
Approximate Nearest Neighbor Queries in Fixed Dimensions∗

Sunil Arya† David M. Mount‡

Abstract

Given a set of n points in d-dimensional Euclidean
space, S ⊂ Ed, and a query point q ∈ Ed, we wish to
determine the nearest neighbor of q, that is, the point
of S whose Euclidean distance to q is minimum. The
goal is to preprocess the point set S, such that queries
can be answered as efficiently as possible. We assume
that the dimension d is a constant independent of n.
Although reasonably good solutions to this problem
exist when d is small, as d increases the performance
of these algorithms degrades rapidly. We present a
randomized algorithm for approximate nearest neighbor
searching. Given any set of n points S ⊂ Ed, and a
constant ǫ > 0, we produce a data structure, such that
given any query point, a point of S will be reported
whose distance from the query point is at most a factor
of (1 + ǫ) from that of the true nearest neighbor. Our
algorithm runs in O(log3 n) expected time and requires
O(n log n) space. The data structure can be built in
O(n2) expected time. The constant factors depend
on d and ǫ. Because of the practical importance of
nearest neighbor searching in higher dimensions, we
have implemented a practical variant of this algorithm,
and show empirically that for many point distributions
this variant of the algorithm finds the nearest neighbor
in moderately large dimension significantly faster than
existing practical approaches.

1 Introduction

Finding nearest neighbors is among the most fundamen-
tal problems in computational geometry and the study
of searching algorithms in general. The nearest neigh-
bor problem is: given a set of n points in d-dimensional
space, S ⊂ Ed, and given a query point q ∈ Ed, find
the point of S that minimizes the Euclidean distance to
q. We assume that the d is a constant, independent of
n. Of course the problem can be solved by brute force
in O(n) time, by simply enumerating all the n points

∗David Mount has been supported by National Science Foun-
dation Grant CCR–89–08901.

†Department of Computer Science, University of Maryland,
College Park, Maryland, 20742

‡Department of Computer Science and Institute for Advanced
Computer Studies, University of Maryland, College Park, Mary-
land, 20742

S and computing the distance to q. More efficient ap-
proaches are based on preprocessing the points S and
creating a data structure so that, given a query point q,
the nearest neighbor can be computed quickly.

The nearest neighbor problem is a problem of sig-
nificant importance in areas such as statistics, pattern
recognition, and data compression. Our particular in-
terest arose from an application of data compression
for speech processing involving the technique of vec-
tor quantization. This technique relies on the ability
to solve nearest neighbor queries efficiently in moder-
ate dimensions (e.g. from 8 to 64). Speech waveform
is sampled and the samples are grouped into vectors of
length d, and the index of the nearest neighbor among
a set of codeword vectors is transmitted. It has been ob-
served by researchers in the area [10] that it would be
desirable to extend vector quantization to higher dimen-
sions than, say 8, but a major bottleneck is the difficulty
of solving the nearest neighbor search problem in these
dimensions.

The nearest neighbor problem can be solved in
O(log n) time in 1-dimension space by binary search,
and in O(log n) time in the plane through the use of
Voronoi diagrams and point location [15]. However, as
dimension increases, the difficulty of solving the near-
est neighbor problem, either in time or space, seems
to grow extremely rapidly. Clarkson presented a ran-
domized O(log n) expected time algorithm for finding
nearest neighbors in fixed dimension based on comput-
ing Voronoi diagrams of randomly sampled subsets of
points (the RPO tree) [6]. However in the worst case
the space needed by his algorithm grows roughly as
O(n⌈d/2⌉+δ), and this is too high for our applications.
Yao and Yao [24] observed that nearest neighbor search-
ing can be solved in linear space and barely sublinear
time O(nf(d)), where f(d) = (log(2d − 1))/d, but such
a small asymptotic improvement is not really of practi-
cal value. The most practical approach to the problem
known for higher dimensions is the k-d tree algorithm
due to Friedman, Bentley, and Finkel [9]. The expected
case running time of the k-d tree is logarithmic, but this
only holds under fairly restrictive assumptions on the
input distribution. The running time of the k-d tree al-
gorithm can be as bad as linear time for certain inputs,
although experimental evidence suggests that its per-

1

2 Arya and Mount

formance is typically much better. Within the field of
speech processing there have been a number of rather ad
hoc techniques suggested for speeding up the naive lin-
ear time algorithm [5], [2], [18]. However, these succeed
in only a rather modest constant factor improvement.

In this paper we show that if one is willing to
consider approximate nearest neighbors rather than
exact nearest neighbors, it is possible to achieve efficient
performance for both space and query time, irrespective
of input distribution. Given any constant ǫ > 0, we say
that a point p is a (1 + ǫ)-nearest neighbor of a query
point q if the ratio of distances from q to p and from q
to its nearest neighbor is at most (1 + ǫ). In particular
we show the following:

Theorem 1.1. Given any n element point set S ⊂ Ed

and any constant ǫ > 0, using randomization, one can
preprocess S in O(n2) expected time, store the result in
a data structure of size O(n log n), so that (1+ǫ)-nearest
neighbor queries can be answered in O(log3 n) expected
time.

The constants hidden by the asymptotic notation
are functions of both ǫ and d. The important features
of our algorithm are:

• This is the first algorithm for nearest neighbor
searching (approximate or exact) that achieves
both polylogarithmic search time and nearly linear
space.

• The random variation in running time of the query
processing is independent of the point set S or
query point q, and depends only on the effects of
randomization.

• The algorithm and data structure are simple and
easy to implement.

The only real drawback to a direct implementation
of our algorithm (as it is presented) is that the con-
stant factors derived in our analysis are too large to
make this approach practically competitive for moder-
ately high dimensions (e.g. d ≥ 8) and reasonably small
error factors (e.g. ǫ ≤ 0.1). However, we feel that this
general approach is of importance, and to establish this
we present a practical variant of our algorithm. We
have performed numerous experiments on both synthet-
ically derived data as well as actual data (from speech
compression applications) to show that the general ap-
proach is significantly faster than the known practical
approaches to the problem, including the k-d tree.

Matoušek has conjectured that Ω(n1−1/⌊d/2⌋) is a
lower bound for the halfspace emptiness problem [14]
(assuming linear space). The ball emptiness problem

is a generalization of this problem (to spheres of infi-
nite radius) and so any lower bound would also hold.
However the ball emptiness problem can be reduced to
a single nearest neighbor query (at the center of the
ball). In light of this, if one is limited to roughly linear
space and desires polylogarithmic performance in high
dimensions then approximation may be the best one can
reasonably hope for.

2 The Randomized Neighborhood Graph

In this section we discuss our algorithm for finding
approximate nearest neighbors for a set of n points
S ⊂ Ed. Our approach is based on some simple
techniques, which can be viewed as a generalization of a
“flattened” skiplist in higher dimensions [16]. The data
structure itself consists of a directed graph (with some
additional structural information) whose vertex set is
S and such that each vertex has degree O(log n). For
each point p ∈ S we cover Ed with a constant number of
convex cones all sharing p as a common apex, and whose
angular diameter δ is bounded above by a function of
ǫ. The cones need not be circular. A method for
constructing such a set of cones is given by Yao [23].
The number of cones centered at p is a function of d
and ǫ but independent of n.

For each of these cones, we add a directed edge
from p to O(log n) points of S lying within the cone.
We determine these neighbors of p by the following
randomized process. The points of S−{p} are permuted
randomly. The rank of each point in this permutation
is called its index relative to p. For each cone c centered
at p, we consider the points r lying within this cone.
An edge from p to r is added if r is the nearest to
p among all points of lower index in this cone. The
resulting set of neighbors, denoted Nc[p], is stored in a
list. It follows from standard probabilistic arguments
that the expected degree of a point is O(log n). If
necessary, by repeating this process a constant number
of times in the expected case, we can guarantee that
each vertex has degree O(log n). Observe that if a cone
is nonempty then there is at least one neighbor of p in
the cone (namely the point closest to p in the cone). The
resulting graph is called the randomized neighborhood
graph for S, and is denoted NGd(δ, S). An example of
this applied to a single cone is shown in Fig. 1.

One property of the randomized neighborhood
graph is given in the following lemma.

Lemma 2.1. Given any ǫ > 0, there is an angular
diameter δ (depending on ǫ) such that given any query
point q and any point p ∈ S, if p is not a (1+ ǫ)-nearest
neighbor of q, then there is a neighbor of p in NGd(δ, S)
that is closer to q than p is.

Approximate Nearest Neighbor Queries 3

p

1

2

3

4

5

6

7

8 9
10

11

Figure 1: Randomized neighborhood graph.

Proof. (Sketch) Suppose that p is not a (1 + ǫ)-nearest
neighbor of q. Normalize distances so that p lies on a
sphere of radius (1 + ǫ) centered at q. (Throughout,
unless otherwise stated, we use the term sphere to
signify a (d − 1) dimensional hypersphere centered at
the query point.) Then there is a point r that lies
within a sphere of radius 1 centered at q. Define
the angular distance between any two points that are
equidistant from p to be the angle between two rays
emanating from p passing through these points, and
define the angular distance between these two spheres to
be the infimum of this distance among all equidistant
pairs, one point taken from each of the spheres. It is
a straightforward geometric exercise to show that for
ǫ > 0 the angular distance between these two spheres is
greater than zero. Let δ be any positive value less than
this angular distance.

Consider a cone whose apex is at p that contains r.
If p has an edge to r then we are done. If not there must
be a neighbor s of p in this cone that is closer to p than
r is. Again, it is a straightforward geometric argument
that, given our choice of δ, s is closer to q than p is,
completing the proof. ⊓⊔

This lemma implies that, starting at any point
p ∈ S, we can walk to a (1 + ǫ)-nearest neighbor of
the query point q along a path whose distances to q
decreases monotonically. One might imagine any of a
number of different search strategies. For example, a
simple greedy search would be, from each point p, visit
next the neighbor of p that is closest to the query point.
In spite of its intuitive appeal we do not have bounds
on the asymptotic performance of greedy search.

Our search strategy is based on a modification of
a simple randomized strategy. We give an intuitive
explanation of the simple strategy and why it fails. Let p
be the point that is currently being visited by the search,

and define the set Cl(p) to be the subset of S whose
distance to q is strictly less than p’s distance to q. These
points lie within a sphere centered at q whose radius is
the distance from q to p, dist(q, p). Consider the point
r ∈ Cl(p) of lowest index with respect to p. Since r could
be any point of Cl(p) with equal probability, the number
of points of Cl(p) that are closer to q than r is expected
to be roughly |Cl (p)|/2. Thus, if r is a neighbor of p in
NGd(δ, S), by moving from p to r, we eliminate half of
the remaining points from consideration in the expected
case.

q

r

r’

p

Figure 2: Pruning.

The problem with this proposed search strategy is
that r need not be a neighbor of p, and so such a
transition may not be possible. To understand why this
is, we introduce a concept called pruning. We say that
a point r lying within Cl (p) is pruned if, for all cones
centered at p that contain r, there exists some point
r′ lying inside the same cone and outside Cl(p) (and
hence further from q than p) having lower index than
r (relative to p), such that dist(p, r′) < dist(p, r). See
Fig. 2. Clearly, if r is pruned then it is not a neighbor
of p. Thus r′ has effectively eliminated r as a possible
neighbor of p, but because we demand that the path to
q be monotonically decreasing in distance, we are not
able to visit r′.

In order to get around the pruning problem we
exploit a few basic properties about the randomized
neighborhood graph and pruning. We state these
intuitively here, but they are made precise in the proof
of Lemma 2.2 and affect the choice of δ, the angular
diameter of the cones. First, because pruning occurs
within cones (and not between cones) it is confined
locally to points lying relatively near the surface of the
sphere (centered at q and of radius dist(q, p)).

4 Arya and Mount

Before stating the second fact we give a definition.
We assume that the sets of cones centered around the
points of S are equal up to translation. Each directed
edge of the neighborhood graph is naturally associated
with a cone centered at its tail, which contains the head
of the edge. A path p1, p2, . . . , pk in the randomized
neighborhood graph is said to be pseudo-linear if the
associated cones for every edge on the path share a
common axis. See Fig. 3(a). Our interest in pseudo-
linear paths is that they behave very much like paths
that arise in a one-dimensional skiplist because later
cones on the path contain a subset of the data points,
and hence we can easily measure progress by the number
of points eliminated. The second property is that if p is
not a (1 + ǫ)-nearest neighbor of q, then there exists a
pseudo-linear path from p of expected length O(log n)
to a point that lies closer to q than any of the pruned
points (and this path can be constructed in O(log2 n)
expected time). Intuitively, it is this second observation
that allows us to circumvent the problem of pruning by
“shortcutting” around the pruned points along a path
of logarithmic length. We summarize these observations
in the following lemma.

(a)

Pr(p)

Im(p)
In(p)

p q

(b)

Figure 3: Paths and Partitioning.

Lemma 2.2. Given a set of n points S in Ed and a
constant ǫ > 0, there exists δ > 0 (a function of ǫ),
such that given any query point q ∈ Ed and any point

p ∈ S, the set of points Cl(p) ⊂ S of points closer to
q than p, can be partitioned into three subsets, Pr(p)
(for “prunable”) In(p) (for “inner”), and Im(p) (for
“intermediate”) such that:

(i) the pruned points of Cl(p) lie only in Pr(p),

(ii) the points of In(p) are all closer to q than any point
of Pr(p) ∪ Im(p),

(iii) if p is not a (1+ǫ)-nearest neighbor of q, then there
exists a pseudo-linear path in NGd(δ, S) from p to
a point of In(p), traveling through Im(p), that can
be computed in O(log2 n) expected time,

(iv) membership in each of these sets can be determined
in O(1) time.

Proof. (Sketch) Before giving the proof of the lemma,
we need to give some terminology and make some
observations. Let δ denote the angular diameter of the
cones (this value will be determined later). Let c be
the index of some cone, and let conec(p) denote the
geometric cone whose apex is at p. We shall regard
cones with the same index and centered at different
points as having the same shape and orientation. Let
corec(p) denote the points lying within conec(p) whose
angular distance from the central axis of the cone is
some small fraction of δ (any fraction less than 1/2
will work). Then given any point r inside corec(p), it
can be shown that, for any point s inside conec(p) and
sufficiently close to p (relative to the distance between
p and r), r lies within the parallel cone centered at s,
conec(s). Second observe that we can partition space
so that every point lies within the core of some cone, by
first covering space with smaller cones having diameter
that of the core, and then growing these smaller cones
to attain the diameter δ.

Now we return to the proof of the lemma. Normal-
ize distances so that p lies on a sphere of radius (1 + ǫ)
from q, called the outer sphere. Let the base sphere
be a sphere of radius 1 centered at q and let the inner
sphere be a sphere also centered at q which lies between
the base sphere and outer sphere, and whose radius is
1 + αǫ for some suitably chosen α < 1. We will con-
struct δ sufficiently small so that no point within the
inner sphere can be pruned (this also ensures that no
point within the base sphere can be pruned). Let C′

denote the subset of cones centered at p whose cores in-
tersect the base sphere. Assuming δ is sufficiently small,
each cone in C′ is cut by the inner sphere into a finite
cone, called a cap, whose apex is at p and whose base
lies on the inner sphere. We choose α close enough to 1
so that, for any point r in the base sphere lying in the
core of some cone, and any point s in the cap of this

Approximate Nearest Neighbor Queries 5

cone, the ratio of distances between p and s, and p and
r is sufficiently small. This allows us to use our earlier
observations to claim that r lies within the parallel cone
centered at any point in the cap.

Let Im(p) be the set of points lying in the caps
for each cone in C′, let In(p) be the set of points
lying in the inner sphere, and finally let Pr(p) be all
remaining points. See Fig. 3(b). Facts (ii) and (iv)
follow immediately from our definitions. It is not hard
to show that for sufficiently small δ the points in Im(p)
cannot be pruned, from which (i) follows. To show (iii),
recall that if p is not a (1+ǫ)-nearest neighbor of q, then
there is a point r inside the base sphere lying within the
core of some cone in C′. Although we do not know
which cone it is, we can try them all, since there are
only a constant number of cones. For each cone index
c we restrict attention to the data points lying inside
conec(p) and do the following. First we check if there
is an edge from p to any point in the inner sphere and
lying inside conec(p). If yes, we are done. Otherwise
if there is an edge from p to a point in the cap, then
we select such a point s of lowest index and repeat the
procedure at point s (for details, see the while loop in
the pseudo-code below). If there is no such point we go
on to examine the next cone index.

The point s of lowest index in the cap is a random
point in the cap, and since the parallel cone centered
at s is contained within p’s cone, we expect at most
half of the remaining data points of the cap to lie
within s’s cone. Thus in the expected case, after
O(log n) such steps, each step taking O(log n) time, we
terminate. This gives an expected cost of O(log2 n) for
this procedure. At termination, we are guaranteed to
find a point that lies within the inner sphere because if
point r inside the base sphere lies within corec(p), then
it also lies inside every parallel cone centered at every
point inside the cap of conec(p). Thus for cone index c
we must finally arrive at a point in the inner sphere. ⊓⊔

The search algorithm operates as follows. We
assume that the randomized neighborhood graph
NGd(δ, S) has already been computed. This can be
done easily in O(n2) expected time. The starting point
p can be any point in S initially. Letting p denote the
current point being visited, consider p’s neighbor of low-
est index lying within Cl(p). If this point lies in In(p),
then we continue with this point. If not, we apply part
(iii) of the previous lemma to find such a point. If the
search fails, then we return p as the approximate nearest
neighbor.

Let us describe the search in greater detail. Let
Nc[p] denote the set of neighbors of p in cone c, let N [p]
be the set of all p’s neighbors, and let NCones denote
the total number of cones centered at a point. We index

the cones centered at a point from 1 to NCones . Let
lowp(B) denote the point with lowest index relative to
point p in a set of points B. The while-loop computes
the pseudo-linear path described in part (iii) of the
previous lemma.

function NN (p, q) {
Let r := lowp(N [p] ∩ Cl(p));
if (r ∈ In(p)) return(NN (r, q));
for c := 1 to NCones do {

r := p;
while (Nc[r] ∩ (Im(p) ∪ In(p)) 6= ∅) do {

if (Nc[r] ∩ In(p) 6= ∅) {
s := any point in Nc[r] ∩ In(p);
return(NN (s, q));

}
else

r := lowr(Nc[r] ∩ Im(p));
}

}
return(p);

}

Observe that all the set operations can be per-
formed in O(log n) time by enumerating the elements of
either N [p] or Nc[r] and applying the appropriate mem-
bership tests for Cl(p), Pr(p), In(p) or Im(p). To verify
the correctness of the above procedure, observe that if
p is not a (1 + ǫ)-nearest neighbor, then Lemma 2.2 im-
plies that there is a pseudo-linear path to a point which
is strictly closer to q than p, and hence the search will
succeed in finding such a point.

To establish the running time of the search proce-
dure we show that the number of recursive calls made
to function NN is O(log n) in the expected case. As
mentioned before the expectation is computed over all
possible choices of random permutations made in the
construction of NGd(δ, S), and hence is independent of
S, and q. Our basic assertion is that with each succes-
sive call to NN , with fixed probability, the number of
points that are closer than the current point to q de-
creases by a constant factor. Informally the argument
is based on two cases, |Pr(p) ∪ Im(p)| > |In(p)| and
|Pr(p) ∪ Im(p)| ≤ |In(p)|. In the former case, after
O(log2 n) expected effort we either terminate, or make
a new recursive call with a remaining set of points of
size at most

|In(p)| ≤
|Pr (p) ∪ Im(p)| + |In(p)|

2
≤

|Cl(p)|

2
,

and hence at least half of the points have been elim-
inated from further consideration. In the latter case,
with probability at least 1/2, the point of lowest index

6 Arya and Mount

(with respect to p) in Cl(p) is in In(p), and hence can-
not be pruned. In this case, using an argument similar
to the one used for the simple randomized search, it fol-
lows that we expect at least half of the points of In(p) to
be eliminated from consideration by the point of lowest
index (along with every point in (Pr (p)∪Im(p)) imply-
ing that at least half of the points are expected to be
eliminated. Summarizing, in the first case we eliminate
at least half the points after O(log2 n) effort, and in
the second case we eliminate half the points in one step
with probability at least 1/2. In the second case the
cost of a step is O(log n) (proportional to the number
of neighbors of p).

Lemma 2.3. The expected number of recursive calls to
NN is O(log n), and hence the expected running time of
the search procedure is O(log3 n).

3 A Practical Variant

Although the results of the previous section are theo-
retically appealing, for practical instances of the near-
est neighbor search problem, the algorithm as presented
will not be competitive with other practical approaches
to the problem. The reason is that as a function of ǫ,
the number of cones grows asymptotically as Ω(1/ǫd−1)
(for sufficiently small ǫ). In this section we describe a
variant of the neighborhood graph method designed to
perform well for realistic instances of the problem, even
though the formal complexity and performance bounds
shown in the previous section are not guaranteed to
hold. We feel that these results suggest that this ap-
proach holds promise as a practical approach to nearest
neighbor searching in higher dimensions.

The proposed variant consists of the following prin-
cipal modifications to the randomized neighborhood
graph scheme introduced in the previous section.

• To reduce the degree of the graph, we use a pruning
scheme similar to the one used in the relative
neighborhood graph [13], [21]. As we shall see the
resulting graph is significantly sparser.

• To further reduce the degree of the graph by
an O(log n) factor we abandon the randomized
“skiplist” construction. Our empirical experience
suggests that the “long” edges introduced by this
part of the construction can be simulated cheaply
by simply choosing a better starting point. This
can be done by constructing a k-d tree for the point
set (as part of the preprocessing), and choosing
the starting point from the leaf node of the tree
containing the query point.

• Given the increased sparseness of the resulting
graph, it is not reasonable to assume that the points

along the search path will decrease monotonically
in distance to the query point. We maintain the
list of candidate points consisting of the neighbors
of all the visited points. Repeatedly among the
unvisited candidates, we select the closest to the
query point. The resulting search path may not be
monotone, but always attempts to move closer to
the query point without repeating points.

In summary we decrease the degree of the neigh-
borhood graph, but at an additional cost to the num-
ber of steps needed in the search. It is not hard to
devise worst case scenarios where this scheme will per-
form quite poorly. However in most practical situations
the search quickly converges to the nearest neighbor.

Let us begin by describing the revised neighborhood
graph. It is quite similar to the relative neighborhood
graph [13, 21]. The relative neighborhood graph of a set
of points S ⊂ Ed is an undirected graph in which two
points p and q are adjacent if there is no point that
is simultaneously closer to both points. Our modified
neighborhood graph is a directed graph based on the
following pruning rule. For each point p ∈ S, we
consider the remaining points of S in increasing order
of distance from p. We remove the closest point r
from this sequence, create a directed edge from p to
r, and remove from further consideration all points s
such that dist(p, s) > dist(r, s). Intuitively, since r is
closer to both p and s than they are to one another,
the points s are not considered neighbors of p. This
process is repeated until all points are pruned. This
graph is equivalent to a graph presented by Jaromczyk
and Kowaluk [11], which was used as an intermediate
result in their construction of the relative neighborhood
graph. We call this the sparse neighborhood graph for
S, denoted RNG∗(S).

RNG∗(S) can be computed easily in O(n2) time,
where n = |S|. An important property of this graph,
which explains its intuitive appeal for nearest neighbor
searching, is that if the query point happens to be equal
to a point of S, then a simple greedy search (at each
step visiting any neighbor closer to the query point)
will succeed in locating the query point along a path of
monotonically decreasing distance to the query point.
The reason is that if there is no edge between the current
point and the query point, there must be a closer point
to which there is an edge that has pruned the query
point.

Finding an upper bound on the degree of RNG∗

is closely related to the classical mathematical problem
of determining the densest packings of spherical caps
on the surface of the d-dimensional sphere. Define the
diameter of a spherical cap to be the maximum angle
between any two points on the cap.

Approximate Nearest Neighbor Queries 7

Lemma 3.1. Given a set of points S in Ed in general
position (no two points are equidistant from a third
point), the degree of any vertex in RNG∗(S) does not
exceed the number of spherical caps of diameter π/3 in
a densest packing of the surface of the d-dimensional
sphere.

Proof. Let p, r, s ∈ S be three points such that 6 prs ≤
π/3. We claim that both p and s cannot be neighbors of
r in RNG∗(S), since, using elementary geometry, we can
easily show that adding a directed edge from r to the
closer of the two points p and s would prune the point
farther away. Thus, if we centrally project the set of
neighbors of r onto a unit d-dimensional sphere centered
at r and surround each neighbor with a spherical cap
of radius π/6, it follows that no two of these caps can
intersect, and hence they form a packing of the surface
of the d-dimensional sphere. ⊓⊔

Unfortunately tight bounds for this quantity are
not known for arbitrary dimension. It follows from
Kabatjanskĭi and Levens̆tĕin’s [12] upper bound on
spherical packings and Shannon’s [17] and Wyner’s [22]
lower bounds that as dimension goes to infinity the
upper bound on the degree of any vertex p of the
RNG∗(S) lies in the interval

[1.15d−1, 1.32d−1] (as d → ∞).

Unfortunately, these bounds are asymptotic in d, and
it appears that for the relatively small values of d that
we are interested in, these bounds are rather optimistic.
For instance, in dimension 24, the worst case degree
can be as large as 196,560 [20], while 1.3223 is only 593.
However we conjecture that the expected degrees are
much smaller than the worst case.

To establish a practical bound on the expected de-
gree of vertices in the RNG∗(S) we performed two em-
pirical studies. One study measured the expected de-
gree of a vertex of the graph in dimension d on point
sets of size 2d, uniformly distributed within a unit cube.
With such small point sets, boundary effects (the phe-
nomenon in high dimensions that more points tend to be
near the convex hull) are quite significant in artificially
decreasing the degree of the graph. We ran a second ex-
periment, which attempted to extrapolate this to point
sets so large that boundary effects are negligible. In the
first experiment we generated 2d uniformly distributed
points and computed the degree of a random point. In
the second experiment 100,000 points were uniformly
distributed inside the hypercube and the degree of a
vertex in the center was computed. In both cases, in
each dimension the degree was averaged over 100 such
trials. The results are presented in Fig. 4. By fitting

lines to the logarithm of degrees we conjecture that for
the first experiment the degree is 1.46(1.20d) and for
the second experiment the degree is 2.9(1.24d) (and a
study of residuals suggests the growth rate may be even
slower). Even though this is exponential in dimension,
it is acceptably small for dimensions in our range of
interest.

1

10

100

0 5 10 15 20
de

gr
ee

dimension

2.90 (1.24^d)
asymptotic case

1.46 (1.20^d)
including edge effects

Figure 4: Expected degree of RNG∗(S).

We search the graph using a best-first strategy. The
search algorithm begins with a point p selected by choos-
ing a point from a bucket of a k-d tree that contains
the query point. We maintain a set of candidates to
the nearest neighbor (maintained using a heap) initially
containing p. We select the nearest of the candidates
that has not already been visited. The algorithm is
outlined below.

function NN 2(p, q) {
C := {p};
nn := p;
while (C 6= ∅ and termination condition

not yet met) {
p := the point of C minimizing dist(q, p);
C := C − {p};
for each undiscovered r in N [p] {

Mark r discovered;
C := C + {r};
if (dist(q, r) < dist(q, nn)) nn := r;

}
}
return(nn);

}

The choice of termination conditions is somewhat
subtle. Since the data structure lacks the structural in-
formation provided by other algorithms, it cannot know
when it has found the nearest neighbor. In practice ter-
mination would be based on a convergence test. For

8 Arya and Mount

this study we wanted to test the viability of this ap-
proach against other practical algorithms, such as the k-
d tree [9], which was refined and analyzed empirically by
Sproull [19]1, and a simple bucketing algorithm, which
was analyzed for uniform distributed data by Cleary [7]
and independently by Bentley, Weide and Yao [4]. Be-
cause the algorithm based on the RNG∗(S) does not
guarantee finding the nearest neighbor (until all points
have been enumerated), we chose as a basis for compar-
ison the number of points considered by each algorithm
until coming upon the nearest neighbor (which was pre-
computed off-line). Note that both the k-d tree algo-
rithm and bucketing algorithm continue to search until
establishing firmly that this is the nearest neighbor, but
the time until first discovering the nearest neighbor cer-
tainly provides a lower bound on their execution times.

The point distributions used in the experiments
are described below. Some of these were presented by
Bentley [3].

Uniform: Each coordinate was chosen uniformly from
the interval [0, 1].

Normal: Each coordinate was chosen from the normal
distribution with zero mean and unit variance.

ClusNorm: Ten points were chosen from the uniform
distribution and a normal distribution with stan-
dard deviation 0.05 put at each.

Laplace: Each coordinate was chosen from the Lapla-
cian distribution with zero mean and unit variance.

To model the types of distributions seen in speech
processing applications, two more point distributions
were formed by grouping the output of autoregressive
sources into vectors of length d. An autoregressive
source uses the following recurrence to generate succes-
sive outputs:

Xn = ρXn−1 + Wn

where Wn is a sequence of zero mean independent, iden-
tically distributed random variables. The correlation
coefficient ρ was taken as 0.9 for our experiments. Each
point was generated by selecting the first component
from the corresponding uncorrelated distribution (either
normal or Laplacian) and the remaining components
were generated by the equation above. Further details
on how to generate these autoregressive processes may
be found in Farvardin and Modestino [8].

1Sproull’s analysis of the k-d tree’s execution time is much
worse than ours for higher dimensions. We achieved much better
running times through a number of small modifications to his
algorithm. This has been described in [1].

Co-Normal: Wn was chosen so that the marginal
density of Xn is normal with variance unity.

Co-Laplace: Wn was chosen so that the marginal
density of Xn is Laplacian with variance unity.

Speech: From a database consisting of 6.8 million
samples formed by sampling speech waveform at
8 kb/s, the consecutive samples were packed in
groups to yield vectors in the required dimension.
In 16 dimensions, we get 425,000 vectors, from
which we choose vectors randomly from the first
400,000 vectors to form the set of data vectors and
choose query vectors randomly from the remaining
25,000 vectors.

To avoid cluttering the figures, we do not present
the results for the ClusNorm and Co-Normal distribu-
tion; suffice it is to note that the results for these distri-
butions were quite similar to the Co-Laplace distribu-
tion.

Figure 5 shows the average number of points ex-
amined by the k-d tree algorithm until termination, for
a representative set of these distributions of points and
over 1000 query points. For all our experiments, we con-
structed optimized k-d trees [9] in E16. The cut planes
were placed at the median, orthogonal to the coordinate
axis with maximum spread. Each leaf node contained
one point, which is known to lead to the best perfor-
mance of the k-d tree algorithm measured in terms of
number of points examined until termination. In each
case the data and query points are chosen from the same
distribution.

10

100

1000

10000

1000 10000 100000

P
oi

nt
s

E
xa

m
in

ed

N

uniform
normal
laplace

co-laplace
speech

Figure 5: Average number of points examined by the
k-d tree algorithm until termination.

Table 1 shows average and maximum numbers of
points and cells examined until termination by the buck-
eting algorithm for the case of points uniformly dis-
tributed in a 16 dimensional hypercube. The hypercube

Approximate Nearest Neighbor Queries 9

NPts Avg Pts Avg Cells
1000 598 38988

10000 2886 18899
100000 11189 7341

Table 1: Number of points examined by the bucketing
algorithm until termination.

was partitioned into 216 equal-sized cells which were ex-
amined in increasing order of distance from the query
point. We restricted our experiments with this tech-
nique to the uniform distribution because it is not easy
to extend it to unbounded distributions. For 100,000
points, the results are similar to that of the k-d tree.

Because our algorithm does not have a termination
condition, it is not really fair to compare it against these
algorithms which are required to continue searching
until they have been assured that the nearest neighbor
has been found. For this reason we focused on the
question of how many points will be visited until the
algorithm first comes across the nearest neighbor (even
though the algorithm may not know that it has done so).
We computed the true nearest neighbor off-line by brute
force. Figure 6 and Table 2 show the number of points
examined by the k-d tree and bucketing algorithms until
finding the nearest neighbor, for the same set of data
and query points for which the results are shown in
Figure 5 and Table 1 respectively. For both the k-d tree
and the bucketing algorithm, the number of points seen
until finding the nearest neighbor are significantly fewer
than those seen until termination. Observe also that the
number of points seen by the bucketing algorithm until
finding the nearest neighbor is much fewer than those
seen by the k-d tree algorithm. A possible explanation
of the difference is that the k-d tree algorithm does not
visit the cells strictly in the order of increasing distance
from the query point2.

Figure 7 shows the average number of points ex-
amined by the algorithm based on the RNG∗(S) until
finding the nearest neighbor under various distributions.
We include in this count all the neighbors of each point
which is visited by the algorithm (which implies that
points may be counted multiply, but accurately reflects
the running time). Figure 8 gives a comparison on uni-
formly distributed data for the k-d tree algorithm un-

2Recently we have performed empirical studies on k-d tree
variants that search cells in order of increasing distance, and
have discovered that these algorithms are competitive with the
RNG∗-search in terms of the number of points visited. However,
the overhead of maintaining this order is quite significant. These
results have been reported in [1].

10

100

1000

10000

1000 10000 100000

P
oi

nt
s

E
xa

m
in

ed

N

uniform
normal
laplace

co-laplace
speech

Figure 6: Average number of points examined by the
k-d tree algorithm until finding the nearest neighbor.

NPts Avg Pts Avg Cells
1000 17 1079

10000 45 290
100000 189 125

Table 2: Number of points examined by the bucketing
algorithm until finding the nearest neighbor.

til termination, the k-d tree algorithm until finding the
nearest neighbor, and our algorithm. Observe that the
number of points examined by the algorithm based on
the RNG∗(S) is much fewer than that seen by the k-d
tree algorithm (note that the plots are made using a
logarithmic scale).

10

100

1000

1000 10000 100000

P
oi

nt
s

E
xa

m
in

ed

N

uniform
normal
laplace

co-laplace
speech

Figure 7: Average number of points examined by the
algorithm based on RNG∗(S).

In summary, we can make the following observations
from our tests.

• The k-d tree algorithm and bucketing algorithm
each come across the nearest neighbor well before

10 Arya and Mount

10

100

1000

10000

1000 10000 100000

P
oi

nt
s

E
xa

m
in

ed

N

k-d tree until termination
k-d tree until finding nearest neighbor

RNG* heuristic

Figure 8: Comparison of the k-d tree algorithm with
the algorithm based on RNG∗(S).

their search terminates. In some sense, this extra
search can be viewed as the price one pays for
guaranteeing the correctness of the final output.
This suggests that in applications where rapidly
finding an approximation for the nearest neighbor
is sufficient, the search could be terminated after
relatively fewer steps.

• On uniformly distributed data the k-d tree and the
bucketing algorithm perform quite comparably in
terms of the number of points seen until termina-
tion.

• Our algorithm based on RNG∗(S) significantly out-
performs the k-d tree algorithm for large point sets
on all point distributions. For the uniform distribu-
tion the RNG∗(S) algorithm is comparable to the
bucketing algorithm, but the latter is impractical
except for uniform data sets.

4 Conclusions

We have presented a randomized algorithm for comput-
ing approximate nearest neighbors in expected polylog-
arithmic query time and O(n log n) space. Because the
constants involved in this algorithm are quite large, we
have also presented a more practical variant. Exper-
imental evidence indicates this algorithm is quite effi-
cient for many input distributions and on actual speech
data in dimensions as high as 16. There are a number of
interesting open problems suggested by this work. The
most important theoretical question is that of removing
the extra logarithmic factors from the space and run-
ning time, with the goal of providing O(log n) query
time and O(n) space. It would also be nice to know if
the results can be made deterministic. Another question
is whether our search strategy could be replaced with a
simpler greedy search and still guarantee polylogarith-

mic search time. The most important question from a
practical standpoint is whether the constants (depend-
ing on d and ǫ) involved in the randomized algorithm
can be reduced, or whether the efficiency of the RNG∗

search can be established theoretically.

References

[1] S. Arya and D. M. Mount. Algorithms for fast vector
quantization. In J. A. Storer and M. Cohn, editors,
Proc. of DCC ’93: Data Compression Conference,
pages 381–390. IEEE Press, 1993.

[2] C.-D. Bei and R. M. Gray. An improvement of
the minimum distortion encoding algorithm for vector
quantization. IEEE Transactions on Communications,
33(10):1132–1133, October 1985.

[3] J. L. Bentley. K-d trees for semidynamic point sets. In
Proc. 6th Ann. ACM Sympos. Comput. Geom., pages
187–197, 1990.

[4] J. L. Bentley, B. W. Weide, and A. C. Yao. Opti-
mal expected-time algorithms for closest point prob-
lems. ACM Transactions on Mathematical Software,
6(4):563–580, 1980.

[5] D. Y. Cheng, A. Gersho, B. Ramamurthi, and
Y. Shoham. Fast search algorithms for vector quan-
tization and pattern matching. In Proceedings IEEE

ICASSP, volume 1, pages 9.11.1–9.11.4, March 1984.
[6] K. L. Clarkson. A randomized algorithm for

closest-point queries. SIAM Journal on Computing,
17(4):830–847, 1988.

[7] J. G. Cleary. Analysis of an algorithm for finding near-
est neighbors in euclidean space. ACM Transactions on

Mathematical Software, 5(2):183–192, June 1979.
[8] N. Farvardin and J. W. Modestino. Rate-distortion

performance of DPCM schemes for autoregressive
sources. IEEE Transactions on Information Theory,
31(3):402–418, May 1985.

[9] J. H. Friedman, J. L. Bentley, and R.A. Finkel. An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Transactions on Mathematical Soft-

ware, 3(3):209–226, September 1977.
[10] A. Gersho and V. Cuperman. Vector quantiza-

tion: a pattern-matching technique for speech coding.
IEEE Communication Magazine, 21(9):15–21, Decem-
ber 1983.

[11] J. W. Jaromczyk and M. Kowaluk. A note on relative
neighborhood graphs. In Proc. 3rd Ann. ACM Sympos.

Comput. Geom., pages 233–241, 1987.
[12] G. A. Kabatjanskĭi and V. I. Levens̆tĕin. Bounds

for packings on the sphere and in space (russian).
Problemy Peredaci Informacii, 14:3–25, 1978. Also,
Problems of Information Transmission, 1–17.

[13] P. M. Lankford. Regionalization: theory and alterna-
tive algorithms. Geographical Analysis, 1(2):196–212,
April 1969.

[14] J. Matoušek. Reporting points in halfspaces. In Proc.

Approximate Nearest Neighbor Queries 11

32nd Ann. Sympos. Foundations of Computer Science,
pages 207–215, 1991.

[15] F. P. Preparata and M. I. Shamos. Computational

Geometry. Springer-Verlag, 1985.
[16] W. Pugh. Skip lists: a probabilistic alternative to bal-

anced trees. Communications of the ACM, 33(6):668–
676, June 1990.

[17] C. E. Shannon. Probability of error for optimal codes
in a gaussian channel. Bell System Technical Journal,
38(3):611–656, 1959.

[18] M. R. Soleymani and S. D. Morgera. An efficient
nearest neighbor search method. IEEE Transactions

on Communications, 35(6):677–679, June 1987.
[19] R. L. Sproull. Refinements to nearest-neighbor search-

ing in k-dimensional trees. Algorithmica, 6, 1991.
[20] G. Fejes Tóth. New results in the theory of packing

and covering. In Convexity and its applications, pages
318–359. Birkhäuser Verlag, Basel, 1983.

[21] G. T. Toussaint. The relative neighborhood graph of a
finite planar set. Pattern Recognition, 12(4):261–268,
1980.

[22] A. D. Wyner. Capabilities of bounded discrepancy
decoding. Bell System Technical Journal, 44:1061–
1122, 1965.

[23] A. C. Yao. On constructing minimum spanning trees
in k-dimensional spaces and related problems. SIAM

Journal on Computing, 11(4):721–736, 1982.
[24] A. C. Yao and F. F. Yao. A general approach to

d-dimensional geometric queries. In Proc. 17th Ann.

ACM Sympos. Theory Comput., pages 163–168, 1985.

