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Approximate N -Player Nonzero-Sum Game

Solution for an Uncertain Continuous

Nonlinear System
Marcus Johnson, Rushikesh Kamalapurkar, Shubhendu Bhasin, and Warren E. Dixon

Abstract— An approximate online equilibrium solution is
developed for an N-player nonzero-sum game subject to
continuous-time nonlinear unknown dynamics and an infinite
horizon quadratic cost. A novel actor–critic–identifier structure
is used, wherein a robust dynamic neural network is used
to asymptotically identify the uncertain system with additive
disturbances, and a set of critic and actor NNs are used to approx-
imate the value functions and equilibrium policies, respectively.
The weight update laws for the actor neural networks (NNs)
are generated using a gradient-descent method, and the critic
NNs are generated by least square regression, which are both
based on the modified Bellman error that is independent of
the system dynamics. A Lyapunov-based stability analysis shows
that uniformly ultimately bounded tracking is achieved, and a
convergence analysis demonstrates that the approximate control
policies converge to a neighborhood of the optimal solutions. The
actor, critic, and identifier structures are implemented in real
time continuously and simultaneously. Simulations on two and
three player games illustrate the performance of the developed
method.

Index Terms— Actor–critic (AC) methods, adaptive control,
adaptive dynamic programming, differential games, optimal
control.

I. INTRODUCTION

NONCOOPERATIVE game theory [1]–[3] can be used

to provide a solution to a number of control engineering

applications. In a differential game formulation, the controlled

system is influenced by a number of different inputs, computed

by different players that are individually trying to optimize a

performance function. The control objective is to determine a

set of policies that are admissible [4], i.e., control policies that

guarantee the stability of the dynamic system and minimize

individual performance functions to yield an equilibrium.

A Nash differential game consists of multiple players making

simultaneous decisions where each player has an outcome that
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cannot be unilaterally improved from a change in strategy.

Players are committed to following a predetermined strategy

based on knowledge of the initial state, the system model, and

the cost functional to be minimized. Solution techniques to

the Nash equilibrium are classified depending on the amount

of information available to the players (e.g., open-loop, feed-

back), the objectives of each player (zero-sum or nonzero-

sum), the planning horizon (infinite horizon or finite horizon),

and the nature of the dynamic constraints (e.g., continuous,

discrete, linear, nonlinear).

A unique Nash equilibrium is generally not expected.

Nonuniqueness issues with Nash equilibria are discussed for

a nonzero-sum differential game in [5]. For an open-loop

nonzero-sum game, where every player knows the initial state

x0 at time t ∈ [0, T ], conditions for the existence of a

unique Nash equilibrium can be established [6]. For a closed-

loop perfect state information, where every player knows the

complete history of the state at time t ∈ [0, T ], there are

potentially an infinite number of Nash equilibria. In this case,

it is possible to restrict the Nash equilibrium to a subset

of feedback solutions, which is known as the (sub)game

perfect Nash equilibria (or feedback Nash equilibria). Results

in [7] and [8] indicate that (sub)game perfect Nash equilibria

are (at least heuristically) given by feedback strategies and

that their corresponding value functions are the solution to

a system of Hamilton–Jacobi equations. These concepts have

been successfully applied to linear quadratic (LQ) differential

games [5], [7]. A special case of the Nash game is the

min–max saddle point equilibrium, which is widely used to

minimize control effort under a worst case level of uncertainty.

The saddle point equilibrium has been heavily exploited in H∞
control theory [9], which considers finding the smallest gain

γ ≥ 0 under which the upper value of the cost function

Jγ (u, v) =
∞̂

0

Q (x) + u (x)2 − γ 2 ‖v (x)‖2 dτ (1)

is bounded and finding the corresponding controller that

achieves this upper bound. H∞ control theory relates to LQ

dynamic games in the sense that the worst case H∞ design

problems have equal upper and lower bounds of the objective

function in (1), which results in the saddle-point solution to

the LQ game problem. In both the H∞ control problem and

the LQ problem, the underlying dynamic optimization is a
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two-player zero-sum game with the controller being the min-

imizing player and the disturbance being the maximizing

player. In a zero-sum game with linear dynamics and an

infinite horizon quadratic cost function, the Nash equilibrium

solution is equivalent to solving the generalized game alge-

braic Riccati equation. However, for nonlinear dynamics or a

nonzero-sum game, analytical solutions may not be tractable

for the Hamilton–Jacobi–Bellman (HJB) partial differential

equation.

Due to the difficulty involved in determining a solution to

the HJB equation, dynamic programming [10]–[14] is used

to approximate a solution to the optimal control problem.

Reinforcement learning (RL) is typically employed to imple-

ment dynamic programming online and forward in time. RL is

a method wherein appropriate actions are learned based on

evaluative feedback from the environment. A widely used

RL method is based on the actor–critic (AC) architecture,

where an actor performs certain actions by interacting with

their environment, the critic evaluates the actions and gives

feedback to the actor, leading to an improvement in the

performance of subsequent actions. AC algorithms are per-

vasive in machine learning and are used to learn the optimal

policy online for finite-space discrete-time Markov decision

problems [15]–[17].

The machine learning community [15], [17]–[20] provides

an approach to determine the solution of an optimal

control problem using approximate dynamic programming

(ADP) through RL-based adaptive critics [10]–[14]. The dis-

crete/iterative nature of the ADP formulation naturally leads to

the design of discrete-time optimal controllers [13], [21]–[25].

Some results have also been developed for continuous-

time problems. Baird [26] proposed advantage updating,

an extension of the Q-learning algorithm, which could

be implemented in continuous-time and provided fast

convergence. A HJB-based framework is used in [27] and

[28], and Galerkin’s spectral method is used to approximate

the generalized HJB solution in [29].

The aforementioned approaches for continuous-time

nonlinear systems are computed offline and/or require

complete knowledge of system dynamics. A contribution

in [30] is the requirement of only partial knowledge of the

system, and a hybrid continuous-time/discrete-time sampled

data controller is developed based on policy iteration (PI),

where the feedback control operation of the actor occurs at

a faster time scale than the learning process of the critic.

The method in [31] was extended by designing a hybrid

model-based online algorithm called synchronous PI, which

involved synchronous continuous-time adaptation of both

actor and critic neural networks. Bhasin et al. [32] developed a

continuous AC-identifier (ACI) technique to solve the infinite

horizon single player optimal control problem using a robust

dynamic neural network (DNN) to identify the dynamics

and a critic NN to approximate the value function. This

technique removes the requirement of complete knowledge

of the system drift dynamics through the use of an indirect

adaptive control technique.

Most of the previous continuous-time RL algorithms that

provide an online approximate optimal solution assume that

the dynamic system is affected by a single control strategy.

Previous research has also investigated the generalization of

RL controllers to differential game problems [31], [33]–[39].

Techniques utilizing Q-learning algorithms have been devel-

oped for a zero-sum game in [40]. An ADP procedure that

provides a solution to the HJI equation associated with the

two-player zero-sum nonlinear differential game is introduced

in [33]. The ADP algorithm involves two iterative cost func-

tions finding the upper and lower performance indices as

sequences that converge to the saddle point solution of the

game. The AC structure required for learning the saddle point

solution is composed of four action networks and two critic

networks. The iterative ADP solution in [34] considers solving

zero-sum differential games under the condition that the saddle

point does not exist, and a mixed optimal performance index

function is obtained under a deterministic mixed optimal

control scheme when the saddle point does not exist. Another

ADP iteration technique is presented in [35], in which the

nonlinear quadratic zero-sum game is transformed into an

equivalent sequence of LQ zero-sum games to approximate

an optimal saddle point solution. In [36], an integral RL

method is used to determine an online solution to the two

player nonzero-sum game for a linear system without complete

knowledge of the dynamics. The synchronous PI method

in [31] was then further generalized to solve the two-player

zero-sum game problem in [38] and a multiplayer nonzero-

sum game in [39] and [41] for nonlinear continuous-time

systems with known dynamics. Furthermore, [42] presents a

PI method for an infinite horizon two-player zero-sum Nash

game with unknown nonlinear continuous-time dynamics. The

proposed work expands upon the applicability of [31], [38],

[39], and [41] by eliminating the assumption that the drift

dynamics is known, and advances the theory in [32] and [42]

to solve the more general multiplayer nonzero-sum differential

game where the objective is to minimize a set of coupled

cost functions. The single player game in [32] and two-player

zero-sum game in [42] are special cases of the multiplayer

nonzero-sum game presented in this paper.

This paper aims to solve an N-player nonzero-sum infinite

horizon differential game subject to continuous-time uncertain

nonlinear dynamics. The main contribution of this paper is

deriving an approximate solution to an N-player nonzero-sum

game with a continuous controller using an ACI technique.

Previous research has focused on scalar nonlinear systems

or implemented iterative/hybrid techniques that required com-

plete knowledge of the drift dynamics. The developed tech-

nique uses N-actor and N-critic neural network structures

to approximate the optimal control laws and the optimal

value function set, respectively. The main traits of this online

algorithm involve the use of ADP techniques and adaptive

theory to determine the Nash equilibrium solution of the game

in a manner that does not require full knowledge of the system

dynamics and approximately solves the underlying set of

coupled HJB equations of the game problem. For an equivalent

nonlinear system, previous research makes use of offline

procedures or requires full knowledge of the system dynamics

to determine the Nash equilibrium. A Lyapunov-based stability

analysis shows that uniformly ultimately bounded (UUB)



JOHNSON et al.: APPROXIMATE N -PLAYER NONZERO-SUM GAME SOLUTION 1647

tracking for the closed-loop system is guaranteed for the

proposed ACI architecture and a convergence analysis demon-

strates that the approximate control policies converge to a

neighborhood of the optimal solutions.

II. N -PLAYER DIFFERENTIAL GAME FOR

NONLINEAR SYSTEMS

Consider the N-player nonlinear, time-invariant, affine in

the input dynamic system given by

ẋ = f (x) +
N
∑

j=1

g j (x) u j (2)

where x ∈ R
n is the state vector, u j ∈ R

m j is the control

input, and f : R
n → R

n and g j : R
n → R

n×m j are the drift

and input matrices, respectively. Assume that g1, . . . , gN and

f are second-order differentiable, and that f (0) = 0. The

infinite-horizon scalar cost functional Ji associated with each

player can be defined as

Ji =
´∞

t
ri (x, u1, u2, . . . , uN ) ds (3)

where i ∈ {1, . . . , N}, t is the initial time, and ri :
R

n+
∑N

j=1 m j → R is the local cost for the state and control,

defined as

ri (x, u1, . . . , uN ) = Qi (x) +
N
∑

j=1

uT
j Ri j u j (4)

where Qi : R
n → R are continuously differentiable and

positive definite functions and Ri j ∈ R
m j ×m j and Rii ∈

R
mi ×mi are positive definite symmetric matrices.

The objective of the N-player game is to find a set of

admissible feedback policies (u∗
1, u∗

2, . . . , u∗
N ) such that the

value function Vi : R
n → R defined as

Vi (x; u1, . . . , uN ) =
ˆ ∞

t

⎛

⎝Qi (x) +
N
∑

j=1

uT
j Ri j u j

⎞

⎠ ds (5)

is minimized, where Vi (x; u1, . . . , uN ) denotes the value of

state x under feedback policies (u1, . . . , uN ). This paper will

focus on the Nash equilibrium solution for the N-player game,

in which the following N inequalities are satisfied for all

u∗
i ∈ Ui , i ∈ N :

V ∗
1 � V1

(

x; u∗
1, u∗

2, . . . , u∗
N

)

≤ V1

(

x; u1, u∗
2, . . . , u∗

N

)

V ∗
2 � V2

(

x; u∗
1, u∗

2, . . . , u∗
N

)

≤ V2

(

x; u∗
1, u2, . . . , u∗

N

)

. . .

V ∗
N � VN

(

x; u∗
1, u∗

2, . . . , u∗
N

)

≤ VN

(

x; u∗
1, u∗

2, . . . , uN

)

(6)

where Ui denotes the set of admissible policies for the ith

player. The Nash equilibrium outcome of the N-player game

is given by the N-tuple of quantities {V ∗
1 , V ∗

2 , . . . , V ∗
N }.

The value functions can be alternately presented by a

differential equivalent given by the following nonlinear

Lyapunov equation [39]:

0 = r (x, u1, . . . , uN ) + ∇V ∗
i

⎛

⎝ f (x) +
N
∑

j=1

g j (x) u j

⎞

⎠

V ∗
i (0) = 0 (7)

where ∇V ∗
i � ∂V ∗

i /∂x ∈ R
1×n . Assuming the value

functional is continuously differentiable, the Bellman

principle of optimality can be used to derive the following

optimality condition:

0 = min
ui

⎡

⎣∇V ∗
i

⎛

⎝ f +
N
∑

j=1

g j u j

⎞

⎠+ r

⎤

⎦

V ∗
i (0) = 0, i ∈ N (8)

which is the N-coupled set of nonlinear partial differential

equations called the HJB equation. Suitable nonnegative

definite solutions to (7) can be used to evaluate the infinite

integral in (5) along the system trajectories. A closed-form

expression of the optimal feedback control policies is given by

u∗
i (x) = −1

2
R−1

ii gT
i (x)

(

∇V ∗
i (x)

)T
. (9)

The closed-form expression for the optimal control policies

in (9) obviates the need to search for a set of feedback policies

that minimize the value function; however, the solution V ∗
i to

the HJB equation given in (8) is required. The HJB equation

in (8) can be rewritten by substituting for the local cost in (4)

and the optimal control policy in (9), respectively, as

0 = Qi + ∇V ∗
i f − 1

2
∇V ∗

i

N
∑

j=1

g j R−1
j j gT

j

(

∇V ∗
i

)T

+1

4

N
∑

j=1

∇V ∗
i g j R−T

j j Ri j R−1
j j gT

j

(

∇V ∗
i

)T

V ∗
i (0) = 0. (10)

Since the HJB equation may not have an analytical solution

in general, an approximate solution is sought. Although

nonzero-sum games contain noncooperative components,

the solution to each player’s coupled HJB equation in (10)

requires knowledge of all the other player’s strategies in (9).

The underlying assumption of rational opponents [43] is char-

acteristic of differential game theory problems, and it implies

that the players share information, yet they agree to adhere

to the equilibrium policy determined from the Nash game.

III. HJB APPROXIMATION VIA ACI

This paper uses an ACI [42], [44] approximation archi-

tecture to solve for (10). The ACI architecture eliminates

the need for exact model knowledge and utilizes a DNN to

robustly identify the system, a critic NN to approximate the

value function, and an actor NN to find a control policy that

minimizes the value functions. The following development

focuses on the solution to a two-player nonzero-sum game.

The approach can easily be extended to the N-player game

presented in Section II. This section introduces the ACI

architecture, and subsequent sections give details of the design

for the two-player nonzero-sum game solution.

The Hamiltonian Hi ∈ R of the system in (2) can be

defined as

Hi = rui + ∇Vi Fu (11)
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where ∇Vi � ∂Vi/∂x ∈ R
1×n denotes the Jacobian of the

value function Vi and

Fu (x, u1, . . . , uN ) � f (x) +
N
∑

j=1

g j (x) u j ∈ R
n

denotes the system dynamics. The optimal policies in (9) and

the associated value functions V ∗
i satisfy the HJB equation

with the corresponding Hamiltonian as

Hi

(

x,∇V ∗
i , u∗

1, . . . , u∗
N

)

= ru∗
i
+ ∇V ∗

i Fu∗ = 0. (12)

Replacing the optimal Jacobian ∇V ∗
i and optimal control

policies u∗
i by estimates ∇ V̂i and ûi , respectively, yields the

approximate Hamiltonian

Hi

(

x,∇ V̂i , û1, . . . , ûN

)

= rûi
+ ∇ V̂i Fû . (13)

The approximate Hamiltonian in (13) is dependent on com-

plete knowledge of the system. To overcome this limitation, an

online system identifier replaces the system dynamics, which

modifies the approximate Hamiltonian in (13) as

Hi

(

x, x̂,∇ V̂i , û1, . . . , ûN

)

= rûi
+ ∇ V̂i F̂û (14)

where F̂û is an approximation of the system dynamics Fû .

The difference between the optimal and approximate

Hamiltonian equations in (12) and (14) yields the Bellman

residual errors δh jbi ∈ R defined as

δh jbi � Hi

(

x, x̂,∇ V̂i , û1, . . . , ûN

)

−Hi

(

x,∇V ∗
i , u∗

1, . . . , u∗
N

)

. (15)

However, since Hi = 0 ∀i ∈ N , the Bellman

residual error can be defined in a measurable form as

δh jbi = Hi(x, x̂,∇ V̂i , û1, . . . , ûN ). The objective is to update

both ûi (actors) and V̂i (critics) simultaneously based on the

minimization of the Bellman residual errors δh jbi . Altogether,

the actors ûi , the critics V̂i , and the identifiers F̂û constitute

the ACI architecture. To facilitate the subsequent analysis, the

following properties are given.

Property 1: Given a continuous function h : S → R
n ,

where S is a compact set, there exist ideal weights W and V

such that the function can be represented by an NN as

h (x) = W T σ
(

V T x
)

+ ε (x) where σ (·) is a nonlinear

activation function and ε (x) is the function reconstruction

error.

Property 2: The NN activation function σ (·) and its time

derivative σ ′ (·) with respect to its argument are bounded.

Property 3: The ideal NN weight matrices are bounded by

known positive constants [45], i.e., ||W || ≤ W̄ and ||V || ≤ V̄ .

Property 4: The NN function reconstruction errors and

their derivatives are bounded [45], i.e., ||ε|| ≤ ε̄ and
∣

∣

∣

∣ε′∣
∣

∣

∣ ≤ ε̄′.

IV. SYSTEM IDENTIFIER

Consider the two-player case for the dynamics given in (2)

as

ẋ = f (x) + g1 (x) u1 + g2 (x) u2

x (0) = x0 (16)

where u1, u2 ∈ R
n are the control inputs, and the state x ∈ R

n

is assumed to be measurable. The following assumptions about

the system will be utilized in the subsequent development.

Assumption 1: The input matrices g1 and g2 are known and

bounded, i.e., ‖g1‖ ≤ ḡ1 and ‖g2‖ ≤ ḡ2 where ḡ1 and ḡ2 are

known positive constants.

Assumption 2: The control inputs u1 and u2 are bounded

i.e., u1, u2 ∈ L∞.

Based on Property 1, the nonlinear system in (16) can be

represented using a multilayer NN as

ẋ = Fu (x, u1, u2)

= W T
f σ f

(

V T
f x
)

+ ε f (x) + g1 (x) u1 + g2 (x) u2 (17)

where W f ∈ R
N f +1×n and V f ∈ R

n×N f are unknown

ideal NN weight matrices with N f representing the neurons

in the output layers. The activation function is given by

σ f = σ(V T
f x) ∈ R

N f +1, and ε f : R
n → R

n is the function

reconstruction error in approximating the function f . The

proposed multilayer dynamic neural network (MLDNN) used

to identify the system in (16) is

·
x̂ = F̂u

(

x, x̂, u1, u2

)

= Ŵ T
f σ̂ f + g1 (x) u1 + g2 (x) u2 + μ (18)

where x̂ ∈ R
n is the state of the MLDNN, Ŵ f ∈ R

N f +1×n ,

V̂ f ∈ R
n×N f are the estimates of the ideal weights of the NNs,

σ̂ f = σ̂ (V̂ T
f x̂) ∈ R

N f +1 are the NN activation functions, and

μ ∈ R
n denotes the RISE feedback term defined as

μ � k (x̃ (t) − x̃ (0)) + ν (19)

where the measurable identification error x̃ ∈ R
n is defined as

x̃ � x − x̂ (20)

and ν ∈ R
n is a generalized Filippov solution to the differential

equation

ν̇ = (kα + γ ) x̃ + β1sgn (x̃) ; ν (0) = 0

where k, α, γ, β1 ∈ R are positive constant gains, and sgn (·)
denotes a vector signum function. The identification error

dynamics are developed by taking the time derivative of (20)

and substituting for (17) and (18) as

·
x̃ = F̃u

(

x, x̂, u1, u2

)

= W T
f σ f − Ŵ T

f σ̂ f + ε f (x) − μ (21)

where F̃u = Fu − F̂u . An auxiliary identification error is

defined as

r � ˙̃x + αx̃ . (22)

Taking the time derivative of (22) and using (21) yields

ṙ = W T
f σ ′

f V T
f ẋ − ˙̂

W T
f σ̂ f − Ŵ T

f σ̂ ′
f

˙̂
V T

f x̂ − Ŵ T
f σ̂ ′

f V̂ T
f

˙̂x
+ε̇ f (x) − kr − γ x̃ − β1sgn(x̃) + α ˙̃x (23)

where σ̂ ′
f = dσ(V T x̂)/d(V T x̂)

∣

∣

V T =V̂ T ∈ R
(N f +1)×N f . The

weight update laws for the DNN in (18) are developed based

on the subsequent stability analysis as

˙̂
W f = proj(Ŵw f σ̂

′
f V̂ T

f
˙̂x x̃ T ),

˙̂
V f = proj(Ŵv f

˙̂x x̃T Ŵ T
f σ̂ ′

f ) (24)
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where proj(·) is a smooth projection operator [46], [47],

and Ŵw f ∈ R
N f +1×N f +1, Ŵv f ∈ R

n×n are positive

constant adaptation gain matrices. Adding and subtracting

(1/2)W T
f σ̂ ′

f V̂ T
f

˙̂x + (1/2)Ŵ T
f σ̂ ′

f V T
f

˙̂x , and grouping similar

terms, the expression in (23) can be rewritten as

ṙ = Ñ + NB1 + N̂B2 − kr − γ x̃ − β1sgn(x̃) (25)

where the auxiliary signals, Ñ , NB1, and N̂B2 ∈ R
n in (25)

are defined as

Ñ � α ˙̃x − ˙̂
W T

f σ̂ f − Ŵ T
f σ̂ ′

f
˙̂

V T
f x̂

+1

2
W T

f σ̂ ′
f V̂ T

f
˙̃x + 1

2
Ŵ T

f σ̂ ′
f V T

f
˙̃x (26)

NB1 � W T
f σ ′

f V T
f ẋ − 1

2
W T

f σ̂ ′
f V̂ T

f ẋ

−1

2
Ŵ T

f σ̂ ′
f V T

f ẋ + ε̇ f (x) (27)

N̂B2 �
1

2
W̃ T

f σ̂ ′
f V̂ T

f
˙̂x + 1

2
Ŵ T

f σ̂ ′
f Ṽ T

f
˙̂x . (28)

To facilitate the subsequent stability analysis, an auxiliary

term NB2 ∈ R
n is defined by replacing ˙̂x in N̂B2 by ẋ, and

ÑB2 � N̂B2 − NB2. The terms NB1 and NB2 are grouped

as NB � NB1 + NB2. Using Properties 1–4, Assumption 1,

(22), (24), (27), and (28) the following inequalities can be

obtained
∥

∥Ñ
∥

∥ ≤ ρ1(‖z‖) ‖z‖ , ‖NB1‖ ≤ ζ1, ‖NB2‖ ≤ ζ2 (29)
∥

∥ṄB

∥

∥ ≤ ζ3 + ζ4ρ2(‖z‖) ‖z‖ (30)
∥

∥

∥

˙̃xT ÑB2

∥

∥

∥ ≤ ζ5 ‖x̃‖2 + ζ6 ‖r‖2 (31)

where z � [x̃T r T ]T ∈ R
2n , and ρ1, ρ2 : R → R are positive,

globally invertible, nondecreasing functions, and ζi ∈ R,

i = 1, . . . , 6 are computable positive constants. To facilitate

the subsequent stability analysis, let D ⊂ R
2n+2 be a domain

containing y = 0, where y ∈ R
2n+2 is defined as

y �
[

x̃T r T
√

P
√

Q f

]

T (32)

where the auxiliary signal P ∈ R is a generalized Filippov

solution to the differential equation [48]

Ṗ = −r T (NB1 − β1sgn(x̃)) − ˙̃xT NB2 (33)

+β2ρ2(‖z‖) ‖z‖ ‖x̃‖

P(0) = β1

n
∑

i=1

|x̃i (0)| − x̃T (0) NB (0)

where β1, β2 ∈ R are chosen according to the sufficient

conditions1

β1 > max(ζ1 + ζ2, ζ1 + ζ3

α ), β2 > ζ4 (34)

such that P(t) ≥ 0 for all t ∈ [0,∞). The auxiliary

function Q f : R
n(2N f +1) → R in (32) is defined as

Q f � 1/4α[tr(W̃ T
f Ŵ−1

w f W̃ f ) + tr(Ṽ T
f Ŵ−1

v f Ṽ f )], where tr(·)
denotes the trace of a matrix.

1The derivation of the sufficient conditions in (34) is provided in the
Appendix.

Theorem 1: For the system in (16), the identifier developed

in (18) along with its weight update laws in (24) ensures

asymptotic identification of the state and its derivative, in the

sense that

lim
t→∞

‖x̃(t)‖ = 0 and lim
t→∞

∥

∥ ˙̃x(t)
∥

∥ = 0

provided Assumptions 1 and 2 hold, and the control gains

k and γ are chosen sufficiently large based on the initial

conditions of the states,2 and satisfy the following sufficient

conditions

αγ > ζ5, k > ζ6 (35)

where ζ5 and ζ6 are introduced in (31), and β1, β2 introduced

in (33), are chosen according to the sufficient conditions

in (34).

Proof: To facilitate the subsequent development, let

the gains k and γ f be split as k � k1 + k2, γ f �

γ1 + γ2, and let λ � min{αγ1 − ζ5, k1 − ζ6},
ρ(‖z‖)2 � ρ1(‖z‖)2 + ρ2(‖z‖)2, and η � min{k2, αγ2/β

2
2 }.

Let D �
{

y(t) ∈ R
2n+2 | ‖y‖ ≤ ρ−1

(

2
√

λη
)}

and let

VI : D → R be a positive definite function defined as

VI � 1
2
r T r + 1

2
γ f x̃ T x̃ + P + Q f (36)

which satisfies the following inequalities:

U1(y) ≤ VI (y) ≤ U2(y) (37)

where U1, U2 : R
2n+2 → R are continuous positive definite

functions defined as

U1 (y) � 1
2

min(1, γ f ) ‖y‖2 U2 (y) � max(1, γ f ) ‖y‖2 .

Let ẏ = h(y, t) represent the closed-loop differential equa-

tions in (21), (24), (25), and (33), where h : R
2n+2 ×

[0,∞) → R
2n+2 denotes the right-hand side of the closed-

loop error signals. Using Filippov’s theory of differential

inclusion [49], the existence of solutions can be established for

ẏ ∈ K [h](y, t), where K [h] � ∩
δ>0

∩
μM=0

coh(B(y, δ) \
M, t), where ∩

μM=0
denotes the intersection over all sets M

of Lebesgue measure zero, co denotes convex closure,

and B(y, δ) =
{

w ∈ R4n+2| ‖y − w‖ < δ
}

. The generalized

time derivative of (36) exists almost everywhere (a.e.), and

V̇I (y) ∈a.e. ˙̃
VI (y) where

˙̃
VI =

⋂

ξ∈∂VI (y)

ξT K

[

ṙ T ˙̃x T 1

2
P− 1

2 Ṗ
1

2
Q− 1

2 Q̇

]T

where ∂VI is the generalized gradient of VI [50]. Since VI :
D → R is continuously differentiable

˙̃
VI can be simplified

as

˙̃
VI = ∇V T

I K

[

ṙ T ˙̃x T 1

2
P− 1

2 Ṗ
1

2
Q− 1

2 Q̇

]T

=
[

r T γ f x̃ T 2P
1
2 2Q

1
2

]

K

[

ṙ T ˙̃x T 1

2
P− 1

2 Ṗ
1

2
Q− 1

2 Q̇

]T

.

2See subsequent stability analysis.
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Using the calculus for K [·] from [51], and substituting the

dynamics from (25) and (33), yields

˙̃
VI ⊂ r T (Ñ + NB1 + N̂B2 − kr − β1K [sgn(x̃)] − γ f x̃)

+ γ f x̃ T (r − αx̃) − r T (NB1 − β1K [sgn(x̃)])
− ˙̃xT NB2 + β2ρ2(‖z‖) ‖z‖ ‖x̃‖

− 1

2
α
[

tr(W̃ T
f Ŵ−1

w f
˙̂

W f ) + tr(Ṽ T
f Ŵ−1

v f
˙̂

V f )
]

(38)

where K [sgn(x̃)] = SGN(x̃) [51], such that SGN(x̃i ) = 1

if x̃i > 0, [−1, 1] if x̃i = 0, and −1 if x̃i < 0. Substituting

(24), canceling common terms, and rearranging the expression

yields

˙̃
VI

a.e.
≤ − αγ f x̃ T x̃ − kr T r + r T Ñ + 1

2
αx̃ T W̃ T

f σ̂ ′
f V̂ T

f
˙̂x

+ 1

2
αx̃ T Ŵ T

f σ̂ ′
f Ṽ T

f
˙̂x + ˙̃xT (N̂B2 − NB2)

+ β2ρ2(‖z‖) ‖z‖ ‖x̃‖ − 1

2
αtr(W̃ T

f σ̂ ′
f V̂ T

f
˙̂x x̃ T )

−1

2
αtr(Ṽ T

f
˙̂x x̃T Ŵ T

f σ̂ ′
f ). (39)

The set inclusion in (38) reduces to the scalar inequality in (39)

because the RHS of (38) is set valued only on the Lebesgue

negligible set of times {t | x̃ = 0 & ˙̃x �= 0}. Substituting for

k � k1 + k2 and γ f � γ1 + γ2, using (24), (29), and (31), and

completing the squares, (39) can be upper bounded as

˙̃
VI

a.e.
≤ − (αγ1 − ζ5) ‖x̃‖2 − (k1 − ζ6) ‖r‖2

+ ρ1(‖z‖)2

4k2

‖z‖2 + β2
2ρ2(‖z‖)2

4αγ2

‖z‖2 . (40)

Provided the sufficient conditions in (35) are satisfied, (40)

can be rewritten as

˙̃
VI

a.e.
≤ −λ ‖z‖2 + ρ(‖z‖)2

4η
‖z‖2

a.e.
≤ −U(y) ∀y ∈ D. (41)

In (41), U(y) = c ‖z‖2 is a continuous, positive semidefinite

function defined on D, where c is a positive constant.

The inequalities in (37) and (41) can be used to show that

VI ∈ L∞; hence, x̃, r ∈ L∞. Using (22), standard linear

analysis can be used to show that ˙̃x ∈ L∞, and since ẋ ∈ L∞,
˙̂x ∈ L∞. Since Ŵ f ∈ L∞ from the use of projection in (24),

σ̂ f ∈ L∞ from Property 2, and u ∈ L∞ from Assumption 2,

(18) can be used to conclude that μ ∈ L∞. Using the above

bounds and the fact that σ̂ ′
f , ε̇ f ∈ L∞, it can be shown

from (23) that ṙ ∈ L∞. Let S ⊂ D denote a set defined as

S �

{

y⊂ D | U2(y) < 1
2

(

ρ−1
(

2
√

λη
))2
}

. (42)

From (41), [52, Corollary 1] can be invoked to show that

c ‖z (t)‖2 → 0 as t → ∞, ∀y(0) ∈ S. Using the definition of

z the following result can be shown

‖x̃(t)‖ ,
∥

∥ ˙̃x(t)
∥

∥, ‖r (t)‖ → 0 as t → ∞ ∀y(0) ∈ S.

Note that the region of attraction in (42) can be made arbi-

trarily large to include any initial conditions by increasing the

control gain η.

V. AC DESIGN

Using Property 1 and (9), the optimal value function and

the optimal controls can be represented by NNs as

V ∗
1 (x) = W T

1 φ1(x) + ε1(x)

u∗
1(x) = −1

2
R−1

11 gT
1 (x)

(

φ′T
1 (x)W1 + ε′

1(x)T
)

V ∗
2 (x) = W T

2 φ2(x) + ε2(x)

u∗
2(x) = −1

2
R−1

22 gT
2 (x)

(

φ′T
2 (x)W2 + ε′

2(x)T
)

(43)

where W1, W2 ∈ R
N are unknown ideal NN weights, N is

the number of neurons, φi = [φi1 φi2. . . φi N ]T : R
n → R

N

are smooth NN activation functions, such that φi j (0) = 0 and

φ′
i j (0) = 0 j = 1, . . . , N and i = 1, 2, and ε1, ε2 : R

n → R

are the function reconstruction errors.

Assumption 3: The NN activation functions
{

φi j : j = 1, . . . , N, i = 1, 2
}

are chosen such that as

N → ∞, φ provides a complete independent basis for V ∗
1

and V ∗
2 .

Using Assumption 3 and Weierstrass higher order approxi-

mation Theorem, both V ∗
i and ∇V ∗

i can be uniformly approx-

imated by NNs in (43), i.e., as N → ∞, the approximation

errors εi , ε
′
i→ 0 for i = 1, 2, respectively. The critic V̂ and

the actor û approximate the optimal value function and the

optimal controls in (43), and are given as

V̂1(x) = Ŵ T
1cφ1(x), û1 (x) = −1

2
R−1

11 gT
1 (x)φ′T

1 (x)Ŵ1a

V̂2(x) = Ŵ T
2cφ2(x), û2 (x) = −1

2
R−1

22 gT
2 (x)φ′T

2 (x)Ŵ2a (44)

where Ŵ1c, Ŵ2c ∈ R
N and Ŵ1a, Ŵ2a ∈ R

N are estimates of

the ideal weights of the critic and actor NNs, respectively. The

weight estimation errors for the critic and actor are defined

as W̃ic � Wi − Ŵic and W̃ia � Wi − Ŵia for i = 1, 2,

respectively. The actor and critic NN weights are both updated

based on minimizing the Bellman error δh jb in (14), which can

be rewritten by substituting V̂1 and V̂2 from (44) as

δh jb1 = Ŵ T
1cφ

′
1 F̂û + r1(x, û1, û2) = Ŵ T

1cω1 + r1(x, û1, û2)

δh jb2 = Ŵ T
2cφ

′
2 F̂û + r2(x, û1, û2) = Ŵ T

2cω2 + r1(x, û1, û2)

(45)

where ωi (x, û, t) � φ′
i F̂û ∈ R

N for i = 1, 2, is the critic NN

regressor vector.

A. Least Squares Update for the Critic

Consider the integral squared Bellman error Ec

Ec(Ŵ1c, Ŵ2c, t) =
t
ˆ

0

(

δ2
h jb1

(τ ) + δ2
h jb2

(τ )
)

dτ. (46)

The LS update law for the critic Ŵ1c is generated by mini-

mizing the total prediction error in (46)

∂ Ec

∂Ŵ1c

= 2

t
ˆ

0

δh jb1(τ )
∂δh jb1(τ )

∂Ŵ1c(τ )
dτ = 0
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= Ŵ T
1c

t
ˆ

0

ω1(τ )ω1(τ )T dτ +
t
ˆ

0

ω1(τ )T r1(τ ) dτ = 0

Ŵ1c = −

⎛

⎝

t
ˆ

0

ω1(τ )ω1(τ )T dτ

⎞

⎠

−1 t
ˆ

0

ω1(τ )r1(τ ) dτ

which gives the LS estimate of the critic weights, provided

(
´ t

0 ω1(τ )ω1(τ )T dτ )−1 exists. Likewise, the LS update law

for the critic Ŵ2c is generated by

Ŵ2c = −

⎛

⎝

t
ˆ

0

ω2(τ )ω2(τ )T dτ

⎞

⎠

−1 t
ˆ

0

ω2(τ )r2(τ ) dτ.

The recursive formulation of the normalized LS algorithm [53]

gives the update laws for the two critic weights as

˙̂
W1c = −η1cŴ1c

ω1

1 + ν1ω
T
1 Ŵ1cω1

δh jb1

˙̂
W2c = −η2cŴ2c

ω2

1 + ν2ω
T
2 Ŵ2cω2

δh jb2 (47)

where ν1, ν2, η1c, η2c ∈ R are constant positive gains and

Ŵic � (
´ t

0 ωi (τ )ωi (τ )T dτ )−1 ∈ R
N×N for i = 1, 2, are

symmetric estimation gain matrices generated by

Ŵ̇1c = −η1c

(

−λ1Ŵ1c + Ŵ1c
ω1ω1

T

1 + ν1ω
T
1 Ŵ1cω1

Ŵ1c

)

Ŵ̇2c = −η2c

(

−λ2Ŵ2c + Ŵ2c
ω2ω2

T

1 + ν2ω
T
2 Ŵ2cω2

Ŵ2c

)

(48)

where λ1, λ2 ∈ (0, 1) are forgetting factors. The use of

forgetting factors ensures that Ŵ1c and Ŵ2c are positive-definite

for all time and prevents arbitrarily small values in some

directions, making adaptation in those directions very slow

(also called the covariance wind-up problem) [54], [55]. Thus,

the covariance matrices (Ŵ1c, Ŵ2c) can be bounded as

ϕ11 I ≤ Ŵ1c ≤ ϕ01 I, ϕ12 I ≤ Ŵ2c ≤ ϕ02 I. (49)

B. Gradient Update for the Actor

The actor update, like the critic update in Section V-A, is

based on the minimization of the Bellman error δh jb. However,

unlike the critic weights, the actor weights appear nonlinearly

in δh jb, making it problematic to develop a LS update law.

Hence, a gradient update law is developed for the actor that

minimizes the squared Bellman error Ea � δ2
h jb1

+ δ2
h jb2

,

whose gradients are given as

∂ Ea

∂Ŵ1a

= (Ŵ1a − Ŵ1c)
T φ′

1G1φ
′T
1 δh jb1

+
(

Ŵ T
1aφ

′
1G21 − Ŵ T

2cφ
′
2G1

)

φ′T
1 δh jb2

∂ Ea

∂Ŵ2a

=
(

Ŵ T
2aφ′

2G12 − Ŵ T
1cφ

′
1G2

)

φ′T
2 δh jb1

+ (Ŵ2a − Ŵ2c)
T φ′

2G2φ
′T
2 δh jb2 (50)

where Gi � gi R−1
ii gi ∈ R

n×n and G j i � gi R−1
ii R j i R−1

ii gi ∈
R

n×n , for i = 1, 2 and j = 1, 2, are symmetric matrices.

Using (50), the actor NNs are updated as

·
Ŵ 1a = proj

{

− Ŵ11a
√

1+ωT
1 ω1

∂Ea

∂Ŵ1a
− Ŵ12a(Ŵ1a − Ŵ1c)

}

·
Ŵ 2a = proj

{

− Ŵ21a
√

1+ωT
2 ω2

∂Ea

∂Ŵ2a
− Ŵ22a(Ŵ2a − Ŵ2c)

}

(51)

where Ŵ11a, Ŵ12a, Ŵ21a, Ŵ22a ∈ R are positive adaptation

gains, and proj{·} is a projection operator used to bound

the weight estimates3 [46], [47]. The first term in (51) is

normalized and the last term is added as feedback for stability

(based on the subsequent stability analysis).

VI. STABILITY ANALYSIS

The dynamics of the critic weight estimation errors W̃1c and

W̃2c can be developed using (11)–(14), (45) and (47), as

·
W̃ 1c = η1cŴ1c

ω1

1 + ν1ω
T
1 Ŵ1cω1

×
[

−W̃ T
1cω1 − W T

1 φ′
1 F̃û − u∗T

1 R11u∗
1 − ε′

1v Fu∗

+ ûT
1 R11û1 + W T

1 φ′
1

(

g1(û1 − u∗
1) + g2(û2 − u∗

2)
)

− u∗T

2 R12u∗
2 + ûT

2 R12û2

]

·
W̃ 2c = η2cŴ2c

ω2

1 + ν2ω
T
2 Ŵ2cω2

×
[

−W̃ T
2cω2 − W T

2 φ′
2 F̃û − u∗T

2 R22u∗
2 − ε′

2v Fu∗

+ ûT
2 R22û2W T

2 φ′
2

(

g1(û1 − u∗
1) + g2(û2 − u∗

2)
)

− u∗T

1 R21u∗
1 + ûT

1 R21û1

]

. (52)

Substituting for (u∗
1, u∗

2) and (û1, û2) from (43) and (44),

respectively, in (52) yields

·
W̃ 1c = −η1cŴ1cψ1ψ

T
1 W̃1c + η1cŴ1c

ω1

1 + ν1ω
T
1 Ŵ1cω1

×
[

−W T
1 φ′

1 F̃û + 1

4
W̃ T

2aφ′
2G12φ

′T
2 W̃2a − 1

4
ε′

2G12ε
′T
2

+ 1

2

(

W̃2aφ′
2 + ε′T

2

) (

G2φ
′T
1 W1 − G12φ

′T
2 W2

)

+ 1

4
W̃ T

1aφ′
1G1φ

′T
1 W̃1a − 1

4
ε′

1G1ε
′T
1 − ε′

1 Fu∗

]

·
W̃ 2c = −η2cŴ2cψ2ψ

T
2 W̃2c + η2cŴ2c

ω2

1 + ν2ω
T
2 Ŵ2cω2

×
[

−W T
2 φ′

2 F̃û + 1

4
W̃ T

1aφ
′
1G21φ

′T
1 W̃1a − 1

4
ε′

1G21ε
′T
1

+ 1

2

(

W̃1aφ′
1 + ε′T

1

) (

G1φ
′T
2 W2 − G21φ

′T
1 W1

)

+ 1

4
W̃ T

2aφ′
2G2φ

′T
2 W̃2a − 1

4
ε′

2G2ε
′T
2 − ε′

2 Fu∗

]

(53)

3Instead of the projection algorithm, σ−modification-like terms −Ŵ13a Ŵ1a

and −Ŵ13a Ŵ1a can be added to the update laws to ensure that the weights

Ŵ1a and Ŵ2a remain bounded, resulting in additional gain conditions.
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where ψi (t) � ωi (t)/(1 + νiωi (t)
T Ŵic(t)ωi (t))

1/2 ∈ R
N

are the normalized critic regressor vectors for i = 1, 2,

respectively, bounded as

‖ψ1‖ ≤ 1
√

ν1ϕ11
, ‖ψ2‖ ≤ 1

√
ν2ϕ12

(54)

where ϕ11 and ϕ12 are introduced in (49). The error sys-

tems in (53) can be represented as the following perturbed

systems:
·

W̃ 1c = �1 + �01�1,
·

W̃ 2c = �2 + �02�2 (55)

where �i (W̃ic, t) � −ηicŴicψiψ
T
i W̃ic ∈ R

N i = 1, 2,

denotes the nominal system, �0i � ηicŴicωi/1 + νiω
T
i Ŵicωi

denotes the perturbation gain, and the perturbations

�i ∈ R
N are denoted as

�i �

[

−W T
i φ′

i F̃û + 1

4
W̃ T

iaφ′
i Giφ

′T
i W̃ia − ε′

i Fu∗

+ 1

4
W̃ T

kaφ′
k Gikφ

′T
k W̃ka − 1

4
ε′

kGikε
′T
k − 1

4
ε′

i Giε
′T
i

+ 1

2

(

W̃kaφ′
k + ε′T

k

) (

Gkφ
′T
i Wi − Gikφ

′T
k Wk

)

]

where i = 1, 2 and k = 3 − i . Using [53, Th. 2.5.1] it can be

shown that the nominal systems

·
W̃ 1c = −η1cŴ1cψ1ψ

T
1 W̃1c,

·
W̃ 2c = −η2cŴ2cψ2ψ

T
2 W̃2c (56)

are exponentially stable if the bounded signals (ψ1(t), ψ2(t))

are uniformly persistently exciting (u-PE) as [56]

μi2 I ≥
t0+δi
ˆ

t0

ψi (τ )ψi (τ )T dτ ≥ μi1 I ∀t0 ≥ 0, i = 1, 2

where μi1, μi2, δi ∈ R are positive constants independent of

the initial conditions. Since �i is continuously differentiable in

W̃ic and the Jacobian ∂�i/∂W̃ic = −ηicŴicψiψ
T
i is bounded

for the exponentially stable system (56) for i = 1, 2, the

converse Lyapunov theorem [57, Th. 4.14] can be used to

show that there exists a function Vc : R
N × [0, ∞) → R,

which satisfies the following inequalities

c11‖W̃1c‖2 + c12‖W̃2c‖2 ≤ Vc(W̃1c, W̃2c, t)

Vc(W̃1c, W̃2c, t) ≤ c21‖W̃1c‖2 + c22‖W̃2c‖2

−c31‖W̃1c‖2 − c32‖W̃2c‖2 ≥ ∂Vc

∂ t
+ ∂Vc

∂W̃1c

�1(W̃1c, t)

+ ∂Vc

∂W̃2c

�2(W̃2c, t)

∥

∥

∥

∥

∂Vc

∂W̃1c

∥

∥

∥

∥

≤ c41‖W̃1c‖
∥

∥

∥

∥

∂Vc

∂W̃2c

∥

∥

∥

∥

≤ c42‖W̃2c‖ (57)

for some positive constants c1i , c2i , c3i , c4i ∈ R for i = 1, 2.

Using Properties 1–4, Assumption 1, the projection bounds

in (51), the fact that Fu∗ ∈ L∞ [using (17)], and provided

the conditions of Theorem 1 hold (required to prove that

F̃û ∈ L∞), the following bounds are developed to facilitate

the subsequent stability proof

κ1 ≥ ‖W̃1a‖; κ2 ≥ ‖W̃2a‖

κ3 ≥ ‖φ′
1G1φ

′T
1 ‖; κ4 ≥ ‖φ′

2G2φ
′T
2 ‖

κ5 ≥ ‖�1‖; κ6 ≥ ‖�2‖

κ7 ≥ 1

4
‖G1 − G21‖‖∇V ∗

1 ‖2 + 1

4
‖G2 − G12‖‖∇V ∗

2 ‖2

+1

2
‖∇V ∗

1 (G2 + G1) ∇V ∗T
2 ‖

κ8 ≥
∥

∥

∥

∥

−1

2

(

∇V ∗
1 − ∇V ∗

2

)

(

G1φ
′T
1 W1a − G2φ

′T
2 W2a

)

+1

2

(

∇V ∗
1 − ∇V ∗

2

)

(

G1φ
′T
1 W̃1a − G2φ

′T
2 W̃2a

)

∥

∥

∥

∥

κ9 ≥ ‖φ′
1G21φ

′T
1 ‖; κ10 ≥ ‖φ′

2G1φ
′T
1 ‖

κ11 ≥ ‖φ′
1G2φ

′T
2 ‖; κ12 ≥ ‖φ′

2G12φ
′T
2 ‖ (58)

where κ j ∈ R for j = 1, . . . , 12 are computable positive

constants.

Theorem 2: If Assumptions 1–3 hold, the regressors ψi

for i = 1, 2 are u-PE, and provided (34) and (35), and the

following sufficient gain conditions are satisfied:

c31 > Ŵ11aκ1κ3 + Ŵ21aκ2κ11

c32 > Ŵ21aκ2κ4 + Ŵ11aκ1κ10

where Ŵ11a, Ŵ21a, c31, c32, κ1, κ2, κ3, and κ4 are introduced

in (51), (57), and (58), then the controller in (44), the AC

weight update laws in (47), (48), and (51), and the identifier

in (18) and (24), guarantee that the state of the system x(t),

and the AC weight estimation errors (W̃1a(t), W̃2a(t)) and

(W̃1c(t), W̃2c(t)) are UUB.

Proof: To investigate the stability of (16) with control

inputs û1 and û2, and the perturbed system (55), consider

VL : S × R
N × R

N × [0,∞) → R as the continuously

differentiable, positive-definite Lyapunov function candidate,

given as

VL � V ∗
1 (x) + V ∗

2 (x) + Vc(W̃1c, W̃2c, t)

+ 1

2
W̃ T

1a W̃1a + 1

2
W̃ T

2a W̃2a

where V ∗
i for i = 1, 2 [the optimal value function for (16),

is the Lyapunov function for (16), and Vc is the Lyapunov

function for the exponentially stable system in (56)]. Since

(V ∗
1 , V ∗

2 ) are continuously differentiable and positive-definite

from (5), from [57, Lemma 4.3], there exist class K func-

tions α1 and α2 defined on [0, r ], where Br ⊂ X , such

that

α1(‖x‖) ≤ V ∗
1 (x) + V ∗

2 (x) ≤ α2(‖x‖), ∀x ∈ Br . (59)

Using (57) and (59), VL can be bounded as

VL ≥ α1(‖x‖) + c11‖W̃1c‖2 + c12‖W̃2c‖2

+1

2

(

‖W̃1a‖2 + ‖W̃2a‖2
)
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VL ≤ α2(‖x‖) + c21‖W̃1c‖2 + c22‖W̃2c‖2

+1

2

(

‖W̃1a‖2 + ‖W̃2a‖2
)

which can be written as α3(‖w‖) ≤ VL(x, W̃1c, W̃2c, W̃1a,

W̃2a, t) ≤ α4(‖w‖), ∀w ∈ Bs, where w � [x T W̃ T
1c

W̃ T
2c W̃ T

1a W̃ T
2a]T ∈ R

n+4N , α3 and α4 are class K functions

defined on [0, s], where Bs ⊂ S × R
N × R

N × R
N × R

N

is a ball of radius s centered at the origin. Taking the time

derivative of VL(·) yields

V̇L =
(

∇V ∗
1 + ∇V ∗

2

) (

f + g1û1 + g2û2

)

+∂Vc

∂ t
+ ∂Vc

∂W̃1c

�1 + ∂Vc

∂W̃1c

�01�1 + ∂Vc

∂W̃2c

�2

+ ∂Vc

∂W̃2c

�02�2 − W̃ T
1a

˙̂
W1a − W̃ T

2a
˙̂

W2a (60)

where the time derivatives of V ∗
i for i = 1, 2, are taken

along the trajectories of (16) with control inputs
(

û1, û2

)

and the time derivative of Vc is taken along the along the

trajectories of the perturbed (55). Using (12), ∇V ∗
i f =

−∇V ∗
i

(

g1u∗
1 + g2u∗

2

)

− Qi (x) −
2
∑

j=1

u∗T
j Ri j u∗

j for i = 1, 2.

Substituting for the ∇V ∗
i f terms in (60), using the fact that

∇V ∗
i gi = −2u∗T

i Rii from (9), and using (51) and (57), (60)

can be upper bounded as

V̇L ≤ −Q − u∗T

1 (R11 + R21) u∗
1 − u∗T

2 (R22 + R12) u∗
2

+ 2u∗T

1 R11(u
∗
1 − û1) + 2u∗T

2 R22(u
∗
2 − û2)

+ ∇V ∗
1 g2

(

û2 − u∗
2

)

+ ∇V ∗
2 g1

(

û1 − u∗
1

)

+ c41�01‖W̃1c‖‖�1‖ − c31‖W̃1c‖2

+ c42�02‖W̃2c‖‖�2‖ − c32‖W̃2c‖2

+ W̃ T
1a

⎡

⎣

Ŵ11a
√

1 + ωT
1 ω1

∂ Ea

∂Ŵ1a

+ Ŵ12a(Ŵ1a − Ŵ1c)

⎤

⎦

+ W̃ T
2a

⎡

⎣

Ŵ21a
√

1 + ωT
2 ω2

∂ Ea

∂Ŵ2a

+Ŵ22a(Ŵ2a − Ŵ2c)

⎤

⎦ (61)

where Q � Q1 + Q2. Substituting for u∗
i , ûi , δh jbi , and �i

for i = 1, 2 using (9), (44), (52), and (55), respectively, and

using (49) and (54) in (61), yields

V̇L ≤ 1

4
‖G1 − G21‖‖∇V ∗

1 ‖2 + 1

4
‖G2 − G12‖‖∇V ∗

2 ‖2

+1

2
‖∇V ∗

1 (G1 + G2) ∇V ∗T
2 ‖ − Q

−1

2

(

∇V ∗
1 − ∇V ∗

2

)

(

G1φ
′T
1 W1a − G2φ

′T
2 W2a

)

+1

2

(

∇V ∗
1 − ∇V ∗

2

)

(

G1φ
′T
1 W̃1a − G2φ

′T
2 W̃2a

)

+c41
η1cϕ01

2
√

ν1ϕ11
‖�1‖‖W̃1c‖ − c31‖W̃1c‖2

+c42
η2cϕ02

2
√

ν2ϕ12
‖�2‖‖W̃2c‖ − c32‖W̃2c‖2

−Ŵ12a‖W̃1a‖2 − Ŵ22a‖W̃2a‖2

+Ŵ12a‖W̃1a‖‖W̃1c‖ + Ŵ22a‖W̃2a‖‖W̃2c‖

+ Ŵ11a
√

1 + ωT
1 ω1

×W̃ T
1a

((

W̃1c − W̃1a

)T

φ′
1G1φ

′T
1

(

−W̃ T
1cω1 + �1

)

+
(

W̃ T
1aφ′

1G21−W̃ T
2cφ

′
2G2

)

φ′T
1

(

−W̃ T
2cω2 + �2

)

+
(

W T
1 φ′

1G21−W T
2 φ′

2G1

)

φ′T
1

(

−W̃ T
2cω2 + �2

))

+ Ŵ21a
√

1+ωT
2 ω2

×W̃ T
2a

((

W̃2c−W̃2a

)T

φ′
2G2φ

′T
2

(

−W̃ T
2cω2+�2

)

+
(

W̃ T
2aφ′

2G12−W̃ T
1cφ

′
1G2

)

φ′T
2

(

−W̃ T
1cω1+�1

)

+
(

W T
2 φ′

2G12−W T
1 φ′

1G2

)

φ′T
2

(

−W̃ T
1cω1+�1

))

.

(62)

Using the bounds developed in (58), (62) can be further upper

bounded as

V̇L ≤ −Q − (c31 − Ŵ11aκ1κ3 − Ŵ21aκ2κ11)‖W̃1c‖2

−(c32 − Ŵ21aκ2κ4 − Ŵ11aκ1κ10)‖W̃2c‖2 + �2‖W̃2c‖
−Ŵ12a‖W̃1a‖2 − Ŵ22a‖W̃2a‖2 + �1‖W̃1c‖
+Ŵ11aκ1

(

κ1 (κ3κ5 + κ6κ9) + κ6

(

W̄1κ9 + W̄2κ10

))

+Ŵ21aκ2

(

κ2 (κ4κ6 + κ5κ12) + κ5

(

W̄1κ11 + W̄2κ12

))

+κ7 + κ8

where

�1 �

(

c41η1cϕ01

2
√

ν1ϕ11
κ5 + Ŵ11a (κ1κ3 (κ1 + κ5)) + Ŵ12aκ1

+ Ŵ21aκ2

(

κ11

(

κ5 + W̄1

)

+ κ12

(

κ2 + W̄2

))

)

�2 �

(

c42η2cϕ02

2
√

ν2ϕ12
κ6 + Ŵ21a (κ2κ4 (κ2 + κ6)) + Ŵ22aκ2

+ Ŵ11aκ1

(

κ9

(

κ1 + W̄1

)

+ κ10

(

κ6 + W̄2

))

)

.

Provided c31 > Ŵ11aκ1κ3 + Ŵ21aκ2κ11 and c32 > Ŵ21aκ2κ4 +
Ŵ11aκ1κ10, completing the square yields

V̇L ≤ −Q − Ŵ22a‖W̃2a‖2 − Ŵ12a‖W̃1a‖2

−(1 − θ1)(c31 − Ŵ11aκ1κ3 − Ŵ21aκ2κ11)‖W̃1c‖2

−(1 − θ2)(c32 − Ŵ21aκ2κ4 − Ŵ11aκ1κ10)‖W̃2c‖2

+Ŵ11aκ1

(

κ1 (κ3κ5 + κ6κ9) + κ6

(

W̄1κ9 + W̄2κ10

))

+Ŵ21aκ2

(

κ2 (κ4κ6 + κ5κ12) + κ5

(

W̄1κ11 + W̄2κ12

))

+ �2
1

4θ1(c31 − Ŵ11aκ1κ3 − Ŵ21aκ2κ11)
+ κ7

+ �2
2

4θ2(c32 − Ŵ21aκ2κ4 − Ŵ11aκ1κ10)
+ κ8 (63)
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where θ1, θ2 ∈ (0, 1). Since Q is positive definite, according

to [57, Lemma 4.3], there exist class K functions α5 and α6

such that

α5(‖w‖) ≤ F (‖w‖) ≤ α6(‖w‖) ∀w ∈ Bs (64)

where

F (‖w‖) = Q + Ŵ22a‖W̃2a‖2 + Ŵ12a‖W̃1a‖2

+(1 − θ1)(c31 − Ŵ11aκ1κ3 − Ŵ21aκ2κ11)‖W̃1c‖2

+(1 − θ2)(c32 − Ŵ21aκ2κ4 − Ŵ11aκ1κ10)‖W̃2c‖2.

Using (64), in (63) can be further upper bounded as V̇L ≤
−α5(‖w‖) + ϒ, where

ϒ = Ŵ11aκ1

(

κ1 (κ3κ5 + κ6κ9) + κ6

(

W̄1κ9 + W̄2κ10

))

+Ŵ21aκ2

(

κ2 (κ4κ6 + κ5κ12) + κ5

(

W̄1κ11 + W̄2κ12

))

+ �2
1

4θ1(c31 − Ŵ11aκ1κ3 − Ŵ21aκ2κ11)
+ κ7

+ �2
2

4θ2(c32 − Ŵ21aκ2κ4 − Ŵ11aκ1κ10)
+ κ8

which proves that V̇L is negative, whenever w lies outside the

compact set �w � {w : ‖w‖ ≤ α−1
5 (ϒ)}, and hence, ‖w(t)‖

is UUB, according to [57, Th. 4.18].

Remark 3: Since the actor, critic, and identifier are contin-

uously updated, the developed RL algorithm can be compared

with fully optimistic PI in machine learning [11], where policy

evaluation and policy improvement are done after every state

transition, unlike traditional PI, where policy improvement

is done after convergence of the policy evaluation step.

Convergence behavior of optimistic PI is not fully understood,

and by considering an adaptive control framework, this result

investigates the convergence and stability behavior of fully

optimistic PI in continuous-time.

Remark 4: The PE requirement in Theorem 2 is equivalent

to the exploration paradigm in RL which ensures sufficient

sampling of the state space and convergence to the optimal

policy [15].

VII. NASH SOLUTION

The subsequent theorem demonstrates that the actor NN

approximations converge to the approximate coupled Hamil-

tonians in (10). It can also be shown that the approxi-

mate controllers in (44) approximate the optimal solutions

to the two-player Nash game for the dynamic system given

in (16).

Corollary 5: Provided the assumptions and sufficient gain

constraints in Theorem 2 hold, then the actor NNs Ŵ1a and

Ŵ2a converge to the approximate coupled HJB solution, in the

sense that the Hamiltonians in (13) are UUB.

Proof: Substituting the approximate control laws in (44),

in the approximate Hamiltonians {H1, H2} in (13), yields

H1 = rû1
+ ∇ V̂1 Fû

= Q1

(

x
)

+ ∇ V̂1 f
(

x
)

+ 1

4
∇ V̂1G1∇ V̂ T

1

+1

4
∇ V̂2G12∇ V̂ T

2 − 1

2
∇ V̂1

(

G1∇ V̂ T
1 + G2∇ V̂ T

2

)

and

H2 = rû2
+ ∇ V̂2 Fû

= Q2 (x) + ∇ V̂2 f (x) + 1

4
∇ V̂2G2∇ V̂ T

2

+1

4
∇ V̂1G21∇ V̂ T

1 − 1

2
∇ V̂2

(

G1∇ V̂ T
1 + G2∇ V̂ T

2

)

.

After adding and subtracting

∇Vi f = −∇Vi

(

g1u∗
1 + g2u∗

2

)

− Qi (x) −
2
∑

j=1

u∗T
j Ri j u∗

j

for i = 1, 2 and performing basic algebraic operations, and

using ∇ Ṽ T
i � ∇V T

i −∇ V̂ T
i = φ′T

i W̃ia +ε′T
i , the Hamiltonians

can be rewritten as

H1 = −∇ Ṽ1 f (x) − 1

4
∇ Ṽ1G1∇ Ṽ T

1 − 1

2
∇V2G12∇ Ṽ T

2

−1

2
∇ Ṽ1G2∇ Ṽ T

2 + 1

2
∇V1G1∇ Ṽ T

1 + 1

4
∇ Ṽ2G12∇ Ṽ T

2

+1

2
∇V1G2∇ Ṽ T

2 + 1

2
∇ Ṽ1G2∇V T

2 (65)

and

H2 = −∇ Ṽ2 f (x) − 1

4
∇ Ṽ2G2∇ Ṽ T

2 − 1

2
∇V1G21∇ Ṽ T

1

−1

2
∇ Ṽ2G1∇ Ṽ T

1 + 1

2
∇V2G2∇ Ṽ T

2 + 1

4
∇ Ṽ1G21∇ Ṽ T

1

+1

2
∇V2G1∇ Ṽ T

1 + 1

2
∇ Ṽ2G1∇V T

1 . (66)

If the assumptions and sufficient gain constraints in

Theorem 2 hold, then the right side of (65) and (66)

can be upper bounded by a function that is UUB, i.e.,

‖Hi‖ ≤ �i

(

W̃1a, W̃2a, t
)

for i = 1, 2. Thus, the approximate

HJBs are also UUB.

Corollary 6: Provided the assumptions and sufficient gain

constraints in Theorem 2 hold, the approximate control laws in

(44) converge to the approximate Nash solution of the game.

Proof: Consider the control errors (ũ1, ũ2) between the

optimal control laws in (9) and the approximate control laws

in (44) given as ũ1 � u∗
1 − û1, ũ2 � u∗

2 − û2. Substituting for

the optimal control laws in (9) and the approximate control

laws in (44) and using W̃ia = Wi − Ŵia for i = 1, 2, yields

ũ1 = −1

2
R−1

11 gT
1 (x)φ′

1(x)
(

W̃1a + ε′
1(x)T

)

ũ2 = −1

2
R−1

22 gT
2 (x)φ′

2(x)
(

W̃2a + ε′
2(x)T

)

. (67)

Using Properties 1–4, (67) can be upper bounded as

‖ũ1‖ ≤ 1

2
λmin

(

R−1
11

)

ḡ1

∥

∥φ′
1

∥

∥

(∥

∥W̃1a

∥

∥+ ε̄′
1

)

‖ũ2‖ ≤ 1

2
λmin

(

R−1
22

)

ḡ2

∥

∥φ′
2

∥

∥

(∥

∥W̃2a

∥

∥+ ε̄′
2

)

.

Given that the assumptions and sufficient gain constraints in

Theorem 2 hold, then all terms to the right of the inequal-

ity can be bounded by a function that is UUB, therefore,

the control errors (ũ1, ũ2) are UUB and the approximate

control laws
(

û1, û2

)

give the approximate Nash equilibrium

solution.
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VIII. SIMULATIONS

A. Two-Player Game With a Known

Nash Equilibrium Solution

The following two player nonzero sum game considered in

[31], [38], [39], and [58] has a known analytical solution, and

hence is utilized in this paper to demonstrate the performance

of the developed technique. The system dynamics are given

by ẋ = f (x) + g1 (x) u1 + g2 (x) u2, where

f (x) =

⎡

⎢

⎢

⎢

⎢

⎣

(x2 − 2x1)
⎛

⎜

⎝

−1

2
x1 − x2 + 1

4
x2

(

cos (2x1) + 2
)2

+1

4
x2

(

sin
(

4x2
1

)

+ 2
)2

⎞

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎦

g1 (x) =
[

0 cos (2x1) + 2
]T

(68)

g2 (x) =
[

0 sin
(

4x2
1

)

+ 2
]T

. (69)

The objective is to design u1 and u2 to minimize the cost

functionals in (3), where the local cost is given by ri =
xT Qi x + uT

i Rii ui + uT
j Ri j u j , i = 1, 2, j = 3 − i, where

R11 = 2R22 = 2, R12 = 2R21 = 2, Q1 = 2Q2 =
I2×2. The known analytical solutions for the optimal value

functions of players 1 and 2 are given as V ∗
1 (x) = 1/2x2

1 +
x2

2 , V ∗
2 (x) = 1/4x2

1 + 1/2x2
2 , and the corresponding opti-

mal control inputs are given as u∗
1 = − (cos (2x1) + 2) x2,

u∗
2 = −1/2(sin(4x2

1) + 2)x2.

To implement the developed technique, the activation func-

tion for critic NNs are selected as φi = [ x2
1 x1x2 x2

2 ]T ,

i = 1, 2, while the activation function for the identifier DNN is

selected as a symmetric sigmoid with 5 neurons in the hidden

layer. The identifier gains are selected as k = 300, α = 200,

γ f = 5, β1 = 0.2, Ŵw f = 0.1I6×6, Ŵv f = 0.1I2×2, and

the gains of the AC learning laws are selected as Ŵ11a =
Ŵ12a = 10, Ŵ21a = Ŵ22a = 20, η1c = 50, η2c = 10,

ν1 = ν2 = 0.001, and λ1 = λ2 = 0.03. The covariance

matrix is initialized to Ŵ (0) = 5000I3×3, the NN weights for

state derivative estimator are randomly initialized with values

between [−1, 1], the weights for the actor and the critic are

initialized to [3, 3, 3]T , the state estimates are initialized to

zero, and the states are initialized to x (0) = [3,−1]. Similar

to results such as [37]–[39], [41], and [59], a small amplitude

exploratory signal (noise) is added to the control to excite

the states for the first 6 s of the simulation, as seen from

the evolution of states and control in Fig. 1. The identifier

approximates the system dynamics, and the state derivative

estimation error is shown in Fig. 1. The time histories of

the critic NN weights and the actors NN weights are given

in Fig. 2, where solid lines denote the weight estimates and

dotted lines denote the true values of the weights. Persistence

of excitation ensures that the weights converge to their known

ideal values in less than 5 s of simulation. The use of two

separate neural networks facilitates the design of least squares-

based update laws in (47). The least squares-based update laws

result is a performance benefit over single NN-based results,

such as [41], where the convergence of weights is obtained

after about 250 s of simulation.

Fig. 1. Evolution of the system states, state derivative estimates, and control
signals for the two-player nonzero-sum game, with persistently excited input
for the first 6 s.

Fig. 2. Convergence of actor and critic weights for players 1 and 2 in the
nonzero-sum game.

B. Three Player Game

To demonstrate the performance of the developed technique

in the multiplayer case, the two-player simulation is aug-

mented with another actor. The resulting dynamics are given

by ẋ = f (x) + g1 (x) u1 + g2 (x) u2 + g3 (x) u3, where

f (x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(x2 − 2x1)
⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1

2
x1 − x2 + 1

4
x2 (cos (2x1) + 2)2

+1

4
x2

(

sin
(

4x2
1

)

+ 2
)2

+1

4
x2

(

cos
(

4x2
1

)

+ 2
)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

g3 (x) =
[

0 cos
(

4x2
1

)

+ 2
]T

(70)

and g1 and g2 are the same as (69). Fig. 3 demonstrates

the convergence of the actor and the critic weights. Since
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Fig. 3. Convergence of actor and critic weights for the three-player
nonzero-sum game.

Fig. 4. Evolution of the system states, state derivative estimates and control
signals for the three-player nonzero-sum game, with persistently excited input
for the first 6 s.

the Nash equilibrium solution is unknown for the dynamics

in (70), the obtained weights are not compared against their

true values. Fig. 4 demonstrates the regulation of the system

states and the state derivative estimation error to the origin,

and the boundedness of the control signals.

Remark 7: An implementation issue in using the developed

algorithm as well as results such as [37]–[39], [41], and [59]

is to ensure PE of the critic regressor vector. Unlike linear

systems, where PE of the regressor translates to the sufficient

richness of the external input, no verifiable method exists to

ensure PE in nonlinear systems. In this simulation, a small

amplitude exploratory signal consisting of a sum of sines

and cosines of varying frequencies is added to the control to

ensure PE qualitatively, and convergence of critic weights to

their optimal values is achieved. The exploratory signal n (t),

designed using trial and error, is present in the first 6 s of the

simulation and is given by

n (t) = sin (5π t) + sin (et) + sin5 (t) + cos5 (20t)

+ sin2 (−1.2t) cos (0.5t) .

IX. CONCLUSION

A generalized solution for a N-player nonzero-sum differ-

ential game is developed by utilizing an HJB approximation

by an ACI architecture. The ACI architecture implements the

actor and critic approximation simultaneously and in real time.

The use of a robust DNN-based identifier circumvents the need

for complete model knowledge, yielding an identifier which

is proven to be asymptotically convergent. A gradient-based

weight update law is used for the critic NN to approximate

the value function. Using the identifier and the critic, an

approximation to the optimal control laws is developed, which

stabilizes the closed-loop system and approaches the optimal

solutions to the N-player nonzero-sum game.

While this result provides an approach for approximating

solutions to nonzero-sum differential games, it relies on lim-

iting assumptions, such as the existence and uniqueness of

a set Nash solutions for the nonzero-sum game, knowledge

of the upper bound of the input matrices of the unknown

dynamics, and persistence of excitation for convergence of

learning parameters. Future research will focus on relaxing

the aforementioned assumptions to broaden the applicability

of ADP techniques for nonzero-sum differential games.
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