
Approximate Models for General Cache Networks
Elisha J. Rosensweig

Department of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003–9264
Email: elisha@cs.umass.edu

Jim Kurose
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003–9264

Email: kurose@cs.umass.edu

Don Towsley
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003–9264

Email: towsley@cs.umass.edu

Abstract—Many systems employ caches to improve perfor-
mance. While isolated caches have been studied in-depth, multi-
cache systems are not well understood, especially in networks
with arbitrary topologies. In order to gain insight into and man-
age these systems, a low-complexity algorithm for approximating
their behavior is required. We propose a new algorithm, termed
a-NET, that approximates the behavior of multi-cache networks
by leveraging existing approximation algorithms for isolated LRU
caches. We demonstrate the utility of a-NET using both per-cache
and network-wide performance measures. We also perform factor
analysis of the approximation error to identify system parameters
that determine the precision of a-NET.

I. INTRODUCTION

Many systems employ caching as a means to reduce the load
on access links and shorten access time to selected content.
While the basic caching unit is a single cache, equipped
with management policies, some systems make use of several
caches linked together, allowing each cache to also forward
requests to its neighbors when needed. Common examples
of such systems are hierarchical web and file system caches.
Recently [1] [2] [3], there have been proposals for multi-cache
designs over networks of Internet-like scale and structure.

Determining the performance of a specific multi-cache sys-
tem is extremely difficult. Even for the single, isolated cache
using the popular LRU replacement policy, the complexity
of exact models of cache contents and performance grow
exponentially as a function of cache size and the number
of files in the system [4], making them ineffective as exact
modeling tools. For this reason, a more useful approach is
to approximate the behavior of the caching system, allowing
some measure of inaccuracy in return for simpler modeling
techniques. This has been done for isolated caches and for
some cache networks, namely cache hierarchies [5].

The main drawback of existing models for networked caches
is their limited scope. They address hierarchical topologies
(i.e., trees), in which the source of content is connected to
a node at the top of the hierarchy (i.e., the root of the
tree), and rely heavily on this structure when constructing
the approximation. Furthermore, due to the complexity of
these systems, the models are developed for small topologies
(e.g., 2-level trees), and do not easily scale up for use in

This work was supported in part by the National Science Foundation under
CNS-0626874 and CNS-0519922. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect those of the National Science Foundation.

larger topologies. These limitations make existing solutions
inapplicable when dealing with arbitrary topologies or large-
scale cache networks. Instead, what is needed is an approach
that can be applied to any topology.

In this paper we present a-NET , an algorithm for approxi-
mating the rate of incoming and miss streams for each file at
every node in a network using LRU caches. We refer to the
output of a-NET as a multi-cache approximation, or MCA
for short. The approach taken by a-NET is to decompose the
problem and compute a single-cache approximation (SCA) for
each individual cache in the network, where the request misses
for each file at each cache are forwarded towards a content
source. The incoming request stream at each cache is thus
reevaluated as a combination of both exogenous requests as
well as portions of the miss stream of each cache’s neighbors.
a-NET is an iterative process, updating the incoming request
stream at each cache and recomputing its miss stream (which
then becomes part of the input stream to neighboring caches)
using an SCA generating algorithm, until the entire network
converges to a fixed point. Unlike existing models, that can
generate MCAs for specific topologies, a-NET can compute
an MCA for any topology, regardless of structure or scale, as
long as the routing tables remain constant.

The contributions of this paper are:
• We develop a-NET , a novel MCA generating algorithm

for general-topology cache networks, that utilizes the
SCA algorithm described in [4] for approximating LRU
caches.

• We demonstrate the behavior of a-NET for multiple
topologies, and identify key parameters that affect its per-
formance. Specifically, we show that dependencies within
the reference stream are the main cause of inaccuracy for
a-NET , and that an increase in network connectivity can
greatly reduce this problem.

• We construct a Markov model that expresses the inter-
request distances in a cache miss stream for a range of
arrival distributions. Since the miss stream of one cache
becomes part of the incoming stream of its neighbors,
we use this model to demonstrate the effects of non-IRM
miss streams on the hit-ratio at neighboring caches.

• We evaluate the accuracy of a-NET , in terms of both
per-cache and system-wide metrics. Individual caches are
evaluated using the miss probability of each cache, while
the performance of the entire system is measured in terms

of the average number of hops a request traverses till
content is located.

The structure of this paper is as follows. In Section II we
present a-NET , and motivate our topics of focus in this paper
with an example of its performance. In Section III we develop
a general approach for factor analysis of the prediction errors
of a-NET . We apply this approach to tree topologies, and show
how this analysis can assist in determining how a-NET will
perform in specific settings. Next (Section IV), we analyze
one of the most likely causes for approximation error in a-
NET , namely the IRM-violation in the cache miss stream,
using a Markov chain model to explain certain properties
of the prediction error in a-NET . Section V presents the
performance of a-NET over a wide range of topologies, for
both cache-specific performance metrics as well as network-
wide metrics. Section VI presents a survey of related work on
cache approximations and cache networks, and we conclude
with a summary of our findings, and future work, in Section
VII.

II. APPROXIMATING CACHE NETWORKS USING a-LRU

A. Model Description and Problem Statement

We begin by describing the system of interest in this paper,
namely cache networks. Let G = (V,E) be a network of
caches, V = {v1, ...vn}, E ⊆ V × V . The cache size at node
v ∈ V is denoted |v|. Additionally, let F = {f1, ..., fN} be
the set of files in the system. Each file is stored permanently
at one or more servers S = {s1, ..., sm} that are attached to
the network, each to one or more v ∈ V . For all s ∈ S define
files(s) ⊆ {1, ..., N} to be the file indices stored at the server,
s.t.

∣∣∪
s∈S files(s)

∣∣ = N . Also, for all s ∈ S and v ∈ V let
χ(s, v) = 1 iff source s is attached directly to v, and otherwise
χ(s, v) = 0. For simplicity of presentation, we assume for the
rest of the paper that each file source is attached only to a
single cache in the network, denoted vs.

In this paper we address networks with routing tables that do
not change over time. For presentation purposes, we assume
shortest path routing is used. Let a path P be an ordered
set of nodes P = (vP1 , ..., vPj) such that for all 1 ≤ i < j,
(vPi , vPi+1) ∈ E. Given a node v and a file fi s.t. i ∈ files(s),
let P v

i = (vP1 = v, ..., vPj = vs) be the shortest path from
v to the source of fi, vs, where distance is measured in the
number of hops. In case of a tie, one path is selected at random
and is maintained hereafter.

At each node in this system, a Poisson stream of file access
requests arrives exogenously. A request for fi is denoted reqi.
For all 1 ≤ i ≤ N, v ∈ V, λi,v is the rate of exogenous
requests for file fi at node v. When a request for file fi arrives
at a cache v, it generates a hit if the file is located at the
cache and a miss if not. In the event of a miss, the request is
forwarded to the next-hop cache along P v

i , or to s if χ(s, v) =
1 ∧ i ∈ files(s). In the event of a hit, the file is forwarded
along the reverse path taken by the request, and cached at each
node along the way. If the cache is full, one of the files in the
cache is evicted to make room for the new file. Following

common practice (e.g., [4], [5], [6]), we assume that all files
have the same size, and so the cache size |v| can be expressed
in terms of the number of files it can hold.

For a given path P v
i , let P v

i [j] be the j-th node in the path,
s.t. P v

i [1] = v and P v
i [2] is the next hop from the originating

node v. Given two nodes v, v′ ∈ V , define

R(v, v′) = {i : v′ = P v
i [2]}.

This is the set of all request ids i for which v′ is on the next
hop from v along the shortest path to source s s.t. i ∈ files(s).
Let ri,v be the combined incoming rate of requests for fi at
node v, and let mi,v be the miss rate of fi at node v. Then
the rate of requests for fi at node v can be expressed as

ri,v = λi,v +
∑

v′:i∈R(v′,v)

mi,v′ (1)

Note that while λi,v is a Poisson stream of exogenous requests,
the miss stream of a cache is not, and so when we refer to
ri,v as the incoming rate at the node we are referring to the
average rate of requests.

The miss rates at each node depend on several factors, in
addition to the cache management policies. One of these is the
time it takes to load content to the cache after a cache miss.
In this paper, we follow common practice [4][5], and assume
that the file download time after a cache miss is significantly
smaller than the inter-request. Thus, once a cache miss occurs,
the file is assumed to be instantaneously downloaded into the
cache.

Our goal in this paper is to develop an algorithm that can
predict, with high accuracy, the incoming and miss streams at
each of the caches, given the exogenous incoming rates. With
such an algorithm, cache network developers can evaluate
the performance of the cache network itself efficiently. To
determine the incoming and miss streams, we must solve the
system of equations (1), for all i and v, and this in turn requires
determining the miss rate for each file at each node. To this
end we develop a-NET , our MCA generating algorithm.

B. From a-LRU to a-NET
In [4], Dan and Towsley developed an SCA algorithm for

LRU and FIFO caches. As explained shortly, a-NET uses the
LRU SCA algorithm, denoted a-LRU, to compute an MCA
for the entire network. We begin, therefore, with a short
description of a-LRU.

Let p⃗v = (p1,v, . . . , pN,v) be the steady-state incoming
request distribution for files in F at a certain cache v. a-LRU
can be thought of as a function contents(p⃗v, |v|) = q⃗v , where
q⃗v = (q1,v, . . . , qN,v) is the vector consisting of the probability
for each file to be present in the cache at a random point in
time.

a-LRU was developed for request streams that conform
to the Independent Reference Model, or IRM for short,
which means that the probability that the j-th request will
be reqi, given past requests, is still pi,v . For a request stream
conforming to IRM, we prove in [7] that

mi,v = ri,v · (1− qi,v). (2)

Given our discussion thus far, we can now define the MCA
generating algorithm, a-NET , an algorithm for solving the
following set of equations, for each v ∈ V and i s.t. fi ∈ F :

ri,v = λi,v +
∑

v′:i∈R(v′,v)

mi,v′ (3)

pi,v =
ri,v∑N
j=1 rj,v

(4)

q⃗v = contents(p⃗v, |v|) (5)
mi,v = ri,v · (1− qi,v) (6)

Eq. (3) is identical to Eq. (1), which combines the exoge-
nous request stream with the miss streams of the neighbors of
v to get the incoming request stream at each cache. Eq. (4)
defines pi,v as the relative portion of requests for fi at v. Eq.
(5) repeats the definition of the contents(·, ·) function, and
Eq. (6) is identical to Eq. (2). Note that Eq. (6) has only been
established for IRM streams. When the request streams consist
also of the miss streams of neighbors, that do not conform to
IRM, the equation may not accurately predict the miss rate.
This issue is studied in detail in Sections III and IV.

a-NET solves these equations iteratively. Initially, we set
mi,v = 0 for all i and v. Note that in the order these
equations are presented, each equation relies only the values
of the exogenous rates λi,v , which we assume are given,
and information available from previous equations. In each
iteration, a-NET solves equations (3) through (6) in order, for
all caches, using the output of the previous iteration as input to
the next. a-NET halts when a predefined precision threshold
ϵ is met. In our implementation, we used the mean-square
distance between the request rates of all files at all nodes as the
halting criterion. While we have not established convergence,
the algorithm converged in all cases that we tested.

C. a-NET performance - an example

To motivate the issues we discuss in the coming sections,
we present here an example of the performance of a-NET
over a simple topology. When using an isolated cache, a
commonly used performance metric is the miss probability of
the cache. Approximations for these caches are then evaluated
by observing the Miss Probability Ratio (MPR) between the
predicted and actual behavior [4].

We simulated the behavior of a 10-by-10 torus cache net-
work. The exogenous request distribution and rate is the same
for all caches, and requests are distributed according to Zipf
distribution with parameter 1 (i.e., the i-th most popular file
has pi =

1/i∑N
j=1 1/j

), as has been observed in real web access
traces [8]. There are |F | = 500 files in the system, cache
sizes are |v| = 50, and there are 4 sources of content s1 − s4
with each file stored at exactly one source. We compared the
behavior of the system to that of the approximation generated
by a-NET , the results presented in Figure 1. The top plot
shows the MPR per node. The bottom plot shows the standard
deviation of the incoming file request distribution at each cache
node, approximation vs. simulation.

0 20 40 60 80 100
Nodes (Sorted according to increasing MPR)

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

M
P
R

 (
S
im

/A
p
p
ro

x
)

MPR per node

0 20 40 60 80 100
Node

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

S
T
D

 o
f

in
co

m
in

g
 r

e
q
u
e
st

 d
is

tr
ib

u
ti

o
n

Comparison of request distribution STD

simulation
a-Net

Fig. 1. Top: MPR for 10-by-10 torus, with file requests distributed using Zipf
distribution, |F | = 500, and all caches of size |v| = 50. Nodes are sorted by
increasing MPR. Bottom: Standard deviation of incoming request distribution
at each node. The solid line (sim inc) is for STD in the simulation, while
the x’s (approx inc) are for the approximation. Nodes are sorted according
to increasing STD in the simulation. As can be seen, our model correctly
captures the trend of the STD curve.

Three main features are evident in Fig. 1. First, focusing on
the MPR, a-NET consistently under-estimates the number of
misses that occur at each cache. Second, the MCA produced
by a-NET does not err by more than 13%, with a median
error of 7% . These results indicate that, even though the IRM
assumptions are invalid for cache networks, a-NET predictions
are close to the actual behavior. Finally, the STD of the
approximated incoming distribution is almost identical to that
in the simulation. This suggests that the approximation is using
as input at each node a steady-state distribution that is close to
the actual distribution observed at that node, and so the cause
for increased MPR must lie elsewhere. Thus, we next more
closely investigate what factors cause the errors we see here,
and study under what conditions are these errors minimized.

III. a-NET ERROR DECOMPOSITION

In this section we analyze the sources of errors in a-NET .
Our goals here are (a) to determine the possible causes of
error; (b) to show how these errors can be distinguished; and

(c) to use this information to determine in which scenarios
a-NET will provide accurate predictions.

We consider three potential causes for a-NET inaccuracies:

1) Inherent Prediction Error in the underlying SCA
algorithm. Since a-LRU only approximates cache be-
havior, even with the correct request distribution the
results may differ from the actual system behavior.

2) Violation of IRM assumption. The violation of IRM
may adversely affect the performance of a-NET in two
ways. First, a-LRU was designed for and evaluated only
under the IRM assumptions. Second, the miss rate of
each file is calculated using Eq. (2), which may not hold
for IRM streams.

3) Input Error (or: Propagated Error). The input given
to a-LRU for cache v during a-NET execution includes
outputs predicted by a-LRU for all of v’s neighbors.
Since the prediction of a-LRU is inaccurate, the request
distribution given as input to a-LRU at each cache may
not be the actual distribution at that cache. This can
produce inaccurate predictions.

We therefore examine the contributions of each of the errors
in a given scenario, comparing a simulation (denoted SIM) to
the a-NET approximation (denoted APP). We disentangle the
different errors from each other via factor analysis, extracting
from the simulation results the probability of a request for
each file at each node, and then evaluating the per-cache
performance in two additional scenarios:

1) Per-cache simulation with IRM traffic, denoted SIM-
IRM. Here, we simulate the behavior at each cache using
the file request distribution extracted from SIM, but
with file requests being generated from this distribution
according to IRM.

2) Per-cache approximation with simulation-driven
traffic, denoted APP-DRIVEN. Here we evaluate the
cache performance using a-LRU at each cache, using
the file request distribution extracted from SIM. Recall
that the a-LRU algorithm assumes IRM arrivals.

We shall refer to these as the pseudo-simulation and pseudo-
approximation respectively. In [4] the authors demonstrate that
a-LRU gives close to optimal results for common scenarios,
and so our goal here is to determine what part of the approx-
imation error is due to IRM violation, and what part is due
to input error, as defined above. We do so by comparing the
predictions of a-NET in these different scenarios. Specifically,

• Comparing SIM to APP provides the MPR performance
of a-NET , as in Fig. 1.

• Comparing SIM to APP-DRIVEN isolates the influence
of IRM violation on the performance of a-NET , since the
input at each cache is the same for both simulation and
pseudo-approximation.

• Comparing SIM-IRM to APP-DRIVEN removes both the
effects of IRM violation and input error, since the input at
each cache is the same and the arrival streams at caches
in SIM-IRM conform to IRM.

Factoring a-NETs approximation error in into its compo-
nents can help develop improved prediction algorithms, that
address these errors, as well as determine which cases will be
more prone to prediction errors. We demonstrate this second
point next for the case of cache trees.

A. Cache Trees

When using shortest path routing, cache trees form in a
cache network with a single source of content. Each node
forwards its entire miss stream along a single link, the one
on the shortest path to the source. Leaves are therefore nodes
whose input stream does not include the miss stream of any
neighboring cache. For the purpose of this case study, we
consider only complete k-ary trees. As in the example case
from Section II, we assume that (a) all caches are of the same
size, and (b) the exogenous request stream at each cache is
the same. These assumptions are maintained throughout this
paper.

We initially consider the case of a linked list of h caches
v0, . . . , vh−1, with cache vh−1 linked to the single source (Fig.
2). We simulated the behavior of the system with parameters
h = 10, |v| = 50, N = 500, where the exogenous
request distribution is Zipf with parameter 1. We generated,
additionally, the pseudo-simulation and pseudo-approximation
as described above, and plotted the pair-wise MPR between
each of the simulations (standard (SIM) and pseudo (SIM-
IRM)), and each of the approximations. The results of these
comparisons are presented in Figure 3.

Fig. 2. k-ary tree for k=1, with request streams arriving exogenously at each
node.

Several conclusions may be drawn from Figure 3. First, we
note that when both the input error and IRM-violation errors
are removed, the performance of the algorithms is close to
optimal (a ratio of 1.0), a strong indication that there are no
additional hidden causes for error. Second, as in the example
from Section II, the error leads a-NET to consistently under-
estimate the probability of misses. Finally, it is clear that the
input error is negligible in the case portrayed in Fig. 2, and that
IRM-violation is the main source of error, which increases at
caches closer to the source. This supports the observation made
at the end of Section II, that a-NET provides a good estimate
of the incoming request distribution at each node. Thus, one
would expect that in scenarios where IRM is violated to a
lesser degree, the performance of a-NET would improve.

Support for this last hypothesis can be obtained from
the performance of a-NET for larger trees, as we increase
the branch factor k of the tree. As k grows, the incoming
request stream at upper-level caches become more IRM-like.
To understand why, consider a node A with two child nodes B
and C, each of which is the root of its own sub-tree. Requests

Fig. 3. Miss probability ratio for standard (SIM / APP), driven (SIM /
APP-DRIVEN), IRM-Sim (SIM-IRM / APP) and driven + IRM-Sim (SIM-
IRM / APP-DRIVEN). Performance is better when closer to 1.0. When IRM-
violation is removed, the performance of a-NET at all caches is close to
optimal

arriving at B are independent of those arriving at C since
their respective sub-trees do not have any node in common.
Therefore, the miss streams of B and C are independent of
each other. However, the miss stream of B at each epoch
depends on the state of cache B in that epoch. It is expected,
therefore, that the aggregate of these two streams is in some
sense closer to IRM than each of them would be on its own.
As k goes to infinity, we get closer to a purely IRM request
stream at A.

Based on this insight, we expect the performance of a-NET
to improve as k grows. The results of testing this hypothesis
for k = 2, 3, 4, 5 are shown in Figure 4. For each level in the
tree, we calculated the MPR for each cache in that level, then
plotted the mean MPR at that level with a 95% confidence
interval. Our results clearly show that as the branch factor
increases, so too does the accuracy of a-NET . We tested
the error composition for additional distributions over tree
topologies - uniform, truncated arithmetic and geometric -
and consistently observed this behavior. When we turn our
attention to general topologies, similar behavior occurs as
the average node degree grows. This is demonstrated and
discussed in detail in Section V.

IV. UNDERSTANDING IRM VIOLATION IN CACHE
NETWORKS

As we’ve just seen, IRM-violation can cause a-NET pre-
diction errors. In this section we present insight derived from
an analytical model supporting the observation that a-NET
generally underestimates the miss probability.

Let us begin with some intuition. It has been shown (for
example, see [9]) that a chain of LRU caches performs poorly.
One of the reasons for this is the lack of locality of reference
in the miss streams of caches. When a cache miss occurs at
v for file f , the file is downloaded into the cache, and so in
order for another cache miss to occur it first must be evicted

Fig. 4. Miss probability ratio for trees with branch factor k = 2, 3, 4, 5.

from the cache. Until this eviction occurs, the miss stream will
not see another request for this file. This causes requests for
file f to be, on average, farther apart in the miss stream than
they are in the incoming stream, reducing the effectiveness of
next-hop caches. This behavior can also help explain why a-
NET consistently tends to underestimate the miss probability
of caches. The inter-arrival distance between requests for fi
are likely to be greater in non-IRM miss-streams than in IRM
streams. Since a-NET predicts misses assuming IRM, the miss
probability it predicts will be lower than actually exhibited.

While the behavior just described is intuitive, and has been
demonstrated empirically for many scenarios, to the best of our
knowledge there is little analytical support for it. In Section
IV-A we present a Markov model for the simple (and tractable)
case of an IRM request stream with a distribution close to
uniform, as defined shortly. Next (Section IV-B), we use this
model to demonstrate the effects of IRM-violation on the miss
stream, and extrapolate from our results here to the effects of
LRU caches on arbitrary distributions.

A. Description of Markov chain

We use a discrete Markov chain, to model the behavior of
a tagged file f∗ at cache v. We assume the arrival stream is
IRM, that p∗,v = α, and for all other files pi,v = β, s.t.

β =
1− α

N − 1

We are interested in the non-IRM traffic characteristics of
the miss stream. Following [9], we do so by measuring the
distribution of the number of requests between two req∗,
termed here the inter-miss distances.

Our Markov chain consists of states (i, j), where
• 0 ≤ i < ∞. This variable represents the number of cache

misses that have occurred for files other than f∗, since
f∗ entered the cache.

• j ∈ {1, . . . , |v|, E(vict), M(iss), A(bsorb)}. This repre-
sents the state of f∗. For i ≤ |v|, f∗ is said to be in the
i-th location of the cache. Otherwise, the file might be

evicted (state E) or requested after eviction, generating a
cache miss (state M). Finally, once a cache miss occurs,
we go into the absorbing state (state A).

The transition matrix T can be derived from the transition
diagrams, shown in Figure 5. We assume that the system starts
in state (0, 1), the state of the system after a cache miss for
f∗, with f∗ at the top of the cache. Each new request at the
cache causes a transition in the Markov chain. Denote by T k

the state of the system after k transitions. For each state s,
the probability that the system is in state s after k arrivals
is expressed by T k[(0, 1), s]. Therefore, the probability of an
inter-miss distance being h for some h ∈ N is

P (distance = h) =

∞∑
k=1

T k[(0, 1), (h,M)]. (7)

For all practical purposes, we need to set a cap for the
distances h we are interested in computing, as otherwise the
transition matrix is of infinite size. We denote that cap Mmax.

Fig. 5. Top: Transition diagram for 1 ≤ j ≤ |v|. For the case of i =
Mmax +1, because state (i+1, j+1) does not exist we give the transition
to (i, j + 1) a probability of (N − j)β. Bottom: Transition diagram for
j = E,M,A. The probability of being in state (i,M) is the probability that
the inter-miss distance is i. Because state (i + 1, E) does not exist, for the
case of i = Mmax + 1 we give the transition to (i, E) a probability of
(N − 1)β.

B. Characterizing the miss stream using the Markov Model

Using the model described in Section IV-A, we analyzed
several scenarios in order to understand how the passing of
requests through the cache affected the inter-request distance
of the stream. For example, for the case of uniform distribution
with N = 30, |v| = 5,Mmax = 80, we compared the inter-
request distance distribution of the tagged file, as computed by
the Markov model, to the matching distribution for an IRM
stream with the same request distribution for file request IDs.
The cdf of these distributions is shown in Figure 6.

Let GM (x) be the inter-request distance distribution cdf
for the non-IRM miss stream, as computed by the Markov
chain. Furthermore, let GI(x) be the cdf for an IRM request

stream with the same distribution of files requested as the miss
stream. As can be seen from Fig. 6, GM (x) < GI(x) for all
x < N−1. More generally, we make the following conjecture:

Conjecture 1: When the incoming request stream at a cache
conforms to IRM, GM (x) ≤ GI(x) for all x ≤ |v|.
This conjecture is motivated by the observation that the tagged
file f∗ needs to be evicted from the cache before it can appear
again in the miss stream, and so we expect the first |v| misses
following a miss for f∗ to have a smaller probability of being
requests for f∗, compared to an IRM model.

Fig. 6. CDF of inter-arrival distance, for both incoming (IRM) and miss
(non-IRM) streams. The distance N − 1 marks the point after which the
negative effects of the cache on the cumulative distribution are no longer felt.

We now proceed to use this Markov model to understand
the effects IRM-violation in the miss stream will have on the
performance of the next-hop cache. We present the following
Theorem, proven in [7]:

Theorem 1: Let f∗, GM (k) and GI(k) be defined as above,
and assume that each of the remaining files arrives with
probability β. Additionally, let ZM (k) be the the inter-arrival
distance distribution (IADD) cdf for all other files1, and ZI(k)
be the IADD cdf for an IRM request stream with request
probability β. Finally, let hM

∗ and hI
∗ be the hit probability

of f∗ at cache v for each model. Then, if ZM (k) ≤ ZI(k)
for all k ≤ |v|, then

hM
∗ −→N→∞ GM (|v| − 1)

hI
∗ −→N→∞ GI(|v| − 1).

Based on Theorem 1 and Conjecture 1, the inter-arrival
distance distribution generated by the model can be used to
estimate how the hit probability changes for a miss stream
which is non-IRM.

We present here our results from testing the case of N = 50,
|v| = 3, for varying values of α, ranging from 0.05 to 0.8,
and compare the resulting inter-miss distribution to the IRM
equivalent in two ways. First, based on Theorem 1 we estimate

1We assume that these files have the same inter-arrival distribution. If not,
ZM (k) takes the maximal value for each k over all the files.

the difference in hit probability between an IRM stream and
the miss stream, by computing GI(|v| − 1) − GM (|v| − 1) .
Second, we took the mean-square difference between the pdfs
of both streams, to see how the hit probability is linked to
overall distributional difference. The results are shown in Fig.
7.

Fig. 7. Evaluating the effects of IRM violation on the inter-request distance
distribution, as a function of the incoming probability of the tagged file (p∗ =
α). (a) The fraction of requests for f∗ in the miss stream. (b) GI(|v| − 1)−
GM (|v|−1). (c) the mean-square difference between the two PDFs, indicating
how different the distributions are.

Figure 7 indicates that there is a clear correlation between,
the popularity of req∗ in the miss stream, the hit probability
difference and the mean-square error of the inter-arrival PDFs.
As the popularity of the file in the miss stream grows (y axis
in Fig. 7.(a)), so too does the difference between IRM and
non-IRM distributions in terms of hit probability (Fig. 7.(b)).
Also, the changes in the distribution reflect this effect (Fig.
7.(c)).

It is important to note that the error of a-NET in predicting
the miss probability is proportional to the popularity of the
file. Specifically, in the case presented here, we get that
0.0224 ≤ GM (|v|−1)

GI(|v|−1)
≤ 0.0272. Though popular files are

on the high end of this range, the ratios are very similar.
This proportionality leads us to conjecture that the prediction
error of a-NET , in terms of MPR, is mainly one of scale, but
files retain their relative weight in the request streams at each
cache. This conjecture is supported by the results presented
in Fig. 1. We saw there that even though the MPR can reach
1.16, the standard deviation in the incoming request streams
is approximated with high accuracy by a-NET .

Another important conclusion to be derived from these
results is that the performance of a-NET might differ for
different files. Files on the two extremes of the popularity
scale in the arrival stream will tend to suffer less from
the imprecisions of a-NET , compared to files in the middle
range. It is therefore reasonable to assume that metrics that
break down performance based on content attributes, such
as popularity, might be more suitable for analyzing MCA
generating algorithms than cache-centric metrics, such as

MPR. We present one such additional metric next, in Section
V.

V. NUMERICAL RESULTS

In this section we present additional numerical evaluation
of the accuracy of a-NET . There are many parameters that
affect the accuracy of a-NET , and so here we focus on several
key parameters: network connectivity, cache size, request
distribution and source clustering. In all of our experiments, a-
NET converged quickly to a fixed point, the exact number of
iterations determined by the network diameter and required
precision (i.e., the threshold after which changes between
iterations were considered negligible). Regarding the latter, we
consistently assumed that the total exogenous rate at each node
is 10 and halted when the mean-square distance between the
results of two iterations was less than 10−10.

Connectivity. In section III-A we saw that an increase in
the branch factor improves performance. We tested the effects
of increasing the node degree in a cache network on the
MPR performance of a-NET . We generated random, 400-node
graphs with each edge existing in the graph with probability
0.01 ≤ p ≤ 0.9, with 500 files distributed according to Zipf
distribution with parameter 1. Files were distributed between
10 sources randomly, and sources were randomly placed in
each graph. The results are presented in Fig. 8. As expected,
the MPR of a-NET gets closer to 1 as the connectivity of the
graph increases. Note however that this improvement might
be a result of the shorter distances between nodes, which
limits the aggregation of errors in the prediction of a-NET .
Further experimentation is required to determine the relative
effect of these two factors. Whatever the exact cause, however,
increasing connectivity clearly improves the accuracy of a-
NET .

Source Clustering. Another parameter that might affect
performance is the clustering of the sources. When all sources
are tightly clustered, the shortest path to each of the sources
is the same for the most part from other nodes in the network.
This creates a similar behavior to cache trees; specifically,
the network contains few cross streams - situations where
a link or an entire path contains request streams flowing in
opposite directions. In our work, we have observed that such
occurrences tend to cause a-NET to have increased prediction
error, and we are currently examining possible explanations
for this phenomenon. We demonstrate it here over a 10-by-
10 torus with 4 sources, and observed the mean MPR as the
distance between sources grew. |F | = 1000, |v| = 50, files
were assigned randomly to sources, and their arrival process
was distributed using Zipf with parameter 1. The effects of
clustering on the MPR metric are shown in Fig. 9. As can be
seen here, there is a slight but gradual increase in MPR as the
average distance between sources grows.

Realistic topologies, request distributions, cache size. For
evaluation over realistic topologies, we generated transit-stub
topologies modeled after the AT&T network, as suggested by
Heckmann et al [10], using the GT-ITM tool for topology
generation. Here, we compared the prediction of a-NET to

the actual system using per-file average number of hops
per request. This measure can be considered a system-wide
metric, as it takes into account the interactions between caches.
For several reasons, it is expected that a-NET will predict
the number of hops with high accuracy for files on both
extremes of the popularity scale, and less so for those in the
middle. First, in Section IV we noted that the difference in hit
probability is low on both of these extremes. Second, popular
requests will mostly require a single hop, while unpopular
requests will traverse the shortest path all the way to the
source. Such performance can be clearly seen in Figure 10.

We considered the following scenarios, observing the effects
of cache size and request distribution:

• |F | = 500, |v| = 50, distrib. = Zipf with parameter 1.0.
• |F | = 500, |v| = 50, distrib. = Zipf with parameter 0.6.
• |F | = 500, |v| = 20, distrib. = Zipf with parameter 1.0.
• |F | = 250, |v| = 50, distrib. = Zipf with parameter 1.0.
The results are presented in Figure 11. As can be seen here,

a-NET performs better when the distribution is skewed to a
larger degree, i.e. when the Zipf parameter is larger. However,
in the examples shown here, the number of files in the system
and the cache size seem to have little effect on performance.

For the topologies considered here, the mean error is within
range 10− 15%. The diameter of the networks used here was
≤ 10, and so the errors seen here for hop count indicate pre-
dicting 1-2 hops less than actually occurs. Further experiments
are required to determine how sensitive a-NET will be to an
increase in network size.

We also observed the arrival distribution at all nodes for
these simulations, and calculated the mean square difference of
the predicted vs. actual values. As expected, our results show
that the mean-square error, averaged over all nodes, is ≤ 10−6,
regardless of request distribution. This gives strong support to
our conjecture that a-NET can provide reliable predictions for
the incoming request distribution at each node.

Fig. 8. Mean MPR for random graphs over 400 nodes, as a function of p,
the probability that each edge is in the network. The mean is taken over 10
simulations for each p, with 95% confidence intervals showing.

Fig. 9. Mean MPR for 10-by-10 torus networks, as a function of the source
clustering. There were 4 sources positioned at the corners of a square, and
the x-axis specifies the length of the square side in terms of no. of hops. The
mean is taken over 6 simulations for each clustering, with 95% confidence
intervals showing.

Fig. 10. Ratio of no. of hops for files stored at a given source (Sim/Approx).
Files are ordered by popularity. As can be seen, highly-popular and highly-
unpopular files are approximated with greater accuracy.

VI. RELATED WORK

The approach we pursued here draws much of its inspira-
tion from Kelly’s well-known reduced-load approximation for
computing blocking probabilities in circuit-switched networks
[11]. The reduced load approximation computes this blocking
probability by assuming, similar to our approach here, that
the call arrival process to a link j behaves as an independent
process. This allows the network to be analyzed as a set of
independent links, coupled only through the blocking rates at
each link.

Exogenous request streams were assumed throughout the
paper to conform to IRM. However, there are alternative
models for request patterns at single caches. Panagakis et.
al. [12] present approximate analysis for streams that have
short term correlations for requests. In their model, the arrival

Fig. 11. Mean ratio of no. of hops per request. |F | = 500 unless specified
otherwise, and |C| is the cache size. Results were obtained by random
placement of 4 sources and random association of files with sources, over
6 simulation. Error bars represent 95% confidence intervals.

process is IRM, with the exception that the k most recent
requests have a higher probability of arriving next at the cache
than other requests. The justification for this model is that such
correlations have been found in web-traces. However, as we
have seen, cache networks experience the opposite effect, with
recent requests less likely to arrive next.

Another alternative is Stack Depth Distribution (SDD) (for
example, see [13]). With this model, the stream of requests
is characterized as a distribution h⃗ = (hi)

∞
i=1 over the cache

slots in a cache of infinite capacity, where hi is the probability
that the next cache hit will be at slot i. In this model, all
information regarding the individual files being requested is
ignored or unavailable.

For IRM traffic, there are additional algorithms of equal
complexity to a-LRU that compute the hit probability at a
single cache, but these are not as easily used or as informative.
For example, Flajolet et. al. [14] presented an integral solution
for the cache approximation problem, which can be solved
numerically to produce the hit ratio. However, there is no
straight-forward manner by which to observe the behavior of
each file with this approach.

Che et. al. developed a model for a two-level LRU-based
cache hierarchy [5], by using a ”mean field” approximation
of each cache. They associate each file in each cache with a
constant time, representing ”the maximum inter-arrival time
between two adjacent requests for [the] document without a
cache miss”. They justify this model by claiming that as the
number of files in the system goes to infinity, this assumption
becomes reasonable. This technique was subsequently lever-
aged in [6] to analyze cache coordination policies for cache
hierarchies. Neither paper provides much simulation support
for this model, and the approach is limited to 2-level cache
hierarchies, and cannot be easily extended to larger tree sizes.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper we presented a-NET , our MCA generating
algorithm, designed to evaluate performance measures such as

miss probability per cache and system-wide hops per request.
In general, a-NET under-estimates the miss probability of
caches, for which we have presented analytical support. The
accuracy of our approximation is affected primarily by IRM-
violations in the cache miss streams, making the approxima-
tion most accurate with cache trees with large branch factors
and, in general, with highly connected topologies. We have
also seen that a-NET is highly accurate in predicting the
incoming distribution at all nodes, even when the MPR is
large.

a-NET is designed to approximate the behavior of a cache
network with static routing tables, while a more realistic model
would consider dynamic routing as well. Adapting a-NET to
such a model is a challenging task we plan to address next. a-
NET was presented here for LRU caches, but can be used with
any SCA algorithm that receives the steady state distribution
of request arrivals, and returns the probability of each file to be
in the cache. The Markov model presented in section IV can
also be adapted, with minimal changes, to other replacement
policies, such as FIFO. We are currently working on several
ways in which to leverage these properties to expand our
understanding of cache networks.

REFERENCES

[1] B. Ahlgren, M. DAmbrosio, M. Marchisio, I. Marsh, C. Dannewitz,
B. Ohlman, K. Pentikousis, O. Strandberg, R. Rembarz, and V. Ver-
cellone, “Design considerations for a network of information,” in
ReArch’08 Workshop. ACM, 2008.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT. ACM,
2009, pp. 1–12.

[3] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in ACM SIGCOMM, 2007.

[4] A. Dan and D. F. Towsley, “An approximate analysis of the LRU and
FIFO buffer replacement schemes,” in SIGMETRICS, 1990, pp. 143–
152.

[5] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical
web caching systems,” in IEEE INFOCOM, 2001, pp. 1416–1424.

[6] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection
of LRU caches and its analysis,” Performance Evaluation, vol. 63, pp.
609–634, 2006.

[7] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” UMass Amherst, MA, Tech. Rep. UM-CS-
2009-037, 2009.

[8] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web caching and zipf-like distributions: Evidence and implications,”
in INFOCOM, 1999, pp. 126–134.

[9] R. Fonseca, V. Almeida, M. Crovella, and B. Abrahao, “On the intrinsic
locality properties of web reference streams,” in IEEE INFOCOM, 2003.

[10] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz, “On real-
istic network topologies for simulation,” in Proceedings of the ACM
SIGCOMM workshop on Models, methods and tools for reproducible
network research, 2003, pp. 28–32.

[11] F. Kelly, “Loss networks,” The Annals of Applied Probability, vol. 1,
no. 3, pp. 319 – 378, 1991.

[12] A. Panagakis, A. Vaios, and I. Stavrakakis, “Approximate analysis of
LRU in the case of short term correlations,” Comput. Netw., vol. 52,
no. 6, pp. 1142–1152, 2008.

[13] H. Levy and R. J. T. Morris, “Exact analysis of Bernoulli superposition
of streams into a least recently used cache,” IEEE Trans. Softw. Eng.,
vol. 21, no. 8, pp. 682–688, 1995.

[14] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Appl. Math., vol. 39, no. 3, pp. 207–229, 1992.

