matrix in multilevel notation. For a set D C X, we relabel it as
D := {x; : j € N} for some n € N’. The number of elements of D is II,. The kernel
matrix is rewritten as

K, = [k(||xj — xi]]2) : 3,1 € Ny].

We now describe the definition of multilevel circulant matrices (Davis, 1979). We begin
with the definition of circulant matrices. A circulant matrix is an n x n matrix C,, := [¢;; :
J,1 € Ny, where ¢j; = ¢—; for any j,l € N, and ¢; = ¢j_,, for 0 < j < n —1. More
specifically, it takes the form

€o C1 Cn—1
Ch—1 Co Cn—2
C1 C2 o

Clear, a circulant matrix is completely determined by its first row, so we write
C, =circlc; : j € NpJ. (11)

A block circulant matrix of type (m,n) is an mn X mn matrix of the form

Ay A ... A,
Apo1 Ay ... Apmos
A, Ay ... A

where each block A;, j € N, is an n x n matrix. A multilevel circulant matrix is defined
recursively (Davis, 1979). A multilevel circulant matrix of level 1 is an ordinary circulant
matrix. For any s € N, an (s + 1)-level circulant matrix is a block circulant matrix whose
blocks are s-level circulant matrices. More specifically, for n € NP, A, := [aj; € Ny] is
called a p-level circulant matrix if, for any 7,1 € N,,,

gl = Qlg—jo(mod ng),...slp—1—Jjp—1(mod ny_1)-

Note that a p-level circulant matrix is completely determined by its first row ag, where
0:=(0,...,0)" € RP. We will write

Ay, i=circpfap 1 1 € Ny,

where a; := agy, for I € Ny,.
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We now construct a multilevel circulant matrix U,, which approximates the given kernel
matrix K, (Song and Xu, 2010b; Song, 2010). For an n € NP, we choose a sequence of
positive numbers by, := [hnj : j € N,] € RP, and define

tj = k([lishns: s € Nplll2), 3 € Nn. (12)

For any j € Ny, and s € N, we introduce the sets D; , := {0} if j, = 0, and D; , :=
{Jssns — js} if 1 < js <ng—1,and let Dj :== Djox Djq X ---x Djp, 1. We then define

Uj = Z ty, .7 € Nnv (13)
lEDj
and
U, = circyfuj : j € Ny (14)

For LSSVM, we need to solve the inverse of K, + ul,. To reduce the computational
cost, we intend to use the inverse of U,, + pl,, as an approximation of the inverse of
K, + pul,. We know that K,, + ul,, is invertible, but the invertibility of U,, + puI,, is not
so obvious. Actually, Song and Xu (2010b) have proved that when n is large enough, which
means all of its components are large enough, U,, + ul, is positive definite and invertible.

We further introduce two lemmas about the eigenvalues and eigenvectors of a multilevel
circulant matrix (Tyrtyshnikov, 1996; Davis, 1979).

Lemma 1 The eigenvalues of a p-level circulant matriz Ay, := circplag : U € Ny ] are given
by

Z 2mi Isls ,
)\J = age ﬂ—ZZSENP ns J € N’nv
leN,

where 1 := v/—1.

Lemma 2 Suppose that Ay, is a multilevel matriz of order n and a := [aj : j € Ny is the
first column of An. Then A, is a p-level circulant matriz of level order n if and only if

1
A, = —d*diag(Pa)P,
Uy,

where ® 1= Fp, @ Fp, @ --- @ Fy,,_,, ® denotes the Kronecker product of matrices and

F, = oI :s,tENm], for m € N.

From above two lemmas, we can find that the eigenvalues and eigenvectors of multilevel
circulant matrices can be expressed in a multi-dimensional discrete Fourier transform (DFT)
form. Therefore, their calculation can be realized efficiently by using the multi-dimensional
fast Fourier transform (FFT). In the following, we will show how this computational ad-
vantage can be applied to obtain an efficient algorithm for solving LSSVM.

From Lemma 2, the multilevel circulant matrix U,, can be represented as

1
U, = —d*diag(v)?, (15)
n
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where

v=®uj : j € Npl. (16)
It follows that

1
n In -t == q)* i
Un+ L) = dlag<%

n

1
1J € Nn> o. (17)
W

We next present an algorithm of solving LSSVM.

Algorithm 1: Approximating LSSVM using Multilevel Circulant Matrices

Input: y:={y; : j € N}, [uj : 7 €N, k, g

Output: (o, d);

1: Calculate v according to (16) by using multi-dimensional FFT;

2: Calculate n := ®[1, y] using multi-dimensional FFT, where 1 is a vector of all ones;

1 )
:JeNn)n;
s

3: Calculate 7 := diag

b
4: Calculate [p, V] = H—CP*T according to (17) using multi-dimensional FFT;

n
T

5: Calculate b = 171/

T =y

return (o, b);

We estimate the computational complexity of Algorithm 1 in next theorem.
Theorem 3 The computational complexity of Algorithm 1 is O(Ily, log(I1y,)).

Proof The computational complexity of the multidimensional FFT is O(llog(l)), where [
is the total number of data points. It follows that the computational complexity of step 1, 2
and 4 in Algorithm 1 is O(1I, log(Il,,)), since each of them is the multidimensional FFT of
I1,, data points. The complexity of step 3 is O(Il,), since it is the product of a vector with
a diagonal matrix. In step 5, the multiplication and subtraction between two vectors need
to be done, so its complexity is O(Il,,). Therefore, the total complexity is O (11, log(Il,)). W

4. Error Analysis

In this section, we analyze the effect of kernel matrix approximation on the decision function
generated by LSSVM.

We assume that kernel approximation is only used in training. At testing time the true
kernel function is used (Cortes et al., 2010). The decision function f derived with the exact
kernel matrix is defined by

o) = 37 oskima) 40 [‘;‘r ).

where k; = [K(x,x;) : j € N,]. For simplicity, we assume the offset b to be a constant ¢.
We define k > 0 such that K(xz,z) < k.
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To analyze the effect of approximation, we need to introduce a class of matrices whose
entries have an exponential decay property (Song and Xu, 2010b).

We first define “distances” of an entry in a multilevel matrix to its diagonal, to its upper
right corner and to its lower left corner at each level. For ¢t € No, m € N, 5,1 € N,,,, we set

dm(taja l) = t|] - l| + (1 _t)(m_ |] - l| - 1)7
and for t e Nb, m € NP, 5,1 € Ny, let
dn(t,7,1) == [dn, (ts, s, ls) : s € Np].

We remark that, for any s € Ny, dy, (1, 7s,ls) is the distance of the entry at the position
(Js,ls) to the diagonal at level s and d,, (0, js,ls) is the distance to the upper right and
lower left corners at level s.

We now give the definition of the class of matrices whose entries have an exponential
decay as their distances defined above increase. For any n € NP, 3,1 € N,, and r > 0, let

Erpn(d,l) = e~ rlldn(t.3.0ll2
teZNg (18)
In what follows, we write A := {A, : n € NP}.

Definition 4 A sequence of positive definite matrices A belongs to €, for a positive constant
r if it satisfies the following conditions:

(i) there exists a positive constant k such that || A, |2 < & for any n € NP;

(ii) there exists a positive constant ¢ such that for any n € NP and 3,1 € Ny,
|aj,l| < CEr,p,n(ja l)

Since solving LSSVM is equivalent to solving the linear systems, we further introduce a
weight function of the location of an entry in a multilevel vector, which is used to analyze
the approximation behavior in solving the linear systems.

For an n € NP, 3 € N,,, let

We, n(J) = e”’"(j), r >0, (19)

where vn(5) := || % —sz.
Furthermore, we define the associated weighted norm of the multilevel matrix. For a
multilevel vector y,,,n € NP, we let

[Ynllwe, = sup We, n(3) [(yn)sl, >0 (20)
JENR

The “induced norm” of multilevel matrix A,,,n € NP is defined by

[Anllwe, = sup{llAnynllco : lynllwe, =1}, 7> 0.

Our analysis of the effect of kernel matrix approximation on the decision function of
LSSVM is based on the convergence analysis of the approximation of kernel matrices by
multilevel circulant matrices. The following theorem demonstrates the convergency of such
approximation (Song and Xu, 2010b). We let K, := Ky + plp, Upym := Uy + plp.
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Theorem 5 If the following assumptions
(H1) there exist positive constants c; and co such that |k(s)| < cie™2l*l s € R;

(H2) there exist constants hg > 0 and co € R such that

llz; — xill2 > hollg — U2 +co, meNP, j, 1€ Ng;

(H3) there exists a positive constant h such that hy j > h, for allmn € NP and j € N;
(HY) there exist positive constants c3 and B such that |k(s) — k(t)| < c3|s —t|%,s,t € R

hold, then for each r > 0 there exists a positive constant ro such that, for any 0 <1’ < 2
and all m € NP we have

1K m = Upnlwe,, <c (HXn = Myl + 1) o Tmin

for some positive constant c, where Ny = min{n, : s € N, }, Xy, 1= [[|zj—xi]]2 : 4,1 € Ny,
My = [H[(]s - ls)hn,s 18 € NP]”Q R AS Nn]: fOT any n € NP,

RBF kernels which have the form k(z) = e_WQ, x € R, for v > 0 satisfy assumptions (H1)
and (H4).
We know that the key of solving LSSVM is to solve

K, np=1 and K, ,v=uy.

If we use the multilevel circulant matrix U,, to replace K, the solution could be different.
Let p’ denote the solution obtained using the approximate matrix U,,. We can write

p—p =K, 1-U,,1= (K, ;UL (21)

Thus, using the Theorem 5, ||p’ — p|| can be bounded as follows:
10 = pllwe,, < IK;h = Uz lwe,, I1lwe,,
<c <||Xn - MnHﬁ,& + 1) e—’l"nminH]_HWgTo'

From Equation (20) and (19),

H1HW5T0 = sup We, n(J) = sup erovn(d) — e%roQ’

JEN, JENR

NI

where Q@ = (3 +nf+---+ ”12)—1) . Therefore,
’ o1
16/ = pliwe, < ¢ (I1Xn = Mallfy, +1) e mneiro? )
" 23

1

= ¢ (X = Muly, + 1) ezt rmom.

Replacing 1 with y, we can obtain the similar bound for ||[v/ — v,

1

HI/’ _ 1/||W5T0 <c (”Xn — ManVEr + 1) ez'roQ—r/nmin_ (24)
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As the assumptions, no approximation affects k, and the offset b is a constants ¢, so
the approximate decision function f’ is given by f'(x) = [@'; ¢]T[ks; 1]. Therefore,

a1t o] [k
w-s@=([3] L) ¥
f'@) - fe) ( =)
_|d -« T k..
N 0 1
= ( — a)Tk,.
It is easy to see that the norm | - |ly, satisfies the triangle inequality. We can obtain

1F(2) = f@)lwe,, <l = allwe, [Kkellw,, - (25)

For RBF kernel, K(z,z) < x =1, so |[ks|y, < 03709,
0
From Equation (10), we know that & = v — pb = v — pyp, so

o’ = allwe, < IV —viwe, +elle—pllwe,
(1 + ) (HXn — My, + 1) JEn
Therefore, we have

1 / o1
Hf/@:) — f(a:)HW‘gT0 <c(l+ ) (HXn — Mn”ﬁ/gr + 1) 03700 Tunin 4 3700

) (26)
= o1+ ) (I1Xn = M5y, +1) 0@ o,

Equation (26) measures the effect of kernel matrix approximation on the decision func-
tion generated by LSSVM. It enables us to bound the relative performance of LSSVM when
the multilevel circulant matrix is used to approximate the kernel matrix.

5. Consistency of Approximate Model Selection

In this section, we take a model selection approach proposed by Song and Xu (2010a) as
an example to demonstrate the consistency of approximate model selection when multilevel
circulant matrices are used.

LSSVM is a regularized kernel-based learning algorithm, so we could define a cost func-
tional as

QUEK) = —— | S (Fa3) — 1) + 1lF Panc |

11
™ |jeNn

where H is the reproducing kernel Hilbert space (RKHS) with inner product (-, )y -
For a given kernel K, the target function fx is chosen to be the minimizer of the above
functional in Hg. That is,

fic = argmin Q(f, K).
fEHK
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The observed output ¢ := [j; : § € Ny] is corrupted by some random noises, that is,
Ui =y + &, J €Ny,

where y := [y; : j € N, ] is the unknown true output and §; is a random variable with mean
0 and variance o2. Let

RO, §) o= min — | S (f(5) — 50 + ilf, Do | - (27)

eHp 11
Jetr Ln jENR

Since £ is a random variable, so are 7; and R(K,¥y). A cost functional R(K) is defined
as the expectation of R(K,y), namely,

R(K) := E[R(K,9)]. (28)
R(K) can be divided into two parts as follows (Song and Xu, 2010a):
R(K) = M(Kn) +V(Ky)

]EN

(29)

)\Jru

where \j,j € Ny, are the eigenvalues of K.
Therefore, for a prescribed set of kernel functions K, we can take R(K) as a model
selection criterion to select the optimal kernel function K* by minimizing it, i.e.

K* = argmin R(K).
Kek

For equation (29), computing M (K ) requires finding the inverse of the full matrix
K,, + pI,, and computing V(K ,) requires calculating all eigenvalues of K,. Therefore,
computing R(K) is computationally expensive. We could also use a circulant matrix U,
to replace the kernel matrix K, to reduce the computational cost. However, we need
a theoretical guarantee to show the rationality of such approximation. To this end, we
introduce the following theorem (Song, 2010).

Theorem 6 If the assumptions (H1), (H2), (H3) in Theorem 5 and
(H5) there exist positive constants c¢1 and cy such that for any n € NP, j 1 € N,,,

|ng —ayl|s — ||[(Gs — ls)hn,s ‘s€e Np]||2| < Z (e—cz5ns(js) +e—626ns(ls)> ,
seNy

where 6,(j) = 5 — |5 — Jl,
hold, then there exists a positive constant ¢ such that for any n € NP,
V(Un) = V(Kn)| < C(nmin)_l-
If in addition, there exist positive constants c3 and r1 such that for anyn € NP and 3 € N,
ly;| < cze ),
then there exist positive constants ¢ and r such that for any n € NP

IM(U,) — M(Kp)| < clly"/?emmin,
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We denote R(K) = M(Uy) + V(Uy). By Theorem 6 and the triangle inequality, we
could directly derive the following theorem.

Theorem 7 If the assumptions (H1), (H2), (H3), (H5) hold, and there exist positive con-
stants ¢ and r such that for any n € NP and j € Ny, |y;| < ce () | then

lim |R(K)— R(K)| =0,

n—oo

where n — oo means all of its components goes to infinity.

Theorem 7 shows that, for the regularized kernel-based learning algorithm (such as
LSSVM), if we use the approximate model selection criterion R(K) produced with multilevel
circulant matrices, we could also obtain the optimal kernel as the accurate model selection
criterion R(K') does, which shows the consistency of approximate model selection.

6. Approximate Model Selection for LSSVM

In previous section, we introduce a model selection approach, which focuses on the kernel
selection. The selection of regularization parameter p has not been discussed. Actually,
there are many model selection approaches, which could simultaneously select the kernel and
regularization parameter, such as the cross validation, radius margin bound (Chapelle et al.,
2002), PRESS criterion (Cawley and Talbot, 2004) and so on. However, when optimizing
model selection criteria, all these approaches need to train LSSVM in the inner layer for
every iteration.

In this section, we discuss the problem of approximate model selection. We argue that
for model selection purpose, it is sufficient to calculate an approximate criterion that can
discriminate the optimal models from candidates. This argument has been supported by
Theorem 7. In the following, we present an approximate model selection scheme, as shown
in Algorithm 2. We use the RBF kernel K (zj,@;) = exp (—7||x; — #i|?), 4,1 € Ny, to
describe the scheme.

Algorithm 2: Approximate Model Selection Scheme for LSSVM

Input: D:={x; : j e N,},y:={y; : 5 € No};
Output: (v, 1),
Initialize: (v, u) = (72, u°);
repeat
1: Calculate [u; : § € N,] according to (12) and (13);
2: Calculate o and b for LSSVM with fixed (7, 1) using Algorithm 1;
3: Calculate model selection criterion 7" using a and b;
4: Update (v, ) to minimize T’
until the criterion T' is minimized ;

return (v, u)opt;

Let .S denote the iteration steps of optimizing model selection criteria. The complexity of
solving LSSVM by calculating the inverse of the kernel matrix is O(II3,). For radius margin
bound or span bound (Chapelle et al., 2002), a standard LSSVM needs to be solved in
the inner layer for each iteration, so the total complexity of these two methods is O(STLS,).
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For PRESS criterion (Cawley and Talbot, 2004), the inverse of kernel matrix still need
to be calculated for each iteration, so its complexity is O(SII3). From Theorem 3, we
know that using Algorithm 1, we could solve LSSVM in O(II,, log(Il,)) complexity. The
complexity of calculating [uj : j € Ny] is O(p2PIl,), where p is the number of levels
of Uy,. p is a small constant and usually set to be 2 or 3. Therefore, if we use the
above model selection criteria in the outer layer, the complexity of approximate model
selection is O (STl (p2P + log(Il,,))). For t-fold cross validation, let S, and S,, denote the
grid steps of v and p. If LSSVM is directly solved, the complexity of ¢-fold cross validation
is O(tS,S,113). However, the complexity of approximate model selection using ¢-fold cross
validation as outer layer criterion will be O(tS, 11, (p2? + 5, log(Il,,))), since the calculation
of [uj : 3 € Ny] only need the kernel parameter .

7. Experiments

In this section, we present experiments on several benchmark datasets to demonstrate the
effectiveness of approximate model selection.

7.1. Experimental Scheme

The benchmark datasets used in our experiments are introduced in Rétsch et al. (2001)
and widely used for the model selection purpose (Chapelle et al., 2002; Chen et al., 2009),
as shown in Table 1. For each dataset, there are 100 random training and test pre-defined
partitions! (except 20 for the Image dataset). The use of multiple benchmarks means that
the evaluation is more robust as the selection of data sets that provide a good match to
the inductive bias of a particular classifier becomes less likely. Likewise, the use of multiple
partitions provides robustness against sensitivity to the sampling of data to form training
and test sets.

Table 1: Datasets used in experiments.

Dataset Features Training Test Replications
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Heart 13 170 100 100
Breast 9 200 77 100
Banana 2 400 4900 100
Twonorm 20 400 7000 100
Diabetes 8 468 300 100
Flare solar 9 666 400 100
German 20 700 300 100
Image 18 1300 1010 20

In Rétsch et al. (2001), model selection is performed on the first five training sets of each
dataset. The median values of the hyperparameters over these five sets are then determined
and subsequently used to evaluate the error rates throughout all 100 partitions. However, for
this experimental scheme, some of the test data is no longer statistically “pure” since it has

1. http://www.fml.tuebingen.mpg.de/Members /raetsch/benchmark
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been used during model selection. Furthermore, the use of median of the hyperparameters
would introduce an optimistic bias (Cawley and Talbot, 2010). In our experiments, we
perform model selection on the training set of each partition, then train the classifier with
the obtained optimal hyperparameters on the same training set, and finally evaluate the
classifier on the corresponding test set. Therefore, we can obtain 100 test error rates for each
dataset (except 20 for the Image dataset). The statistical analysis of these test error rates is
conducted to evaluate the performance of the model selection approach. This experimental
scheme is rigorous and can avoid the major flaws of the previous one (Cawley and Talbot,
2010). All experiments are performed on a Core2 Quad PC, with 2.33GHz CPU and 4GB
memory.

7.2. Effectiveness

Following the experimental setup in Section 7.1, we perform model selection respectively
using 5-fold cross validation (5-fold CV) and approximate 5-fold CV, that is, approximate
model selection by minimizing 5-fold CV error (as shown in Algorithm 2). The CV is
performed on a 13 x 11 grid of (v, 1) respectively varying in [271%,2°] and [2715,25] both
with step 22. The number of levels of multilevel circulant matrices approximation is 2.

We compare effectiveness of two model selection approaches. Effectiveness includes
efficiency and generalization. Efficiency is measured by average computation time for model
selection. Generalization is measured by the mean test error rate (TER) of the classifiers
trained with the optimal hyperparameters produced by different model selection approaches.

Results are shown in Table 2. We use the z statistic of TER (Cawley and Talbot, 2007)
to estimate the statistical significance of differences in performance. Let Z and g represent
the means of TER of two approaches, and e, and e, the corresponding standard errors,

then the z statistic is computed as z = (Z — 7)/4/e% +e2 and z = 1.64 corresponds to a

95% significance level. From Table 2, approximate 5-fold CV is significantly outperformed
by 5-fold CV for none of 10 datasets. Besides, according to the Wilcoxon signed rank test
(Demsar, 2006), neither of 5-fold CV and approximate 5-fold CV is statistically superior at
the 95% level of significance.

However, Table 2 also shows that approximate 5-fold CV is more efficient than 5-fold
CV on all datasets. It is worth noting that the larger the training set size is, the efficiency
gain is more obvious, which is in accord with the results of complexity analysis.

8. Conclusion

In this paper, multilevel circulant matrices were first introduced into the model selection
problem. A brand new approximate model selection approach of LSSVM was proposed,
which fully exploits the theoretical and computational virtue of multilevel circulant matrices.
We designed an efficient algorithm for solving LSSVM and bounded the effect of kernel
matrix approximation on the decision function of LSSVM. We demonstrated the consistency
of approximate model selection. With consistency as a theoretical support, we presented an
approximate model selection scheme and analyzed its complexity as compared with other
classic model selection approaches. This complexity shows the promise of the application of
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Table 2: Comparison of computation time and test error rate (TER) of 5-fold cross valida-
tion (5-fold CV) and approximate 5-fold CV

Dataset 5-fold CV Approximate 5-fold CV
Time(s) TER(%) Time(s) TER(%)
Thyroid 0.938 5.000£2.580 0.774 4.773+2.291
Titanic 0.854 22.534+0.688 0.850 22.897+1.427
Heart 0.986 16.200+3.259 0.889 18.920+4.576
Breast 1.475 26.8314+4.578 1.010 27.83145.569
Banana 6.287 10.78140.721 1.858 11.283+0.992
Twonorm 6.362 2.56040.310 1.937 2.791+0.566
Diabetes 10.042 23.493+1.663 2.104 26.386+4.501
Flare solar 18.172 34.172+1.863 4.200 36.440+£2.752
German 23.058 23.79342.283 4.239 25.08042.375
Image 134.680 3.014+0.877 11.875 4.3914+0.631

approximate model selection for large scale problems. We finally verified the effectiveness
of our approach on several benchmark datasets.

The application of our theoretical results and approach to real large problems will be
one of major concerns. Besides, a new efficient model selection criterion directly dependent
on kernel matrix approximation will be proposed in near future.
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