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Abstract— Approximate computing is an emerging trend in
digital design that trades off the requirement of exact computa-
tion for improved speed and power performance. This paper pro-
poses novel approximate compressors and an algorithm to exploit
them for the design of efficient approximate multipliers. By using
the proposed approach, we have synthesized approximate multi-
pliers for several operand lengths using a 40-nm library. Compar-
ison with previously presented approximated multipliers shows
that the proposed circuits provide better power or speed for a
target precision. Applications to image filtering and to adaptive
least mean squares filtering are also presented in the paper.

Index Terms— Approximate computing, approximate
multiplier, digital arithmetic.

I. INTRODUCTION

APPROXIMATE computing is an emerging trend in digital
design [1], [2], relaxing the requisite of exact computa-

tion to gain substantial performance improvement in terms of
power, speed and area. This approach is becoming more and
more important for embedded and mobile systems, charac-
terized by severe energy and speed constraints. Approximate
computing can be fruitfully applied in several error-resilient
applications. Examples are multimedia processing [3], data
mining and recognition [2], machine learning.

Multipliers are fundamental subsystems for microproces-
sors, digital signal processors, and embedded systems with
applications ranging from filtering to convolutional neural net-
works. Unfortunately, multipliers are characterized by complex
logic design [4] and constitute one of the most energy-hungry
digital blocks [5]. Therefore, approximate multiplier design
has become an important research subject in recent years [6].

A multiplier includes a few basic blocks: partial products
generation, partial products reduction and carry-propagate
addition. Approximations can be introduced in any of these
blocks [6]. For example, truncation of the partial products is
a well stablished approximation technique in which some of
the partial products are not formed and the truncation error is
reduced with the help of suitable correction functions [7]–[9].
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Other approaches simplify the partial-product matrix by using
approximate 2 × 2 or 4 × 4 sub-multipliers [10], [11].

Most of the proposed approximate multipliers rely on
approximations in the partial product reduction step. Partial
products reduction uses compressors to turn a multi-operand
sum into a two-operand addition, using logarithmic schemes,
such as Wallace [12], Dadda [13], or the Three-Dimensional
Method TDM [14], [15]. A compressor is a logic circuit that
counts the number of “ones” in the input. The simple and most
used compressor is the full-adder (acting as a 3/2 compressor),
but higher-order compressors (such as 4/2 or 5/3 [16]–[20])
are also employed. Compressors are XOR-rich circuits and
partial products reduction is a critical multiplier block in terms
of speed, power and area. Therefore, several approaches have
been recently proposed that use approximate compressors for
partial products reduction in approximate multipliers.

Kelly et al. [21] propose approximate compressors obtained
by discarding (truncating) the outputs of exact compressors;
a similar approach is used in [22] where approximate com-
pressor with only two outputs are considered. In [23],
Momeni et al. propose two approximate 4/2 compressors
and investigate the performance of approximate multipliers
using developed circuits. Dual-quality 4/2 compressors, having
the flexibility of switching between exact and approximate
operating modes, are presented in [24]. Approximate half-
adders, full-adders and 4/2 compressors are presented in [25],
where the proposed circuits are utilized in two variants
of 16-bit multipliers. The paper [26] proposes an approximate
15/4 compressor, built using 5/3 compressor as basic module.
In [27] a lossy compression of the partial-product rows, based
on their bit significance, is proposed; this technique uses
approximate half-adders (realized with simple OR gates) to
generate a reduced set of product terms. A similar approach,
using simple OR gates as approximate counters, is used
in [28]. Architectural-space exploration of approximate arith-
metic units is investigated in [29] where the authors propose
four novels approximate multipliers, based on [10].

In this paper, we present a new family of approximate
compressors, obtained in a systematic way, aimed to minimize
the error probability and the average error. The proposed
approximate compressors are implemented by using simple
AND-OR gates (no XOR gates are required) and outperform
previously proposed circuits in terms of both precision and
hardware complexity. We then investigate the use of the pro-
posed compressors to build approximate multipliers. To that
purpose, a simple algorithm is proposed, that uses the approx-
imate compressors in the first steps of the partial product
reduction tree. Approximate compressors are introduced in the
less-significant part of the partial product matrix and added to
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Fig. 1. Partial product matrix of a 8 × 8 bit Multiplier.

the remaining portion of the matrix only if needed, to minimize
the overall approximation error. For each operand size, we
propose four approximate multiplier versions, with different
precision vs electrical performance trade-off.

We have synthesized the circuits developed in this paper
and previously proposed approximated multipliers, using a
40nm library, for several operand lengths. Syntheses show
that our circuits provide better error-electrical performance
trade-off, compared to previously proposed approximate mul-
tipliers. We have also investigated the use of approximate
multipliers in two applications: image filtering and LMS
system identification. For image filtering, the proposed circuits
provide excellent compromise between Structural Similarity
(SSIM) index and power saving (either 2% SSIM degradation
with 64% power saving or 8% SSIM degradation with 77%
power saving). In the LMS system identification example,
the two most accurate versions of the proposed circuit reach
convergence with accuracy comparable to that obtained by
using exact multipliers. The other approximate multipliers fail
to converge.

The paper is organized as follows. Section II briefly reviews
exact compressors. The proposed approximate compressors
are described in Section III where a comparison with pre-
vious designs is also presented. The algorithm for the design
of approximated multipliers using the proposed approximate
compressors is described in Section IV. Sections V provide
synthesis results and the comparison with previously proposed
approximated multipliers. Image filtering and LMS system
identification applications are investigated in Section VI, while
conclusions are drawn in Section VII.

II. EXACT COMPRESSORS

Let us consider two unsigned n bit inputs X = xn−12n−1 +

. . . + x0, Y = yn−12n−1 + . . . + y0. The product Z , between
X and Y is:

Z = X ·Y = p2n−122n−1 + . . . + p0 =

n−1
∑

i=0

n−1
∑

j=0

xi y j 2
i+ j (1)

The computation of Z requires the summation of the partial
products xi y j according to their weights 2i+ j . Fig. 1 shows,
as an example, the partial products matrix (PPM) for an
8 × 8 multiplier.

Let us consider the partial products belonging to the
j-th column of the PPM: p0 = x j−1y0, p1 = x j−2y1,
p2 = x j−3y3, …, p j−1 = x0 y j−1. The arithmetic sum of the
partial products of this column, S, ranges between 0 (when
all partial products are low) up to j (when all partial products
are 1), and will be indicated in the following as:

S =
∑

{

p0, p1, p2, . . . p j−1

}

(2)

A compressor computes the arithmetic sum in (2), encoding
the results in a binary format. The most common compressor
is the full-adder having 3 inputs and encoding the results S,
into two outputs: sum (having the same weight as the inputs)
and carry (having double weight).

Note that a compressor is fed by signals having the same
weight, and some inputs can be carries coming from the
column to the right. As an example, the widely used 4/2 com-
pressor [17]–[19] has five inputs (one being a carry from a
column to the right) and encodes the result on three outputs:
sum (having the same weight as the inputs) and carry1, carry2
(having double weight). The 5/2 compressor [17], [18] has
seven inputs (two being carries from a column to the right)
and encodes the result on four outputs: sum (having the same
weight as the inputs) and carry1, carry2, carry3 (having
double weight).

III. PROPOSED APPROXIMATE COMPRESSORS

The compressors described in the following approximate the
arithmetic sum in (2). For most of the combinations of pi they
compute the same value as (2), while in some cases they give
an error.

The proposed approximate compressors have j inputs
p0, p1, . . . , p j−1 and compute d j /2e outputs by using a novel
approach aimed to minimize the error probability and the aver-
age error. Please note that the outputs of proposed approximate
compressors have the same weight of the inputs (i.e. there are
no carry outputs). This is different from standard compressors,
where the weight of the carry output is two times the weight
of the inputs.

In the following, we assume that compressor inputs are
partial products belonging to a PPM column. We assume,
moreover, that the input bits xi and y j are uniformly and
independently distributed, so that the probability that each
partial product is high can be expressed as:

P (pi ) = 1/4 (3)

A. Approximate 2/1 Compressor

Let us consider the problem of summing two par-
tial products belonging to the same column. As observed
in [22], [25], and [28]:

S =
∑

{p0, p1} =
∑

{p0 p1, p0 + p1} (4)

Eq. (4) shows that we can sum a recoded version of the two
partial products, given by the logical AND and the logical OR
of the partial products. The probability of the two terms in the
right-hand side of (4) is:

P (p0 p1) = 1/16

P (p0 + p1) = 7/16 (5)

From (5), we foresee the possibility of simplifying the
hardware, with a reduced error probability, by neglecting the
low-probability term p0 p1. In this way, the arithmetic sum
of two partial products belonging to the same column can be
approximated as:

SAP P =
∑

{p0 + p1} ' S (6)

With (6) we approximate a 2/1 compressor (half-adder)
with an OR gate (with consequent area, delay and power
improvement), at a price of an error when both partial products
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TABLE I

APPROXIMATE 2/1 COMPRESSOR

are high. Table I shows the behavior of the approximate
2/1 compressor. Here, the output of the approximate com-
pressor is indicated as w1, while Erri indicates the difference
(error) between exact and approximate compressor:

Erri = S − SAP P (7)

From Table I, it can be observed that the approximate
compressor described by (6) under-estimates the exact sum S.
As it will be shown in the following, this behavior is common
to all the approximate compressors proposed in this paper.

Let us define the error probability, PE , and the mean error,
Emean, as:

PE =
∑

i

P (Erri )

Emean =
∑

i

P (Erri ) Erri (8)

where p(Erri ) is the probability of having an error for the
i -th partial products combination. From Table I, Erri = 1
when p1 = p0 = 1, which occurs with probability 1/16.
Therefore:

(approx. 2/1 compressor)

{

PE = 1/16

Emean = 1/16
(9)

It is worth noting that (6) was already used in [27] and [28];
it is also worth observing that the approximate 2 × 2 sub-
multiplier of [10] can be obtained by using this approximate
2/1 compressor. In [25] an approximate half-adder is proposed,
where an OR gate is used as sum output and an addi-
tional AND gate produces the carry output. The last column
in Table I shows the error between exact and approximate half-
adder of [25]. As it can be observed, design [25], while using
an additional gate, gives the same error probability (1/16) and
absolute mean error (1/16) as the proposed 2/1 approximate
compressor.

B. Approximate 3/2 Compressor

Using (4), the sum of three partial products is written as:

S =
∑

{p0, p1, p2} =
∑

{p0 p1, p0 + p1, p2} (10)

We can apply the AND, OR recoding of (4) again, to the
first and last term at the right-hand side of (10):

S =
∑

{p0 p1 p2, p0 p1 + p2, p0 + p1} (11)

The probability of the p0 p1 p2 term in (4), involving the
AND of three partial products, is very low:

P (p0 p1 p2) = 1/64 (12)

Thus, we can neglect this low-probability term obtaining:

SAP P =
∑

{p0 p1 + p2, p0 + p1} (13)

TABLE II

APPROXIMATE 3/2 COMPRESSOR

Fig. 2. Schematic of the proposed approximate 3/2 compressor.

With (13) we approximate a 3/2 compressor (full-adder)
with an OR gate and an AND-OR gate. Table II shows
the behavior of the approximate 3/2 compressor. We have
Err = 1 only when p2 = p1 = p0 = 1, which occurs with
probability 1/64. Therefore:

(approx. 3/2 compressor)

{

PE = 1/64

Emean = 1/64
(14)

The schematic of the proposed approximate 3/2 compres-
sor is shown in Fig. 2. Compared with the approximate
full-adder proposed in [25], our circuit is both simpler
([25] requires an XOR gate) and more precise. The last column
in Table II reports the arithmetic result computed by the
approximate 3/2 compressor in [25]. As it can be observed,
design [25] gives an error for two inputs combinations.
The first input combination, “110”, occurs with probability:
(1/4)(1/4)(3/4) = 3/64 (please, recall that from (3) the prob-
ability that each partial product is high is 1/4 and hence
the probability that each partial product is low is 3/4).
The second input combination, “111”, occurs with probability:
(1/4)(1/4)(1/4) = 1/64. From (8), the error probability of the
approximate 3/2 compressor [25] is: PE = 3/64+1/64 = 4/64.
The mean error is obtained by observing that the error is +1 in
both input combinations (the result is under-estimated by 1).
Thus, we have: Emean = 3/64 + 1/64 = 4/64.

C. Approximate 4/2 Compressor

The sum of four partial products can be written, with the
help of (4), as:

S =
∑

{p0 p1, p0 + p1, p2 p3, p2 + p3} (15)

We can apply the AND, OR recoding again, obtaining:

S =
∑

{(p0 p1) (p2 + p3) , (p2 p3) (p0 + p1) ,

(p0 p1) + (p2 + p3) , (p2 p3) + (p0 + p1)} (16)

The probability of the first two terms in (16), involving the
AND of three partial products, is very low (see (12)). Thus,
we can obtain an approximate 4/2 compressor by neglecting
these low-probability terms, as follows:

SAP P =
∑

{p0 p1 + p2 + p3, p2 p3 + p0 + p1} (17)
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TABLE III

APPROXIMATE 4/2 COMPRESSOR

Fig. 3. Schematic of the proposed approximate 4/2 compressor.

Table III shows the behavior of the proposed approximate
4/2 compressor. For four pi combinations, we have an error
of 1, while there is a unique partial products combination
resulting in an error of 2. The error probability and mean
error are easily obtained as:

(approx. 4/2 compressor)

{

PE = 13/256

Emean = 14/256
(18)

Fig. 3 shows the schematic of the proposed approximate 4/2
compressor, using two AND-OR gates.

The last three columns in Table III report the arithmetic
result computed by previously proposed approximate 4/2 com-
pressor. In every case the compressor proposed in this paper
requires simpler hardware and provides smaller error probabil-
ity and mean error. The circuit proposed in [23] (design 2) uses
two XOR and four NOR gates, giving an error in only four
entries of the table. It exhibits a rather large error probability
PE = 100/256 (mainly due to the error in the first row of
the table occurring with probability 81/256), with a mean
error Emean = −62/256. The approximate compressor in [25]
(requiring two XOR and several AND-OR gates) gives error
in five entries of the table with PE = Emean = 37/256. The
approximate 4/2 compressor proposed in [24] (structure 4) still
requires two XOR gates, is slightly simpler than [25], and
exhibits PE = 37/256, Emean = 38/256.

Data in Table III highlight the main feature of the proposed
approach: errors in our approximate compressor are present
only in the low-probability cases in which three or more inputs
are ‘1’. In [23]–[25], instead, errors are more randomly spread
across the table, resulting in larger overall error probability and
mean error.

TABLE IV

APPROXIMATE 5/3 COMPRESSOR

D. Approximate 5/3 Compressor

The design of approximate 5/3 compressor follows the same
approach outlined for 3/2 and 4/2 approximate compressors.
In a first step, we use (4) for all but the last partial products:

S =
∑

{p0 p1, p0 + p1, p2 p3, p2 + p3, p4} (19)

In the second step, we apply the AND, OR recoding of (4)
again, to the first and the fourth terms and to the third and the
fifth terms at the right-hand side of (19):

S =
∑

{p0 p1 (p2 + p3) , p0 p1 + p2 + p3, p0 + p1,

p2 p3 p4, p2 p3 + p4} (20)

In this way, we obtain two terms where the AND of three
partial products appears. The probability of these terms is very
low; hence we neglect these terms and obtain:

SAP P =
∑

{p0 p1 + p2 + p3, p0 + p1, p2 p3 + p4} (21)

Table IV shows the behavior of the proposed approximate
5/3 compressor. Again, there is a unique partial products
combination resulting in an error of 2, having a very low
probability of 1/1024. From Table IV, the error probability
and mean error are obtained as:

(approx. 5/3 compressor)

{

PE = 43/1024

Emean = 44/1024
(22)
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Fig. 4. Schematic of the proposed approximate 5/3 compressor.

The schematic of the proposed 5/3 compressor is shown
in Fig. 4.

It is worth noting that an approximate 5/3 compressor can
also be obtained with an approximate 2/1 and an approximate
3/2 compressor. This results in a slightly simpler circuit than
Fig. 4 (output w1 is the OR of p2, p3) having, however,
larger error probability (PE = 52/1024) and mean error
(Emean = 56/1024) compared to (22).

The last four columns in Table IV report the arithmetic
result computed by the approximate 5/3 compressors in [26].
The circuits in [26] are much more complicated compared to
Fig. 4, using several XOR gates and multiplexers. The designs
in [26] exhibit also large error probability, with errors scattered
in several entries of the table.

E. Approximate 6/3 Compressor

As shown for the 4/2 approximate compressors, we use (4)
for all the partial products of the 6/3 compressor:

S =
∑

{p0 p1, p0+ p1, p2 p3, p2+ p3, p4 p5, p4 + p5} (23)

Then, we apply the AND, OR recoding of (4) again, to the
first and the fourth terms, to the third and the sixth terms and
to the fifth and the second terms at the right-hand side of (23):

S =
∑

{p0 p1 (p2 + p3) , p0 p1 + p2 + p3,

p2 p3 (p4 + p5) , p2 p3 + p4 + p5,

p4 p5 (p0 + p1) , p4 p5 + p0 + p1} (24)

By neglecting the low-probability terms where the AND of
three partial products appears, we have:

SAP P =
∑

{p0 p1 + p2 + p3, p2 p3 + p4 + p5,

p4 p5 + p0 + p1} (25)

Table V shows the behavior of the proposed approximate
6/3 compressor. Please note that this table reports only the
partial products combinations resulting in an output error
(in the other cases the error is zero). From Table V, we have:

(approx. 6/3 compressor)

{

PE = 316/4096

Emean = 336/4096
(26)

The schematic of the proposed approximate 6/3 compressor
is shown in Fig. 5.

F. Higher-Order Approximate Compressors

Higher order approximate compressors (8/4, 10/5 etc.), can
be designed following an approach like the one shown in
the previous subsections. As an example, an approximate
8/4 compressor is obtained as:

SAP P =
∑

{(p0 p1) + (p2 + p3) , (p2 p3) + (p0 + p1) ,

(p4 p5) + (p6 + p7) , (p6 p7) + (p4 + p5)} (27)

TABLE V

APPROXIMATE 6/3 COMPRESSOR

Fig. 5. Schematic of the proposed approximate 6/3 compressor.

TABLE VI

RULES TO COMPOSE HIGH-ORDER (n > 6) COMPRESSORS

This corresponds to using two approximate 4/2 compressors.
Similar results are obtained in other cases: an approximate
7/4 compressor includes a 4/2 and a 3/2 approximate com-
pressor, while a 10/5 approximate compressor uses a 6/3 and
a 4/2 approximate compressor.

The general rule to compose approximate compressors with
n > 6 input bits and dn/2e output bits by using smaller
approximate sub-compressors is summarized in Table VI.

We can easily compute the mean error by summing the con-
tribution of each sub-compressor, since the sub-compressors
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TABLE VII

HIGHER ORDER COMPRESSOR

inputs are independent from each other. The result is reported
in the last column of Table VI.

The error probability PE can also be calculated in closed
form. When two sub-compressors (A and B) are exploited, the
error probability of the resulting compressor is:

PE = PE (A) + PE (B) − PE (A) PE (B) (28)

If three compressors are exploited (A, B, and C) we have:

PE = PE (A) + PE (B) + PE (C)

− PE (A) PE (B) − PE (A) PE (C) − PE (B) PE (C)

+ PE (A) PE (B) PE (C) (29)

The equation can be extended to the general case and is
known as the inclusion-exclusion principle, [30]. Table VII
reports decomposition, error probability and mean error for
approximate compressors from 7/4 through 20/10.

The results reported in Table VII show that i) the error prob-
ability and the mean error tend to increase with the compressor
size and ii) approximate compressors having an odd number of
inputs tend to perform better compared to compressors having
an even number of input bits. The first characteristic is due to
the error contribution of the sub-compressors: the 20/10 com-
pressor uses five 4/2 sub-compressors and hence has a larger
error compared, say, to the 16/8 compressor that includes four
4/2 sub-compressors. The second characteristic is related to
the fact that we considered approximated compressors with
j inputs and d j /2e outputs. Therefore, when j is even the
“compression ratio” (the ratio between input and output bits)
is 2, while the compression ratio is lower, 2 j /( j+1), when
j is an odd number. Lower compression ratio usually provides
lower error rate.

G. Using Approximate Compressors in Signed Multipliers

Fig. 6 shows the partial product matrix of a signed mul-
tiplier. Some of the partial products (indicated as qi or as
complemented partial products in the following) are obtained
as the NAND of the operands bits. Assuming, as before, that
the input bits xi and y j are uniformly and independently
distributed, the probability that a complemented partial product
is high is not given by (3) and is instead:

P (qi ) = 3/4 (30)

Consequently, the error probability of approximate com-
pressors having a complemented partial product as input is

Fig. 6. Partial product matrix of a signed multiplier. Complemented partial
products are highlighted in blue.

TABLE VIII

APPROXIMATE 4/2 COMPRESSOR WITH A

COMPLEMENTED PARTIAL PRODUCT

TABLE IX

ERROR PERFORMANCE OF PROPOSED APPROXIMATE COMPRESSORS

WITH A COMPLEMENTED PARTIAL PRODUCT

different with respect to the values computed in previous
subsections.

As an example, let us consider the proposed approximate
4/2 compressor driven by a complemented partial product.
Table VIII shows the partial products combinations result-
ing in an output error and the corresponding probabilities.
We obtain: PE = 31/256 and Emean = 34/256. While
larger than (18), these values remain better than [25] (having
PE = Emean = 63/256 in presence of a complemented partial
product) and [24] (PE = 63/256, Emean = 64/256). Also
the circuit proposed in [23] has larger error probability when
a complemented partial product is an input (PE = 60/256),
while the mean error is Emean = 6/256

Table IX reports error probability and mean error of
the proposed approximate compressors having a comple-
mented partial product as input. Higher-order compressors
are constructed, as shown previously, by using smaller sub-
compressors.

As it can be observed in Fig. 6, the complemented partial
products are in the most significant columns of the PPM. As it
will be shown in the next Section, the proposed algorithm
for the allocation of approximate compressors minimizes
the insertion of approximate compressors in this region of
the PPM. Thus, only a few approximate compressors will be
driven by complemented partial products. It is worth noting
that the proposed algorithm inserts an approximate compressor
in the n-th column of the PPM (the one that includes the partial
products x7y0 and x0 y7 in the example of Fig. 6). This is the
only approximate compressor driven by two complemented
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Fig. 7. (a) Exact compressors (two full-adders and one half-adder) reduce
a partial products column of height h = 8 to hnew = 3 (b) Example of
reduction using one exact full-adder and one approximate 5/3 compressor.

partial products and is implemented by using smaller sub-
compressors.

IV. ALGORITHM FOR THE ALLOCATION OF APPROXIMATE

COMPRESSORS IN BINARY MULTIPLIERS

In an approximate multiplier, approximate compressors sub-
stitute some of the exact compressors. The allocation of the
approximate compressors is a critical factor as it affects both
the electrical performance and the arithmetic accuracy of the
binary multipliers they compose.

In order to explain the proposed algorithm, let us consider
the idealized condition in which there are only h equal-weight
partial products to be summed. By using exact half-adders and
full-adders these partial products can be reduced to a column
of height hnew , with:

hnew ≥ dh/3e (31)

The number of full-adders needed to achieve this reduction
is given by:

F A =

⌊

h − hnew

2

⌋

(32)

while the number of required half adders is:

H A =

⎧

⎨

⎩

1 if:
h − hnew

2
> F A

0 otherwise
(33)

The total number of compressors (full-adders plus half-
adders) can be written as:

C = F A + H A =

⌈

h − hnew

2

⌉

(34)

As an example, Fig. 7(a) shows the reduction of a column
of h = 8 partial products to hnew = 3, with FA = 2 and
HA = 1.

The Dadda multiplier uses this approach to reduce the
multiplier PPM. The maximum height of the PPM, hmax ,
follows the series {2, 3, 4, 6, 9, 13, 19, 28, . . .}. For instance, in
the case of a 12-bit multiplier, the PPM starts with maximum
height hmax = 12 and evolves as: {12 → 9 → 6 → 4 →

3 → 2} so that, after five reduction steps, it is reduced to the
two operands summed by the vector merging adder.

In the proposed approach we use not only exact compres-
sors, but also approximate compressors (as shown in the exam-
ple of Fig. 7(b)). In each reduction step, using approximate
compressors, the maximum PPM height is reduced from hmax

to hmax,next , where hmax,next ≥ dhmax /2e is chosen so as to
skip one level in the Dadda series, thereby obtaining a faster
multiplier. Let us consider, as an example, a 12×12 multiplier
using approximate compressor in the first reduction step only.
Starting from hmax = 12 we choose hmax,next = 6, so that the
maximum PPM height evolves as: {12 → 6 → 4 → 3 → 2},
saving one compression step. By exploiting approximate com-
pressors also in the second reduction step, the maximum
PPM height evolves as: {12 → 6 → 3 → 2}, saving two
compression steps (at a price in terms of approximation error).

The targets of the proposed algorithm are:

a) Compress as much as possible the n least significant
columns of the PPM, using approximate compressors.
This maximizes the power saving while providing small
error.

b) Insert, in the most significant columns of the PPM, the
minimum number of approximate compressors needed
to meet the target height hmax,next . This minimizes the
error.

c) Avoid, if possible, the use of the approximate 2/1 com-
pressor, due to its large Emean (9) error.

Let us indicate as k = 1 the rightmost column of the PPM,
as LSP the least significant part of the PPM (composed by
columns k ∈ [1, n]) and as MSP the most significant part of
the PPM (composed by columns k ∈ [n + 1, 2n − 1]). Let us
also indicate as h(k) the height of the k-th column and as j (k)
the size of the approximate compressor inserted in column k
(e.g. j (18) = 12 indicates that a 12/6 approximate compressor
is inserted in column 18).

Approximate compressors are inserted in the LSP as fol-
lows:

j (k) =

{

0 if: h (k) ≤ 2

h (k) if: h (k) > 2
(35)

This equation states that the columns of the LSP of height
up to two are not compressed while the remaining columns
are compressed as much as possible.

The MSP is compressed using both approximate and exact
compressors. To obtain the number of exact compressors
to be used in the k-th column, there are two cases to be
considered: i) the column can be compressed by using only
exact compressors or: ii) column compression requires some
approximate compressors.

In case i), the number of exact compressors to be used is
obtained from (34) considering that every exact compressor in
column k−1 generates a carry for the next column:

C∗(k) =

⌈

h (k) −
(

hmax,next − C(k − 1)
)

2

⌉

(36)

where C(n) = 0, since column n belongs to LSP and is
reduced with approximate compressors that do not generate
any carry.

In case ii), the number of exact compressors to be used
in column k is obtained from the analysis of column k+1.
By substituting k with k+1 in (36) and with simple algebra
one obtains:

C∗∗(k) = 2C(k + 1) − h (k + 1) + hmax,next (37)

The number of exact compressors that can be placed in
column k+1 should be compatible to (34). Thus, one can
write:

C(k + 1) = Cmax (38)
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Fig. 8. Reduction of the PPM of a 12 × 12 multiplier, using the proposed
algorithm. Each dot represents a partial product. In the first reduction
step hmax,next = 6 is assumed, while the second reduction step uses
hmax,next = 3.

with:

Cmax = hmax,next −

⌈

h (k + 2)

3

⌉

(39)

Let us consider, as an example, the 12×12 multiplier shown
in Fig. 8 where in the first reduction step hmax,next = 6
is assumed. In column 13, (36) yields: C∗(13) = 3, while
(37)-(39) yield: C∗∗(13) = 2. Since C∗∗ < C∗ the case ii)
holds and the considered column cannot be reduced by using
exact compressors only. Therefore, only two exact full-adders
(C∗∗ = 2) are allocated in this column. By indicating as FA(k)
the number of exact full-adders allocated in column k, the size
of the approximate compressor is obtained from the condition:

h (k) − 2F A (k) − b j (k) /2c + C (k − 1) = hmax,next (40)

that yields:

j (k) = 2
(

h (k) − hmax,next − 2F A (k) + C (k − 1)
)

(41)

When j (k) = 2 and there is room enough in column k, an
approximate 3/2 compressor is inserted in the PPM, to limit
the use of approximate 2/1 compressors. In the considered
example, j (13) = 3 is obtained.

The pseudo-code of Algorithm 1 details the algorithm used
to allocate exact and approximate compressors in each column
of the PPM.

Fig. 8 shows the transformed PPM when the proposed
algorithm is used in a 12×12 multiplier for the first reduction
step (with hmax,next = 6) and for the second reduction step
(hmax,next = 3).

V. IMPLEMENTATION RESULTS

The approximate compressors described in Section III and
the algorithm of Section IV have been exploited to design
8 × 8, 12 × 12, 16 × 16, and 20 × 20, binary multipliers.
To investigate the trade-off between error and electrical per-
formance, each multiplier is designed by using approximate
compressors either in the first reduction step only or in the first
and in the second reduction steps of the PPM. Moreover, we
analyze the case in which the n−1 less significant columns of
the PPM are truncated (not formed), since columns truncation
also represents a straightforward way to trade speed and

Algorithm 1 Allocates Exact and Approximate Compressors

to Reduce Multiplier PPM

Input: Partial Product Matrix, given by h(k) for k = 1..2n−1;

Maximum height for the transformed PPM: hmax,next

Output (for each PPM column): allocated approximate com-

pressors j (k); allocated exact full-adders FA(k) and half-

adders HA(k); transformed PPM hnext (k)

Steps:

1. for k = 1:n /∗ LSP ∗/

2. FA(k) = 0; HA(k) = 0; C (k) = 0

3. if h(k) <= 2

4. j (k) = 0; hnext (k) = h(k);

5. else

6. j (k) = h(k); hnext (k) = dk/2e;

7. end if;

8. end for;

9. for k = n+1:2n−3 /∗ MSP ∗/

10. FA(k) = 0; HA(k) =0; j (k) =0; C(k) =0;

hnext (k) = h(k);

11. compute C∗ from (36);

12. compute C∗∗ from (37)-(39);

13. if C∗∗ < C∗ /∗ approx. compressors required ∗/

14. C (k) = C∗∗; FA(k) = C∗∗;

15. j (k) = 2(h(k) − hmax,next− 2FA(k)+ C(k−1));

16. if ( j (k) == 2) and (h(k)−3FA(k) >= 3)

17. j (k) = 3;

18. end if;

19. else /∗ only exact compressors ∗/

20. C(k) = C∗;

21. if C(k) > 0 then

22. FA(k) = d(h(k) − hmax,next

+ C(k − 1))/2e;

23. HA(k) = C(k)−FA(k);

24. end if;

25. end if;

26. hnext (k) = h(k)−2FA(k) −HA(k) − d j (k)/2e + C(k−1);

27. end for;

Fig. 9. Nomenclature used for the four different versions of each proposed
approximate multiplier.

power for precision in a binary multiplier. In summary four
different versions of each multiplier have been implemented,
as summarized in Fig. 9.

The proposed approximate multipliers are compared against
exact multipliers and against the approximate multipliers pro-
posed in [10], in [29] (in the four versions AM2, AM3,
AM4, and AM5) and in [27] using 2, 3 or 4-inputs OR gates
as approximate compressor (these circuits are named in the
following as: L = 2, L = 3 and L = 4, respectively).

A. Electrical Performance

All the investigated circuits have been described in HDL
language and synthesized in TSMC 40 nm technology, impos-
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TABLE X

ELECTRICAL PERFORMANCE OF EXACT AND APPROXIMATE MULTIPLIERS

Fig. 10. Approximate multipliers compared in terms of power dissipation
and NoEB.

ing proper timing constraints. In all the investigated circuits,
the final carry-propagate adder (CPA) was implemented by
using a fast parallel-prefix topology (Kogge-Stone). Table X
summarizes the results. In this Table “min delay” is the
minimum delay at which the circuits can be synthesized.
To make the comparison meaningful, area and power are
obtained by synthesizing all the circuits with the same timing
constraint, equal to the delay of the exact multiplier. For
all the approximate multipliers we have also calculated the
variations with respect to the exact multiplier (reported as a
percentage in Table X, where a negative percentage means
improvement, while a positive one means worsening). The last

three rows in Table X report, for each approximate multiplier,
the improvements in terms of delay, area and power, averaged
among the four considered sizes (8 × 8, 12 × 12, 16 × 16,
and 20 × 20). As it can be observed, proposed approximate
multipliers give evident advantages with respect to exact
multipliers. The delay improvement ranges from about 9% for
the 1StepFull topology, up to about 24% for the 2StepsTrunc.
Area improvements is even larger (about 32% for 1StepFull,
about 76% for 2StepsTrunc); similarly, power reduction is
quite evident (about 23% for 1StepFull topology, about 68%
for 2StepsTrunc). As expected, 2StepsTrunc gives the best
electrical performance, while the smallest improvements are
found for 1StepFull. The other two topologies are in between,
with 2StepsFull slightly better in terms of speed and 1Step-
Trunc in terms of power.

To explain the improvements of proposed multipliers com-
pared to the conventional design, let us observe that the critical
path includes both the partial-products reduction tree and the
final CPA.

In the 1StepFull and 2StepsFull topologies, the CPA has the
same size as the conventional design, and the improvements
are related only to the use of approximate compressors in
place of standard compressors. These improvements are due
to two factors. i) approximate compressors allow to reduce
the number of stages (and hence of logic levels) compared to
standard compressors. As an example, the 12 × 12 multiplier
of Fig. 8 requires a total of 3 compression levels to obtain the
inputs of the CPA (the critical path of the partial-products
reduction tree includes a maximum of three compressors),
while a standard Dadda multiplier requires 5 compression
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levels. ii) the proposed approximate compressors are XOR-
less and are hence faster (and smaller) compared to standard
full-adders. For the 12 × 12 exact multiplier, the synthesis
results show that the delay for partial products compression
is 491ps, while CPA delay is 231ps; for the 2StepsFull the
partial products compression delay is reduced to 259ps, while
CPA delay is 291ps. Thus, speed improvement is mainly
due to partial products reduction (the small difference in
CPA delay can be attributed to the optimizations/cell resizing
operated by synthesizer). In the 2StepsTrunc topology an addi-
tional speed improvement is related to the smaller CPA size.
This improvement is limited when using parallel-prefix CPA,
due to logarithmic dependence of delay to CPA size. For the
12 × 12 multiplier, the synthesis results reveal that the CPA
delay takes 237ps while partial product compression delay
is 301ps (the slight variation of the partial product compression
delay, between 2StepFull and 2StepsTrunc, is due to different
optimization choices of the synthesizer).

The approximate multipliers proposed in [27] also show
good electrical performance. The architecture L = 4 is the
fastest among investigated circuits, with power behavior com-
parable to our 2StepsTrunc circuit. The architectures L = 2
and L = 3 show average power dissipation like 2StepsFull
and 1StepsTrunc. The approximate multipliers of [29] are less
effective, with the AM2 topology slower and more power
hungry than exact multiplier. The approximate multiplier pro-
posed in [10] shows electrical performance comparable to our
1StepFull topology.

B. Error Performance

The error metrics considered in the following for the
approximate multipliers are [6]:

• The probability of an incorrect result, Error Rate, (ER).
• The average value of the errors produced by the multi-

plier, Mean Error, (ME).
• The root mean square of the errors produced by the

multiplier (ERMS). Instead of reporting ERMS values,
we prefer to introduce the Number of Effective bits,
NoEB, which for a n×n approximate multiplier is defined
as: NoE B = 2n − log2 (1 + E RM S). We prefer to use
this parameter instead of ERMS since it gives a handy
indication of the number of output bits that are possibly
free from error.

The error performance of the investigated approximate
multipliers is shown in Table XI. Reported results have been
obtained through Monte Carlo simulations (relative error 1%
confidence level 99%). The last three rows in this Table report,
for each approximate multiplier, the error metrics averaged
among the four considered sizes (8 × 8, 12 × 12, 16 × 16,
and 20 × 20). Please note that we defined the error
as:

E = YE X ACT − YAP P RO X (42)

Where YE X ACT is the output computed by the exact multiplier,
while YAP P RO X is the approximate multiplier result. Negative
ME values in Table XI refer to approximate multipliers that
over-estimate the result.

The approximate multipliers proposed in this paper give
very good error results. The 1StepFull topology consistently
yields the lowest error rate and mean error compared to the
other circuits, with a much larger number of effective bits.

The 1StepTrunc also shows good ME and NoEB, with, how-
ever, a rather large error rate. Only the approximate multiplier
of [27] with L = 2 shows error performance comparable to
2StepsFull and 2StepsTrunc. The other investigated circuits
([27] with L = 3 and L = 4, [29] and [10]) show a much
larger mean error and a reduced NoEB, which is lower than
5 bits even for 20 × 20 multipliers.

The results in Table X and Table XI show that the circuits
proposed in this paper provide very good error-electrical per-
formance trade-off. For instance, the 1StepFull topology gives
23% average power saving with respect to exact multiplier
with the best error performance with respect to the state
of art. The 2StepsTrunc multiplier obtains error performance
comparable to [27] L = 2, showing however, better power
saving (68% with respect to 44%).

To better investigate the error-electrical performance
trade-off, Fig. 10 shows the power dissipation values
versus the NoEB for all the investigated approximate
multipliers.

The proposed multipliers show excellent power-accuracy
trade-off, compared to state of art multipliers, allowing tar-
geting applications with different error resiliency attitude.
Indeed, in Fig. 10, all proposed multipliers (with exception
of 2StepsFull) constitute the rightmost plots, i.e. they exhibit
higher NoEB for the same power.

The 1StepFull offers the best performance in terms of
NoEB at moderate power dissipation improvement. The
1StepTrunc version reduces power consumption at expense
of NoEB (which is however higher than previously proposed
multipliers). Aggressive power saving is exhibited by
2StepsTrunc which gives the lowest power dissipation, at a
price in terms of NoEB.

Let us consider, as an example, a 20×20 multiplier. Among
previously proposed multipliers, the one showing better power-
accuracy trade-off is [27] L = 2, showing 12.97 NoEB with
3.34 µW/MHz power dissipation. The 1StepTrunc topology
gives both better NoEB (18.2) and lower power dissipation
(2.35 µW/MHz); the 2StepsTrunc yields a much-reduced
power dissipation (only 1.90 µW/MHz, i.e. 43% lower) with
10.92 NoEB.

Table XII reports the error performance of signed mul-
tipliers. Due to the presence of complemented terms (see
Section III-G), the error performance of all the analyzed
multipliers are worsened compared to Table XI, with the only
exception of [27], [29]-AM5 that exhibits better performance
in the signed scenario.

The proposed multipliers, the ones of [27] and [29]-
AM3 exhibit a small NoEB degradation (e.g. for the 20 × 20
multiplier, the NoEB of 2StepsTrunc goes from 10.92 in
the unsigned case, to 10.67 in the signed one). The mul-
tipliers [29]-AM2, [29]-AM4 and [10], show larger NoEB
degradation. In any case, we can draw conclusions analogous
to those of unsigned multipliers: the 1StepFull gives the
best performance in terms of error probability, mean error
and NoEB. The other proposed topologies outperform the
state of art multiplier, giving error performance comparable
with [27] L = 2.

VI. APPLICATIONS

We have investigated the use of approximate multipliers in
two applications: image filtering, and adaptive Least-Mean-
Square (LMS).
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TABLE XI

ERROR PERFORMANCE OF APPROXIMATE UNSIGNED MULTIPLIERS

TABLE XII

ERROR PERFORMANCE OF APPROXIMATE SIGNED MULTIPLIERS

A. Image Filtering

We have investigated the quality-power trade-off of approx-
imate multipliers in a Gaussian smoothing image filtering,
which is a typical error resilient application [3]. The Gaussian
kernel has zero mean and 1.5 standard deviation and can
be obtained using the fspecial(’gaussian’, [3 3], 1.5) Matlab
command. The convolution of the ‘Lena’ image with the
Gaussian kernel is performed through Matlab-HDL cosimu-
lations where the multiplications are mapped by approximate
multipliers. To compare the filtered images, we used the struc-
tural similarity index SSIM. The SSIM is a well-established
metric to quantify the visibility of errors (differences) between
a distorted image and a reference image. The SSIM was
introduced in [31] to improve on traditional methods such
as peak signal-to-noise ratio (PSNR) and mean squared
error (MSE).

The resulting filtered images are shown in Fig. 11. With
exception of [29] AM2-AM5 and [27] L = 4, the inves-
tigated approximate multipliers perform quite well in terms
of SSIM. A better outlook is offered by the quality-power
trade-off shown in Fig. 12, where the y-axis reports the SSIM
percentage degradation, while the x-axis reports the power
saved with respect to the exact implementation. From this

figure we can observe that (i) the proposed 1StepFull exhibits
the lowest quality degradation (only 0.68% SSIM reduction)
with 37% power saving, (ii) by slightly increasing the tol-
erable image quality degradation the proposed 1StepTrunc
achieve the best trade-off, offering 2% of SSIM degradation
as [10] and [27] L = 2, but at higher power saving (64%),
(iii) if power dissipation is the priority, proposed 2StepsTrunc
is the best choice, achieving 77% power saving with 8% image
quality degradation.

B. LMS Filtering

Adaptive Least-Mean-Square (LMS) is the most popular
adaptive filtering algorithm, with applications ranging from
adaptive noise cancellation to system identification and chan-
nel equalization [32]. LMS aims to minimize the mean squared
error (MSE) between the output of the adaptive filter (typically
a Finite Impulse Response filter, FIR) and a desired signal.
The MSE is minimized in a recursive manner, updating
step-by-step the coefficients of the FIR filter. The minimization
happens in an approximated way, using a stochastic gradient
descent algorithm. Therefore, the LMS algorithm is charac-
terized by an inherent grade of imprecision and constitute a
fertile ground to employ approximate hardware circuits.
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Fig. 11. Gaussian smoothed Lena images processed with exact and approximate multipliers.

Fig. 12. Quality-power trade-off for Gaussian smoothing application
(circuit [29] AM5 is out of scale).

In this paper we evaluate the convergence error degradation
due to the usage of approximate multipliers in an adaptive FIR
filter. We consider a system identification scenario (Fig. 13), in
which the signal d(n) is the output of the filter to be identified.
The LMS algorithm adjusts the FIR filter coefficients w(n) to
mimic the response of the filter to be identified. In our test
case we employed as filter to be identified an IIR Butterworth
low-pass filter with bandpass gain equal to 0 dB (from zero
to 0.2 π · rad/sample) and stopband attenuation of −60 dB at
0.3125π · rad/sample. The LMS FIR filter uses 125 taps and is
implemented by using 16-bit fixed point representation (only
16 × 16 signed multipliers are employed). The convergence
of the algorithm has been evaluated through 100 simulations,
each one with a duration of 5 × 104 iterations, using as input
x(n) (see Fig. 13) a white Gaussian signal with zero mean,
0.3 standard deviation and range in [−1, 1). The adaptive
filters have been synthesized by imposing a maximum clock
frequency of 290 MHz. Mean error compensation has been
applied at system level for all the investigated approximate
circuits.

Fig. 13. LMS System identification.

Figure 14 shows the magnitude of the harmonic response
of the investigated adaptive filters. The LMS filter using
exact multipliers achieves a stop-band attenuation of 60.3dB,
Fig. 14 (a). The adaptive filters using proposed 1StepFull
and 1StepTrunc exhibit a good convergence behavior, with
stop-band attenuation of 60.7dB and 61.6dB respectively (see
Fig. 14 (c) and Fig. 14 (d)). The LMS filter using [27] L = 2
multiplier shows poor convergence properties, with a stop-
band attenuation as low as of 35.8dB; this implementation
suffers also from a large ripple in the bandpass (Fig. 14 (b)).
The LMS filters using others approximate multipliers fail to
converge.

Fig. 15 shows the error-power trade-off of the investigated
circuits. Here, y-axis reports, as a figure of merit related to
the precision, the stop-band attenuation. The x-axis reports
the power saving obtained by using approximate multipliers
(as opposed as exact multipliers).

The adaptive filters using proposed 1StepFull and 1Step-
Trunc, in addition to the excellent convergence property,
allow to achieve 4% and 26% system-level power saving,
respectively (please note that these values differ from data
reported in Table X, since they take into account not only the
power dissipated by the multipliers but also the contribution of
pipeline registers and additional logic; moreover, the synthesis
timing constraint used for LMS filter synthesis is different
from the one assumed in Table X, being related to the critical
path of the adaptive filter).
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Fig. 14. Harmonic response (magnitude) of LMS adaptive filters based on
exact and approximate multipliers (only results for filters that do not fail to
converge are reported).

Fig. 15. Error-power trade-off for the investigated approximate adaptive
LMS filters.

VII. CONCLUSION

The paper presents novel approximate compressors, that
overcome previously proposed circuits in terms of error perfor-
mance and circuit complexity. The approximate compressors

are used to build approximate multipliers, using an algorithm
that allocates the approximate compressors with the aim of
optimize electrical performance while providing small error.
For each operand size, we developed four approximate mul-
tiplier versions, with different precision vs electrical perfor-
mance trade-off.

The circuits developed in this paper and previously proposed
approximated multipliers, have been synthesized by using
a 40nm CMOS technology. Syntheses show that our cir-
cuits provide very good error-electrical performance trade-off,
compared with previously proposed approximate multipliers.
We have also investigated the use of approximate multipliers
in two applications: image filtering and LMS system iden-
tification. In both cases, proposed approximate multipliers
show remarkable good results, compared with the state of
the art.

The proposed approach could, in principle, be applied
also to Booth-encoded multipliers. In this case, however,
each partial product is obtained by a Booth selector, rather
than a simple AND gate. Thus, for each partial product,
the probability of being high is different compared to a
non-Booth multiplier. Additional investigation is required
to design ad-hoc approximate compressors optimized for
Booth- multipliers.

As final remark, the paper shows that the tolerable approx-
imation level strongly depends on the application, motivating
the need of energy-efficient design-time (or run-time) quality-
configurable systems.
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