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ABSTRACT

We define a novel scheduling problem; it is solved in parallel by repeated, rapid,

approximate reschedulings. This leads to the first optimal logarithmic time PRAM
algorithm for list ranking. Companion papers show how to apply these results to

obtain improved PRAM upper bounds for a variety of problems on graphs, includ-

ing: connectivity, biconnectivity, minimum spanning tree, Euler tour and st-

numbering, and a number of problems on trees.

1. Introduction

The model of parallel computation used in this paper is a member of the parallel ran-

dom access machine (PRAM) family. A PRAM employs p synchronous processors all

having access to a common memory. In this paper we use an exclusive-read exclusive-write

(EREW) PRAM. The EREW PRAM does not allow simultaneous access by more than

one processor to the same memory location for read or write purposes. See [Vi-83] for a

survey of results concerning PRAMs.

Let Seq(n) be the fastest known worst-case running time of a sequential algorithm,

where n is the length of the input for the problem at hand. Obviously, the best upper

bound on the parallel time achievable using p processors, without improving the sequential

result, is of the form 0(Seq(n)/p). A parallel algorithm that achieves this running time is

said to have optimal speed-up or more simply to be optimal. A primary goal in parallel

computation is to design optimal algorithms that also run as fast as possible.

Most of the problems we consider can be solved by parallel algorithms that obey the

following framework. Given an input of size n the parallel algorithm employs a reducing

procedure to produce a smaller instance of the same problem (of size ^ n/2, say). The

smaller problem is solved recursively until this brings us below some threshold for the size

of the problem. An alternative procedure is then used to complete the parallel algorithm.

We refer the reader to [CV-86d] where this algorithmic technique, which is called

accelerating cascades, is discussed. Typically, we need to reschedule the processors in

order to apply the reducing procedure efficiently to the smaller sized problem. Suppose

the input for a problem of size n is given in an array of size n. A natural approach is to

compress the smaller problem instance into a smaller array, of size s n/2. This is often

done using a prefix sum algorithm (it takes 0(log n) time on n/log n processors to compute

the prefix sums for n inputs stored in an array). Thus if we need to reschedule the



processors repeatedly it is unclear how to achieve logarithmic time. Sometimes the

rescheduling need not be performed very often: [CV-86a,C-86] show that for some prob-

lems (list ranking and selection) log*n reschedulings suffice. Alternatively, one can use a

fast random algorithm to perform the rescheduling, or at least an approximate reschedul-

ing. (By approximate rescheduling we mean that we may not be able to partition the work

evenly among the processors, but only approximately evenly.) Thus the need for

rescheduling does not preclude 0(log n) time optimal random algorithms. One of the main

contributions of this paper is to provide an algorithm for performing approximate

rescheduling deterministically in 0(1) time. This is used to solve a novel scheduling prob-

lem. The solution to the scheduling problem leads to a logarithmic time optimal deter-

ministic parallel algorithm for list ranking. A related rescheduling procedure is one of the

tools that leads to a logarithmic time connectivity algorithm which is optimal unless the

graph is extremely sparse.

We identify the following duration-unknown task scheduhng problem, n tasks are

given, each of length between 1 and e log n, e a constant; the total length of the tasks is

bounded by en, c a constant. (A task can be thought of as a program.) However, we do

not know, in advance, the lengths of the individual tasks; in fact, they may vary, depending

on the order of execution of the tasks. The problem is to schedule the n tasks on an

EREW PRAM of n/log n processors so that the tasks are completed in 0(log n) time; it is

solved in Section 4.

We now discuss how to design algorithms that take advantage of this task scheduling

algorithm. Given a problem, our job is to design a "protocol" for solving the problem by

using a set of short tasks (each of length between 1 and e log n). This provides an impor-

tant new opportunity for the designer of a protocol which is based on using the scheduling

algorithm: the designer of the protocol need not know anything about the order of execu-

tion of the tasks. Such an opportunity for designing parallel tasks, without knowing in

advance their lengths, with the guarantee that they will be scheduled efficiently, sounds

very promising. However, this opportunity cannot be separated from a considerable diffi-

culty in designing such a protocol: we have no control over the order of execution of the

tasks, so we must ensure that the protocol works correctly regardless of the order of execu-

tion. We note that this style of protocol design may be useful for distributed systems that

are not tightly synchronized; here too, we have to be sure that the protocol works correctly
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regardless of the order of execution. Section 3 demonstrates how to design such a protocol

for the following problem.

List ranking

Input: A linked list of length n. It is given in an array of length n, not necessarily in the

order of the linked Hst. Each of the n elements (except the last element in the linked list)

has the array index of its successor in the linked list.

The problem: For each element, compute the number of elements following it in the linked

list.

Result: On the EREW PRAM, 0(log n) time using n/log n processors.

Comments: 1. Wyllie [W-79] conjectured that it would be impossible to design a parallel

logarithmic time list ranking algorithm using o(n) procss.sors. Here, we are able to achieve

a much stronger result than this.

2. The list ranking problem is often encountered as a subproblem in other parallel algo-

rithms. The Euler tour technique on trees, which is given in [TV-85,Vi-85], consists of

reducing a variety of tree functions into list ranking. [TV-85] used list ranking for reducing

the biconnectivity problem into the connectivity problem. [CV-86b] gave recently a new

"accelerated centroid decomposition (ACD)" parallel method for evaluation of tree expres-

sions in logarithmic time using an optimal number of processors. The method was inspired

by the important method of [MR-85] in an interesting way and provides new insights into

the whole subject of parallel tree algorithms. The new ACD method performs a reduction

of the tree expression evaluation problem to list ranking; the list ranking provides a

schedule for evaluating the tree operations. The ACD method can be used to solve many

of the problems considered in [MR-85]; generally, the ACD method seems to be simpler.

For example, the ACD method evaluates tree expressions deterministically in logarithmic

time using a linear number of operations. In comparison, [MR-85] achieved such a result

for dynamically evaluating tree expressions, with a considerably more complicated random-

ized algorithm; they needed n processors to achieve logarithmic running time with a deter-

ministic algorithm. The ACD method also generalizes to a family of problems for which

there exists "leaf-to-root" serial algorithms. This family includes finding a minimum vertex

cover and a minimum dominating set on trees. Recently, [SV-86] have shown how to apply

the new list ranking algorithm for responding to queries regarding lowest common ances-

tors of pairs of vertices on tree.
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Previous results: On the EREW PRAM, 0(log n log*n) time using n/(log n log'n) proces-

sors [CV-86a]. Our new result is asymptotically better. However, it involves considerably

larger constants. For all practical purposes the older result seems stronger. Previously

[Vi-84] gave a randomized algorithm which runs in 0(log n log*n) with overwhelming pro-

babiHty using n/(log n log'n) processors. [CV-86a] gives another list ranking algorithm,

which for fixed k, runs in 0(k log n) time using n log^''^n / log n processors.

Part 2 of this research (the paper [CV-86c]) shows how to apply the approximate

scheduling method together with the new list ranking algorithm in order to derive

improved PRAM upper bounds for a variety of problems on graphs, including: connec-

tivity, biconnectivity, minimum spanning tree, Euler tour and st-numbering.

As can be seen, the results presented here improve on previous work in [CV-86a].

The main contributions of [CV-86a] were the deterministic coin tossing technique and a

methodology for scheduling that used as few reschedulings as possible. While the details

of their reschedulings were quite intricate, the rescheduling procedure itself was standard.

We make two main contributions here. First, we provide a new approach to the reschedul-

ing problem. Second, we show how to solve the list ranking problem in the novel frame-

work imposed by our solution to the rescheduling problem. In addition, the companion

papers show anew the central role played by the list ranking problem.

Historical remark. The goal of this remark is to clarify the relationship among the

several joint publications of the authors. [CV-86a,d] are 'first generation' publications.

[CV-86d] (in STOC 86) gives results on list ranking and graph connectivity; the final ver-

sion of this first generation list ranking algorithm is given in [CV-86a]. [CV-86c,e] and the

present paper are 'second generation' publications. [CV-86e] (in FOCS 86) gives second

generation results on list ranking and graph connectivity; the final version of this list rank-

ing algorithm is given in the present paper, and the final version of the work on connec-

tivity from [CV-86d,e] is given in [CV-86c]. [CV-86b] extends the second generation list

ranking algorithm to algorithms for tree problems.

In section 3 we give the new list ranking algorithm. In section 4 we present the

duration-unknown task scheduling algorithm.
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2. Preliminaries

We give below a useful and simple scheme, due to Brent, for designing parallel algo-

rithms. Later, we discuss implications of this scheme for the formulation of complexity

results regarding the performance of parallel algorithms.

Theorem (Brent). Any synchronous parallel algorithm of time t that consists of a total of x

elementary operations can be implemented by p processors in time [x/p] + t.

Proof of Brent's theorem. Let x; denote the number of operations performed by the algo-

t

rithm at time i( 2 ''i
~ ^)- ^^ "^e the p processors to "simulate" the algorithm. Since all

1

the operations at time i can be executed simultaneously, they can be computed by the p

processors in Tx/pl units of time. Thus, the whole algorithm can be implemented by p

processors in time

i [x/pl ^ i (x/p + 1) < [x/pl + t .

1 1

Remarks. 1. Brent's Theorem is stated for parallel models of computation where not all

computational overheads are taken into account. Specifically, the proof of Brent's theorem

poses two implementation problems. The first is to evaluate x; at the beginning of time i in

the algorithm. The second is to assign the processors to their jobs.

2. Often, in the present paper, it is straightforward to overcome the implementation prob-

lems posed by Brent's theorem without increasing the running time or the number of pro-

cessors in order of magnitude. Therefore, we allow ourselves to switch freely from a

result of the form "0(x) operations and 0(t) time" to "x/t processors and 0(t) time" (and

vice versa, which is always correct). However, we avoided doing this where there are dif-

ficulties with these implementation problems.

3. List Ranking

We give an optimal 0(log n) time algorithm to solve the following problem.

Input: A linked list of n nodes, stored in an array with index range [0: n — 1]. For each

node, we store the pointer and the distance to its successor in the arrays D(0: n— 1) and

R(0: n— 1), respectively. For the last node v in the list we have R(v) = and D(v) = nil.
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Problem: Compute into array R, for each node u, the distance from u to the end of the list.

It is useful to assume that each node knows its predecessor in the list. This can be

computed in 0(1) time using 0(n) operations, in the obvious way.

The algorithm starts with a series of 0(log n) steps. Each step takes 0(1) time. In

each step we reduce the problem to a smaller subproblem by removing a set of non-

adjacent nodes from the list. We remove node u, the successor of node v (that is

u = D(v) ), by the following pair of assignments.

R(v) := R(v) + R(u);

D(v) := D(D(v))

At each step of the algorithm each processor is associated with a node. If these assign-

ments are performed by a processor associated with node v this is called a traversal by

node v; if they are performed by a processor associated with node u this is called a removal

by node u.

Our algorithm has three stages.

Stage 1. In 0(log n) steps the input list will be reduced to a list of at most n/log n + 1

nodes. This will take 0(log n) time and 0(n) operations.

Stage 2. We compute the list ranking on the remaining list (the reduced list) using Wyllie's

list ranking algorithm [W-79]; it will perform 0(n) operations in time 0(log n).

Stage 3. We show how to "reconstruct" the list ranking of nodes that were removed in

Stage 1; it is reconstructed from the list ranking of the reduced list, computed in Stage 2.

We first observe that given the list ranking for the list present at the end of a step of Stage

1, the ranking for the nodes present at the start of the step can be computed in 0(1) time.

Specifically, let the vector R actual contain the list ranking. Let u be a node which was

removed from the list at a step of Stage 1. Suppose that Ractual(D(u)) is known. (Note that

both D(u) and R(u) cannot be changed by our algorithm after this removal). Then

Ractuai(u) can be computed by RactualC") := R(u) + Ractual(D(u)). Second we apply the

idea of backtracking. Specifically, each processor "revisits" the operations it performed at

Stage 1 from the most recent to the earliest; at the time of revisiting the operation of

removing node u it simply computes RactuaK")- ^^ refer the reader to [CV-86a] for a

more detailed discussion of the "backtracking" procedure required. The time complexity
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of Stage 3 is dominated by the time complexity of the forward steps of Stage 1.

So the total complexity of the algorithm is 0(n) operations and 0(log n) time.

The rest of this section is concerned only with the traversals and removals of Stage 1.

The goal is to obtain a reduced list of at most n/logn + 1 nodes (the reduced list will

include the first node of the input list). We call the nodes in the reduced list ^// nodes.

The traversals and removals are performed by a set of n— 1 tasks, associated with each

node in the list (except the first node). Each task performs at most 2 log n — 1 steps of

traversals and removals. Our main effort in this section is to show how to formulate these

tasks so that we can use the duration-unknown task scheduling algorithm from Section 4 to

schedule them. We need the following definition.

Dennition. An r-ruling set of a linked list is a subset U of the nodes of the list such that

(i) No two nodes of U are adjacent in the list

(ii) If V is a node in the Hst, the next node from U in the list is at most r edges (links)

distant from v.

We recall that there is a log n-ruling set algorithm that performs 0(n) operations in

0(1) time [CV-86a]. To make the paper self-contained we have described a slightly modi-

fied version of this algorithm in the Appendix. The algorithm has the following property:

The first node in the list is always placed into the ruling set unless its successor is the last

node in the list (i.e. the list contains exactly two nodes). We remark, that by definition,

the ruling set contains the last node in the list. Also, the algorithm actually provides a

stronger result that we use below: Suppose we assign a processor to each node in the list.

Then, solely by looking at v, its three predecessors and four successors, the processor can

determine in 0(1) time whether v is in the log n-ruling set.

The task of v, for any node v in the list.

At the beginning, the task of node v will be waiting. At some step of Stage 1 a proces-

sor will be assigned to node v and the task will become active. The task will remain active

until it is completed. Upon completing this task the processor will be able to determine

whether v is in the reduced list (i.e. whether v is a full node) or not. If v is not in the

reduced list then node v either: performs a removal, or "marks itself for removal", or is

already removed.
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On becoming active the task determines if node v has been removed from the present

linked list. If so, in one step of Stage 1, the processor completes the task of node v without

removing any node and v is not a full node. So, suppose that v is in the present list. The

processor of v will complete its task with the decision that v is a full node if and when the

following two conditions hold:

(i) Node v has performed at least log n traversals.

(ii) The successor of node v in the present list is not marked for removal.

Each step comprises three synchronized substeps.

Substep 1.

If node V has performed at least log n traversals and the successor of node v in the

present list is not marked for removal

then the task is completed (without even proceeding to Substep 2); v is a full node.

Substep 2.

If the successor of v is a full node

then if the predecessor of v is not active

then v performs a removal; the task is completed; v is not a full node.

else mark v for removal; the task is completed; v is not a full node.

Substep 3. V belongs to a "chain" of presently active nodes; the chain is of length at least

one and is followed by a node that is not full (either a node whose task is waiting or a node

marked for removal).

Use the stronger version of the log n-ruling set algorithm to find whether v is in a

log n-ruling set with respect to this chain. (Note: the last node in the chain is always

placed in the ruling set. Specifically, in the trivial case, where the chain consists of a

single node, this node is in the ruling set.)

If V is not in the ruling set and is not the first node in the chain

then mark v for removal; the task is completed; v is not a full node.

else If V is not in the ruling set and is the first node in the chain

then V performs a removal; the task is completed; v is not a full node.

else (* V is in the ruling set *) v performs a traversal.

Let us analyze the algorithm.
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The reduced list comprises nodes that have traversed at least log n nodes each, plus

the first node in the input list. This implies:

Lemma 3.1. The length of the reduced list is at most n/log n + 1.

Lemma 3.2. The task of each node includes at most 21og n — 1 traversals.

Proof. We need the following observation. Consider the time at which node u is marked

for removal (but not removed). There must be a chain of length x ^ log n + 1 nodes

which ends at (and includes) u and satisfies the following: 1. The last x— 1 nodes of this

chain are marked for removal simultaneously. 2. The first node of the chain is active and

has performed less than log n traversals.

Now consider node v that has performed at least log n traversals. After the time at

which node v performed its log n-th traversal, its successors could have formed a chain of

at most log n — 1 nodes marked for removal. This chain cannot grow while node v

traverses the chain. Finally, Substep 1 implies that node v completes its task after travers-

ing the s log n — 1 nodes in this chain. Lemma 3.2 follows.

Each removed node was subject to exactly one traversal or removal operation in one

of the n — 1 tasks. This implies the following corollary.

Corollary 3.1. There are n— 1 tasks. Each task is of length 0(log n) and the total length of

the tasks is 0(n). Further, a task, once active, remains active until it is completed.

Corollary 3.1 describes exactly the problem solved by the duration-unknown task

scheduling algorithm of Section 3. Thus these tasks require 0(log n) time and 0(n) opera-

tions.

We have shown

Theorem 3.1. There is a EREW PRAM algorithm for list ranking that runs in 0(log n)

time using n/log n processors, which is optimal.

4. Approximate scheduling

We solve two dynamic scheduling problems: a duration-unknown task scheduling prob-

lem (which is encountered in the list ranking problem) and a processor scheduling problem

(which is encountered in the the connectivity problem in the companion paper [CV-86c]).

We start by stating the task scheduling problem, and then informally describe the processor
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scheduling problem (as the precise description is somewhat involved we defer it to this

companion paper where it is needed). Our solution for both problems require rapid

rescheduling of the processors. The mechanism that provides each rescheduling is an

object redistribution step. We define the object redistribution problem, which is solved by

each application of the redistribution step. Then, we show how to solve the task scheduling

problem using repeated applications of this object redistribution step, and finally we

describe the object redistribution step itself. This step is based on a pseudo-random redis-

tribution. The pseudo-randomness is achieved by using an expander graph.

The duration-unknown task scheduling problem (for short, the task scheduling problem)

is the following. We are given n tasks. A task is a program that is to be run by one pro-

cessor. The length of the task is its sequential running time (we will measure this as a

specific number of 0(1) time steps, which we call real steps). The lengths of individual

tasks may be dependent on the scheduling; however, we are guaranteed that no task has

length greater than e log n, and that the total length of all the tasks is bounded by c n,

regardless of the scheduling, for some constants c and e. The problem is to execute these

tasks on n/ log n processors in 0(log n) time. We are allowed to schedule, and reschedule

the tasks as we wish, so long as the scheduling occupies only 0(log n) time.

For the processor scheduling problem we have p processors and q tasks, q ^ p. Here,

several processors can cooperate effectively on a single task (we will not define a task pre-

cisely at this point). The problem is the following. Given an (uneven) distribution of the

processors among the tasks produce a considerably more even distribution in 0(1) time.

We remark that the task scheduling problem will be solved by redistributing the tasks,

while the processor scheduling problem appears to require the redistribution of processors.

In fact, we will also solve this problem by task redistribution, as will be seen in [CV-86c].

Let us define the object redistribution problem. Initially, we are given r objects, parti-

tioned among p collections of objects. We are also given one processor per collection.

Loosely speaking, the problem is to redistribute the objects among the collections so that

they are more evenly distributed. For a more precise description we need some defini-

tions, size;, the size of collection i, 1 ^ i :S p, is the number of objects in collection i; the

weight of collection i is sizep, the square of its size. Let W = 2) sizej^ be the total weight
i=l

of all the collections and let s be the number of objects present currently (s = ]£ size;).

Ultracompnter Note 110 Page 10



Define the minimum weight of s objects, W^ „, to be p fs/pl^, and let Wnj be the minimum

weight for the current set of objects. Let f and g be constants (f > g > 298, but specified

more precisely at the end of this Section). If W is bounded by either f p or g W^j then the

collections are said to be balanced (i.e. either there are few objects present, or the objects

are roughly evenly distributed).

The object redistribution problem is the following. Each application of the redistribu-

tion step should satisfy three demands:

(1) If the collections are unbalanced, the problem is to reduce the total weight of the

collections by a multiplicative constant factor in 0(1) time.

In addition, even if the collections are balanced,

(2) The total weight must not be increased.

(3) The maximum number of objects in any one collection muse never increase.

Data structure. The object redistribution step uses the following data structure. The

objects are stored at the leaves of complete binary trees. Formally, suppose a collection

has a objects. If a = 1 then this single object forms a (complete binary) tree. Otherwise,

suppose 2' s a < 2''*'\
i ^ 1. Then, 2' of these objects form a complete binary tree and

the remaining a — 2' objects recursively form complete binary trees. So, in each collec-

tion, the objects are stored in a set of complete binary trees, no two of the same size. We

maintain the following pointers: for each internal node in such a tree, pointers to its left-

most and rightmost leaves; in addition, we keep the leaves in each tree in a linked list, in

left to right order. Finally, for each collection, we keep its trees in a doubly linked list, in

increasing order by size.

We solve the task scheduling problem as follows. We set r = n, p = n/ log n. The

tasks are the objects. Initially, we distribute log n tasks to each collection. Each collection

will never contain more than log n tasks. We perform O(log^^^n) of the following stages.

(i) Each processor performs log n/log^ ^n real steps on the tasks in its collection. This

is easily done in 0(log n/log^^n) time for the links in the trees containing the tasks

allow us to access each successive task in 0(1) time, starting at the leftmost task (leaf)

in the smallest tree). We then reformat the trees so that they are of the form assumed

by the object redistribution step; we explain how to do this in O(log^^^n) time in

Remark 2, below.
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(ii) Perform an object redistribution step. This requires 0(1) time.

Lemma 4.1: After h log^^^n stages there are at most fn/log n incomplete tasks, for some

constant h.

Proof: Consider a single stage. If, at the start of part (ii) of the iteration the collections are

not balanced then the weight is reduced by a constant factor. Since the initial weight is

n log n, this can happen only O(log^^^n) times, say at most hi log^^^n times, for some con-

stant h] (for at that point the weight will have been reduced to fn/log n; i.e. the collections

are balanced). Thus, on the remaining iterations, at the end of part (i), the collections are

balanced. That is, either the total weight is bounded by fn/log n (Case 1), implying that

there are at most f n/ log n tasks remaining, or the weight is bounded by g W„ but not by

fn/log n (Case 2).

We claim that in Case 2 at least l/(16g) • n/log n of the collections are not empty.

This is seen as follows. We first note that s, the number of objects present, is at least p

( = n/log n) for otherwise we would have W^j ^ p. This would imply g W^ < fp,

(remember f s g), and therefore contradicts the assumption of Case 2. Next, suppose x of

the collections are non-empty. Then W, the total weight of all the collections, is at least

X • [s/xj^; also W < g W^j and W„ = p • [s/p]^. That is x [s/xj^ ^ g P [s/pl^, and since

s > p > X, we have s^/4x :S 4g s^/p, or x ^ p/(16g).

For each non-empty collection, in part (i) of the stage, log n/log^^V real steps were

performed on the tasks at hand. Thus, in Case 2, at least n/(16g log^^^n) real steps were

performed on the tasks in part (i) of this stage. Let h = hj + 16gc. We have shown that

following h log^ ^n iterations there can be at most f n/ log n tasks remaining incomplete.

The final stage: Distribute the remaining (at most fn/log n) tasks evenly among the proces-

sors (this is done using a standard prefix sum computation, as in [CV-86a], for instance, in

a further 0(log n) time using n/log n processors). Each processor will then complete its

allotted tasks by performing at most f e log n more steps.

Thus the task scheduling problem can be solved in 0(log n) time on n/ log n proces-

sors.

Remark 1: It is convenient, in the list ranking application, to ensure that having started one

task, the processor completes it before beginning another. All we have to do is ensure that
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we do not redistribute the tasks that processors are currently executing. This is easily done

(see the distribution step below) by redistributing from the right end of trees. We will

then never redistribute the current task, which is at the leftmost end of some tree.

Remark 2: We explain how to reformat the trees at the end of part (i), above. Let the task

currently being processed be at leaf v of tree T. To ensure all the trees are complete and

distinct we need to partition T into complete subtrees (recall that T is the smallest tree

associated with the collection; thus we are guaranteed that if we create distinct sized com-

plete binary trees from T then no two trees in the collection will have the same size and we

get a proper set of complete binary trees). To partition T, we follow a path from v to the

root of T. Each maximal right subtree that we encounter is made into a new tree. This

traversal takes O(log^^^n) time.

The rest of this section is devoted to the algorithm for object redistribution. We dis-

tinguish a sequence of classes of collections, from the lightest to the heaviest as follows.

Class comprises those collections of size or 1.

Class i, i > 0, comprises those collections whose size is in the range [2', 2'"''^).

The redistribution algorithm performs a cascade of redistributions of objects from heavier

collections to lighter collections. As we will see, this provides the desired weight reduc-

tion.

Remark. A simpler idea would have been to redistribute objects from large collections to

small ones directly, rather than through this cascade. Unfortunately, we did not find a way

to implement this simple idea deterministically.

We will perform an object redistribution from one collection, in class 1, to another col-

lection, in class j, only if j < i— 1. This guarantees that we achieve a constant multiplica-

tive reduction in the total weight of the collections involved in this transfer, as will be

shown later.

We note that we have little control over the distribution of objects at the start of the

redistribution step, and hence we have little control over the distribution of collections

among the classes. Nonetheless, for any class containing many collections, we want to be

able to perform redistributions of objects from most of these collections to other collections
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of considerably smaller size. This motivates us to consider expander graphs.

Definition: A bipartite graph G = (Vi,V2, E), with |Vi| = IVjl, is a (d, e, —^)-

expander graph if for any subset U C Vj, with |U
|
^ e IVjl, the set N(U) of neighbors of

vertices in U has size |N(U)
|
S: (

) |U |, and G has vertex degree d.

It is convenient to assume that d is a power of 2 (if not, we can add additional edges to G;

this will not affect the expander property). Given any e < 1, it is known that there exist

expander graphs for sufficiently large d (where d is a function of € only). Further such an

expander graph can be built in 0(log |Vi|) time using |Vi|/log |Vi| processors, for each

fixed e, as we show in the following remark. (See [LPS-86,JM-85,GG-81] for results on

expander graphs.)

Remark. For our construction we need € = 1/36. In other word, for |U
|
^ |Vi|/36, we

need that |N(U)
|
^35 |U |. We use an expander graph based on the construction described

following Theorem 2 of [JM-85]. There, a different definition of expander graphs, which is

due to Margulis [M-75], is given; the definition follows: A bipartite graph K = (Vi,V2,E)

is an (n,k,8) expander graph if |Vi| = IV2I = n, the degree is k, and for each subset U of

Vi, |N(U)| > (1 + 8(l--j^)) |U|. (Comment: actually. [JM-85] do not restrict the

degree; they merely require |E
|
s kn; however, their constructions all obey this less liberal

definition.) [JM-85] give an expander graph K with k = 5 and 8> 1/10. >From this graph,

using standard methods, we can obtain the expander graph G needed for our construction,

as follows. We "iterate" the construction r times, for some constant r (which depends only

on €), creating graph H. Namely, the vertices of H comprise the disjoint vertex sets Vj,

V2, .... Vj+i; we place a copy of the edges of K between V; and Vi+j, for l:2i^r. G has

vertex sets Vj and V^+j. If in H, vertices vcVj and weVj+j are connected by a path of

length r, then in G, v and w are joined by an edge. K has vertex degree 5; thus G has ver-

tex degree at most 5^ Finding the constant r is easy: For |U| ^35/36 |Vi| the graph K

satisfies that |N(U) |> (l + -;7--^) |U |, implying |N(U) |> (1 + 1/360) |U |. It is easy to see
lU 36

that in G, |N(U)
|
>min {35/36 |Vi|,(l + 1/360)'|U |}. Determining r is now straightfor-

ward. (A more careful argument provides a much tighter bound.) There are two more

issues to be considered in order to adapt the construction of [JM-85] to our needs:
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(1) [JM-85] provide expander graphs for which |Vi|= |V2| = m^, where m is an integer.

We actually wanted an expander graph on n vertices, not on m vertices. So let

(m — l)^<nSm^. Instead of using an expander graph on n vertices, we use the expander

graph on m^ vertices. This implies the algorithm assumes m^ processors are available; but

such an algorithm is readily simulated on n processors, slowing it down by a factor of at

most 2.

(2) We comment on the complexity of constructing the edges of K (and implicitly of G).

Each vertex has degree five. Each edge can be readily determined in 0(1) time by a single

processor.

The object redistribution algorithm follows. For each collection we create two nodes:

a giving node and a receiving node (we will also refer to these as the giving collection and

the receiving collection). We connect the giving and receiving nodes by a (d, €, )-

expander graph, the giving nodes being vertex set Vj. We perform the following object

redistribution. Suppose there is an edge connecting the giving collection Cj to the receiving

collection Ci- Let Cj and C2 be in classes ij and ii' respectively. If ij > i2 + 1, then a

number of objects are removed from Cj and added to C2. More precisely, let 3 be the

number of leaves in the largest tree of objects in Cj (3 = 2
'); if 3 ^ 8d then the number

of objects transferred is 3/8d; otherwise, no objects are moved.

The object transfer can be performed in 0(1) time since it only involves manipulating

the top 0(log d) levels of the largest tree in Cj (followed by a constant amount of tree

reconstruction in Cj and C2). More precisely, for each collection with at least 8d objects,

we divide the largest tree in the collection (of size p ^ 8d) into 8d equal sized subtrees.

Up to d of these trees are transferred in the object redistribution (the rightmost trees are

transferred in accord with remark 1, above). The remaining trees of size S: 3/8d in the

collection are then repeatedly paired together (only equal sized trees are paired), until

there is at most one tree of each size. Since this involves at most 8d + log 8d trees it takes

0(1) time using one processor per collection. The pairing process is then repeated with the

trees that are transferred to the collection. There are at most d + log 4d trees involved in

the latter pairing; so it also takes 0(1) time using one processor per collection. We note

that care must be taken to maintain the pointers for the tree nodes as the trees are manipu-

lated; however, this is straightforward.

Ultracomputcr Note 110 Page 15



We proceed to show that the redistribution we have just described never increases the

total weight, and when the collections are unbalanced, reduces it by a multiplicative con-

stant. We also note that the redistribution never increases the size of the largest collection.

For the purposes of the analysis, we consider the redistributions to be performed in

the following order (in fact, they are performed simultaneously). We consider each redis-

tribution to be an ordered pair comprising the weight of the receiving collection followed

by the weight of the giving collection. The redistributions are ordered lexicographically,

and are performed in this order. Thus the redistributions into the lightest receiving collec-

tion are performed first; among these redistributions, the one from the lightest giving col-

lection is performed first.

Claim. Let Sg be the initial size (that is, before the present redistribution step starts) of giv-

ing collection Cg and let Sj be the initial size of receiving collection C^. Suppose that there

is a redistribution from Cg to C^. Following this redistribution, Cg has size at least 7/8 Sg,

and Cf has size at most s^ -I- 1/8 Sg.

Lemma 4.2: The weight reduction produced by the redistribution of the claim is at least

s^/32d.

Proof: Let 7/8Sg + a ->- b be the size of Cg immediately before the redistribution, let s, + c

be the size of C^ immediately before the redistribution, and let a be the number of items

transferred. We know that: (1) s, < Sg/2 (since if Sg belongs to some class i then Sj can

belong only to a class j, where j s i
— 2). (2) c -H a ^ 1/8 Sg. This follows from the above

claim regarding the size of Cj). (3) a + b ^ (this is trivial). And, (4) 16da > Sg (since a,

the number of elements transferred is > Sg/16d). The weight reduction is given by:

(7/8 Sg + a + b)2 + (Sj + cf - (7/8 Sg + b)^ - (s^ + c + a)^ = 2a (7/8 Sg + b-s^ - c).

Observe that (2) and (3) above imply that, b-c = -((c+a) - (b4-a)) > -Sg/8.

Using this and (1) above we get,

aso
2: 2a(7/8 Sg - Sg/2 - 1/8 Sg) = -y-.

By (4) above we get,

si

32d
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Corollary 4.1: Any sequence of redistributions reduces the total weight.

Corollary 4.2: Let Wg be the total weight of the giving collections, counting multiplicities,

in a sequence of redistributions. Then the weight reduction for these collections, due to the

redistributions, is at least Wg/32d.

In the rest of this section, we assume that the collections are unbalanced. We will

show that the weight of the giving collections, counting multiplicities, is a constant fraction of

the total weight of the collections. It follows, by Corollary 4.2, that the total weight of the

collections is reduced by a multiplicative constant.

Let Si be the set of collections in class i. Let L; = U S;. Let |Si| (resp. |Li|) denote

the number of collections in S; (resp. Lj), and let wt(Si) (resp. wt(Li)) denote the sum of

the weights of the collections in S; (resp. Lj). On the average there are s/p objects in each

one of the p collections. Define the variable average to be \\ci^2 s/pj • We refer to class

average as the average class. Let a denote the smallest i > average + 2 such that

|Si|>|Si_i|/32.

We define a set S;, i ^ a, to be giving if there are at least ISj giving collections in Sj,

counting multiplicities. We implement the expander graph so that whenever

|Si| > l/32|Si_i| and |Si| > |Li+i| then S; is giving.

Our presentation proceeds as follows. First, we show that such an a exists. Second,

we show that the total weight of the collections in L^ is a constant fraction of the total

weight. Third, we show that the weight of the giving sets is a constant fraction of the

weight of La- Finally, we show that the weight of the giving collections, counting multipli-

cities, in a giving set, is a constant fraction of the weight of the giving set.

Lemma 4.3. a exists.

Proof. We assume, in contradiction, that a does not exist and show that the collections

must have been balanced, which is contrary to our assumption. To show this we observe

the following:

(a) The total weight of the collections in classes 0,..,average— 1 is less than W^j.

(b) Wt(Saverage) ^ ^"^m\ Wt(Savera6e+l) "^ ^(>'^m, Wt(Saverage+2) ^ 64W„.

(c) wt(Si) ^ wt(Si_i)/2 for i > average + 2 (since otherwise a would exist).
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The total weight is therefore,

X Wt(Si) + Wt(Saverage) + Wt(Saverage+l) + Wt(Saverage+ 2) + S Wt(Si)

i < average ' > average+2

Observations (a),(b) and (c) above imply that this is

< W^ + 4W„i + 16W„i + 64Wnj + 64W„, = MQW^,

Since g > 298 we conclude that the collections are balanced, n

Using a similar proof we can show that

Lemma 4.4. wt(L„) > (g - 149)Wnj.

Corollary 4.3. The weight of L^ is a constant fraction of the total weight W. Specifically,

wt(La) is at least W/2.

Henceforth, we only consider sets Sj with i ^ a. We need to classify these sets

according to whether they must contain many giving collections. Thus, we define a set Sj

to be large if ISj > |Si_i|/32. Likewise, it is small if |Si| < |Si_i|/32. We will show that

the weight of the large sets is at least half the weight of L^. The neighbors, for giving col-

lections, will be provided by the edges of an expander graph. Thus if iLj+jl is large com-

pared to |Sil, we will not be able to guarantee that there are many giving collections in S,.

So we define Sj to be useful if ISj ^ |Li+i|. We will show that the weight of the useful

large sets is at least one fifth of the weight of the large sets. Finally, by choosing the right

constant € for the expander graph, we will ensure that each useful large set is a giving set.

Lemma 4.5. The weight of the large sets is at least 1/2 wtCL,,).

Proof. Let Sj, Sj+jj be large sets and suppose that for each j, 1 ^ j < k, Sj+j is not large.

k-l
Then, as in the proof of Lemma 4.3, we can show that wt(Si) ^ ^ wt(Sj+j). Let Sj, be the

j=i

large set of greatest index; we can also show that wt(Sh) ^ X^^(^h+j)- Since S^ is large

the lemma follows. D

Lemma 4.6. The weight of the useful large sets is at least 1/5 of the weight of the large

sets.

Proof. Observe that the large set whose index is maximal must be useful. Consider a

sequence of sets S;
^ +i, S; +2, . . . , S; , which satisfies the following: (1) S,^ is the only
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set in the sequence which is both useful and large. (2) Either Sj is both useful and large;

or ik+i is a— 1. (3) S; , S, , .... S; , S; is the subsequence of large sets in this sequence.

k
We show that S^^^^i) — ^ wt(Si). Since any large set must lie in such a sequence the

j=i

lemma follows.

Let T: be the union of the small sets between S; and S; . Let the sequence

Rj , Rj , .... Rj, comprise the merge of the sequence S; , .... S; , and the non empty sets in

h

the sequence Tj^, .... T;^. We actually prove that ^ wtCR;) < 4 wtCRj^ = 4 wt(Si^). This
j=i

result is an immediate consequence of the following claim: Claim 1: For 1 < j < h,

wt(Ri3 s 2 ~ Vt(Ri). This in turn, is an immediate consequence of the following two

claims: Claim 2. For 1 < j < h, |Ri| < 2J|RjJ. Claim 3. For 1 < j
< h, the weight of

any collection in R; is at most 4^~^' of the weight of any collection in R; . Claim 3 is

immediate.

Proof of Claim 2. For each set R,, j ^ 1, we prove the following assertion: the number

j-i

of collections in U R; U L; is greater than the number of collections in R,-. Claim 2 fol-

lows by induction on j, from the assertion, when we note that |Li |
^ |Ri |. The proof of

the assertion breaks into two cases.

Case 1: R: is a set S: . Because S; is not useful IS; I < IL: +i|, and the assertion follows.
i y y y y

Case 2: R] is a set Tj^. We note that JTjJ < 1/31 [SjJ. Also, since S; is not useful,

|SiJ < |TiJ + |Li__J. Thus |TiJ < 1/31 (|TiJ + \U^J). We deduce that iTjj < ILj^J.

Again, the assertion follows.

We would like the giving collections in a useful large set S; to have many receiving

i-2
neighbors (which we call the neighbors of Sj, N(Si)) in the expander graph in the set U S;.

j=o

So we choose € = 1/36 for the expander graph and show:

i-2

Lemma 4.7. A useful large set S, has at least |S;| neighbors in U S:.
j=o J

Proof. We note that |Si_i| + |Si| + |Li+i| ^ 34|Si| for Sj large and useful. There are two

possibilities:
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Possibility 1. |Si| < p/36. Then Si has at least 35 |Si| neighbors, of which at least |Si| lie

outside Si_i U S^ U Lj+j.

i-2

Possibility 2. |Si| > p/36. Then Sj has at least 35p/36 neighbors. Observe that
|
U Sj| >p/2
j=o

17
'"2

(since i > average + 2). Therefore, at least -r—p of these neighbors are in U S;. Also,
3d j=o

i > average + 2, implies that ISj s p/4. Thus Sj has at least 17/9 ISj > |Si| neighbors in

i-2

U Sj. This completes the proof of Lemma 4.7.
j=0 J

Lemma 4.8. The weight of the giving collections is at least 1/2 1/2 1/5 • 1 • 1/4) > 1/2^

of the total weight W.

Proof. In Corollary 4.3 we showed that wtCL^) is at least W/2. In Lemma 4.5 we showed

that the weight of the large sets was at least 1/2 wt(L„). In Lemma 4.6 we showed that the

weight of the useful large sets was at least 1/5 of the weight of the large sets. In Lemma

4.7 we showed that each useful large set Sj has at least |Si| giving collections, counting mul-

tiplicities. Finally, since the size of the collections in each useful large set S; lie in the

range [2', 2'"'"^), we conclude that the giving collections in Sj, counting multiplicities, have

weight at least 1/4 wtCSj). The result now follows.

In the definition of balanced, above, we set g = 298, and f = max{g, 8d}. We have

then shown:

Theorem 4.1: If the collections are not balanced then, in 0(1) time, the redistribution

algorithm reduces the total weight by a multiplicative factor of at least

l-^-^^l- '

32d 2^ 2^^
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6. Appendix: The log n-ruling set algorithm.

Assumptions about the input representation: The vertices are given in an array of length

n. The entries of the array are numbered from to n— 1. The numbers are represented as

binary strings of length flog n]. We refer to each binary symbol (bit) of this representation

by a number between and [log n] — 1. The rightmost (least significant) bit is called bit

number and the leftmost bit is called bit number flog n] — 1. Each vertex has a pointer

to the next vertex in the list (representing its outgoing edge). For simplicity we assume

that log n is an integer**.

Here is a verbal description of an algorithm for the log n-ruling set problem. The

algorithm is given later. Processor i, s i ^ n— 1, is assigned to entry i of the input array

(for simplicity, entry i is called vertex i). It will attach the number i to vertex i. So, the

present "serial" number of vertex i, denoted SERIALo(i), is i. Next, we attach to vertex i a

new serial number, denoted SERIALi(i), as follows. For each vertex i that is not the last

vertex in the list, let 12 be the vertex following i. Let j be "the index of the rightmost bit in

which i and \2 differ". Processor i assigns j to SERIALi(i).

Example. Let i be ...010101 and i2 be ...llllOL The index of the rightmost bit in which i

and 12 differ is 3 (recall the rightmost bit has number 0). Therefore, SERIALi(i) is 3.

A remark in [CV-86a] explains how j can be computed by a constant number of standard

operations.

Next, we show how to use the information in vector SERIALj in order to find a log n-

ruling set.

Fact 1: For all i, SERIALi(i) is a number between and logn— 1 and needs only

floglog n] bits for its representation. For simplicity we will assume that loglog n is an

integer.

Let ij and 12 be, respectively, the vertices preceding and following i. SERIALi(i) is a local

minimum if SERIALi(i) < SERIALidj) and SERIALi(i) < SERIALi(i2). A local max-

imum is defined similarly.

"The base of all logarithms in the Appendix is 2.

Ultracompnter Note 110 Page 23



Fact 2: The number of vertices in the shortest path from any vertex in G to the next (ver-

tex that provides a) local extremum (maximum or minimum), with respect to SERIALj, is

at most log n.

Observe that several local minima (or maxima) may form a "chain" of successive vertices

in G. Requirement (i), in the definition of an r-ruling set (in Section 3), does not allow us

to include all these local minima in the set of selected vertices. Our algorithm exploits the

alternation property (defined below) of vector SERIALj to overcome this problem.

The alternation property: Let i be a vertex and j be its successor. If bit number

SERIALi(i) of SERIALo(i) is (resp. 1), then this bit is 1 (resp. 0) in SERIALo(j). (For

SERIALi(i) is the index of the rightmost bit on which SERIALo(i) and SERIALo(j)

differ.)

Suppose that ii,i2 • • is a chain in G such that SERIALi(i) is a local minimum (resp.

maximum) for every i in the chain. Then:

Fact 3: For all vertices in the chain SERIALj is the same (i.e.,

SERIALi(ii) = SERIALi(i2) = • • • )• (By definition of local minimum).

Below, we consider bit number SERIALi(ii) of SERIALq for all vertices in the chain.

Fact 4: The following sequence of bits is an alternating sequence of zeros and ones.

Bit number SERIALi(ii) of SERIALo(ii), bit number SERIALi(i2) (= SERIALi(ii))

of SERIALo(i2), •, bit number SERIALi(ij) ( = SERIALi(ii)) of SERIALo(ij)

(This is readily implied by the alternation property.)

We can now understand why we called our technique deterministic coin tossing. We

associated zeros and ones with the vertices, based on their original serial numbers; these

serial numbers were set deterministically. This association allows us to treat (apparently)

similar vertices differently. Finally, note that coin tossing can be used for similar pur-

poses.

We return to the algorithm. We select the following subset of vertices.

We select the last vertex in the list; we also select the first vertex if there are more than

two vertices in the list.
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We say an unselected vertex is available if neither of its neighbors was selected and it is a

local minimum. We select all available vertices i that satisfy one of the following two pro-

perties.

(1) Neither of i's neighbors is available.

(2) Bit number SERIALi(i) is 1.

Now, we say an unselected vertex is available if neither of its neighbors was selected and it

is a local maximum. We select all available vertices i that satisfy one of the following two

properties.

(1) Neither of i's neighbors is available.

(2) Bit number SERIALjd) is 1.

The selected vertices form a log n-ruling set. Requirement (i) is satisfied since we never

select two adjacent vertices. Requirement (ii) is satisfied by Fact 2 and since every local

extremum is either selected or is a neighbor of a vertex that was selected.

We have shown:

Theorem: A logn-ruling set can be obtained in 0(1) time using n processors.
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