

MURDOCH RESEARCH REPOSI TORY

This is the author’s final version of the work, as accepted for publication

following peer review but without the publisher’s layout or pagination.

The definitive version is available at :

http://dx.doi.org/10.1016/S0304-3975(00)00365-0

Sim, J.S., Iliopoulos, C.S., Park, K. and Smyth, W.F. (2001) Approximate periods

of strings. Theoretical Computer Science, 262 (1-2). pp. 557-568.

http://researchrepository.murdoch.edu.au/27573/

Copyright : © 2001 Elsevier Science B.V.

I t is posted here for your personal use. No further dist r ibut ion is perm it ted.

http://dx.doi.org/10.1016/S0304-3975(00)00365-0
http://researchrepository.murdoch.edu.au/27573/

Approximate Periods of Strings

Jeong Seop Sim� � Costas S� Iliopoulos � � y

Kunsoo Park � � W� F� Smyth � � z

� Department of Computer Engineering� Seoul National University
� Department of Computer Science� King�s College London

� Department of Computing � Software� McMaster University
� School of Computing� Curtin University

Abstract� The study of approximately periodic strings is relevant to
diverse applications such as molecular biology� data compression� and
computer�assisted music analysis� Here we study di�erent forms of ap�
proximate periodicity under a variety of distance rules� We consider three
related problems� for two of which we derive polynomial�time algorithms�
we then show that the third problem is NP�complete�

� Introduction

Repetitive or periodic strings have been studied in such diverse �elds as molecu�
lar biology� data compression� and computer�assisted music analysis� In response
to requirements arising out of a variety of applications� interest has arisen in algo�
rithms for �nding regularities in strings� that is� periodicities of an approximate
nature� Some important regularities that have been studied in the literature are
the following�

� Periods� A string p is called a period of a string x if x can be written as
x � pkp� where k � 	 and p� is a pre�x of p� The shortest period of x is
called the period of x� For example� if x � abcabcab� then abc� abcabc� and x
are periods of x� while abc is the period of x� If x has a period p such that
jpj � jxj�
� then x is said to be periodic� Further� if setting x � pk implies
k � 	� x is said to be primitive� if k �
� pk is called a repetition�

� Covers� A string w is called a cover of x if x can be constructed by concate�
nations and superpositions of w� For example� if x � ababaaba� then aba and
x are the covers of x� If x has a cover w �� x� x is said to be quasiperiodic�
otherwise� x is superprimitive�

� Seeds�A substring w of x is called a seed of x if it is a cover of any superstring
of x� For example� aba and ababa are some seeds of x � ababaab�

� Repetitions� A substring w of x that is a repetition is called a repetition
or tandem repeat in x� For example� if x � aababab� then aa and ababab are

� fjssim� kparkg	theory�snu�ac�kr� Supported by KOSEF Grant
���
���������
y csi	dcs�kcl�ac�uk� Supported in part by the CCSLAAR Royal Society Researh Grant�
z smyth	mcmaster�ca� Supported by NSERC Grant No� A����

repetitions in x� in particular� a� � aa is called a square and �ab�� � ababab
is called a cube�

The notions cover and seed are generalizations of periods in the sense that
superpositions as well as concatenations are used to de�ne them� A signi�cant
amount of research has been done on each of these four notions�

� Periods� The preprocessing of the Knuth�Morris�Pratt algorithm 	�� �nds
all periods of x in linear time � in fact� all periods of every pre�x of x� In
parallel computation� Apostolico� Breslauer and Galil
� gave an optimal
O�log logn� time algorithm for �nding all periods� where n is the length of
x�

� Covers� Apostolico� Farach and Iliopoulos �� introduced the notion of cov�
ers and described a linear�time algorithm to test whether x is superprimi�
tive or not �see also �� �� 	���� Moore and Smyth
�� and recently Li and
Smyth

� gave linear�time algorithms for �nding all covers of x� In paral�
lel computation� Iliopoulos and Park 	�� obtained an optimal O�log logn�
time algorithm for �nding all covers of x� Apostolico and Ehrenfeucht ��
and Iliopoulos and Mouchard 	�� considered the problem of �nding maxi�
mal quasiperiodic substrings of x� A two�dimensional variant of the covering
problem was studied in 		� 	��� and minimum covering by substrings of given
length in 	���

� Seeds� Iliopoulos� Moore and Park 	�� introduced the notion of seeds and
gave an O�n logn� time algorithm for computing all seeds of x� For the same
problem Berkman� Iliopoulos and Park �� presented a parallel algorithm
that requires O�log n� time and O�n logn� work�

� Repetitions� There are several O�n logn� time algorithms for �nding all
the repetitions in a string 	�� ��
��� In parallel computation� Apostolico and
Breslauer 	� gave an optimal O�log logn� time algorithm �i�e�� total work is
O�n logn�� for �nding all the repetitions�

A natural extension of the repetition problems is to allow errors� Approx�
imate repetitions are common in applications such as molecular biology and
computer�assisted music analysis �� 	
�� Among the four notions above� only
approximate repetitions have been studied� If x � uww�v where w and w�

are similar� ww� is called an approximate square or approximate tandem re�
peat� When there is a nonempty string y between w and w�� we say that w and
w� are an approximate nontandem repeat� In
	�� Landau and Schmidt gave an
O�kn log k logn� time algorithm for �nding repeated patterns whose edit distance
is at most k in a text of length n� Schmidt also gave an O�n� logn� algorithm
for �nding approximate tandem or nontandem repeats in
�� which uses an
arbitrary score for similarity of repeated strings�

In this paper� we introduce the notion of approximate periods which can
be considered as an approximate version of three notions periods� covers� and
seeds� Here we study di�erent forms of approximate periodicity under a vari�
ety of distance rules� We consider three related problems� for two of which we
derive polynomial�time algorithms� we then show that the third problem is NP�
complete�

� Preliminaries

A string is a sequence of zero or more characters from an alphabet �� The set
of all strings over the alphabet � is denoted by ��� The empty string is denoted
by �� The ith character of a string x is denoted by xi�� A substring of x that
starts at position i and ends at position j is denoted by xi��j��

A string w is a pre�x of x if x � wu for u � ��� Similarly� w is a su�x of x
if x � uw for u � ��� A string w is a subsequence of x �or x is a supersequence of
w� if w is obtained by deleting zero or more characters �at any positions� from
x� For example� ace is a subsequence of aabcdef �

��� Measures

Absolute measures� To measure the similarity �or distance� between two
strings� the Hamming distance and the edit distance are widely used� The
Hamming distance between two strings x and y is de�ned to be the smallest
number of change operations to convert x to y� The edit distance is de�ned to
be the smallest number of change� insert� and delete operations to convert x
to y� In more general cases� especially in molecular biology� a penalty matrix
is used� A penalty matrix speci�es the substitution cost for each pair of
characters and the insertion�deletion cost for each character� An arbitrary
penalty matrix can also be used as a relative measure because it can contain
both positive and negative costs
��� It is common to assume that a penalty
matrix satis�es the triangle inequality ����

Relative measures� When we want to compare the similarity between x and
y and the similarity between x� and y�� we need relative measures �rather
than absolute measures� because the lengths of the strings x� y� x�� y� may be
di�erent� There are two ways to de�ne relative measures between x and y�

� First� we can �x one of the two strings and de�ne a relative measure with
respect to the �xed string� The error ratio with respect to x is de�ned to
be t�jxj� where t is an absolute measure between x and y�

� Second� we can de�ne a relative measure symmetrically� The symmetric
error ratio is de�ned to be t�l� where t is an absolute measure between
x and y� and l � �jxj � jyj��

��� Note that we may take l � jxj � jyj
�then everything is the same except that the ratio is multiplied by
��

� Problem De�nitions

Given two strings x and p� we de�ne approximate periods as follows� If there
exists a partition of x into disjoint blocks of substrings� i�e�� x � p�p� � � � pr
�pi �� �� such that the distance between p and pi for every 	 � i � r is less
than or equal to t� we say that p is a t�approximate period of x �or p is an
approximate period of x with distance t�� Each pi� 	 � i � r� will be called
a partition block of x� Note that there can be several versions of approximate
periods according to the de�nition of distance� This de�nition of approximate

periods can be considered as an approximate version of the three notions periods�
covers� and seeds discussed above� because

�i� superpositions in de�ning covers and seeds and

�ii� extra characters at the ends of a given string in de�ning periods and seeds

can be accounted for in some degree when we use edit distances for the measure�
Of course� if we allow overlaps between pi�s� then we could extend the de�nition of
an approximate period� But this will merely increase the complexity of problems
of �nding approximate periods�

We consider the following problems related to approximate periods�

Problem �� Given x and p� �nd the minimum t such that p is a t�approximate
period of x�

Since p is �xed in this case� it makes no di�erence whether we use the
absolute Hamming �or edit� distance or the error ratio with respect to p� We can
also use a penalty matrix for the measure� If a threshold k on the edit distance
is given as input in Problem 	� the problem asks whether p is a k�approximate
period of x or not�

Problem �� Given a string x� �nd a substring p of x that is an approximate
period of x with the minimum distance�

Since the length of p is not �a priori� �xed in this problem� we need to use
relative measures �i�e�� error ratios or penalty matrices� rather than absolute
measures�

Problem �� Given a string x� �nd a string p that is an approximate period of x
with the minimum distance�

This problem is harder than Problem
 because p can be any string� not
necessarily a substring of x�

� Algorithms and NP�Completeness

Basically we will use arbitrary penalty matrices for the measure of similarity in
each problem� Recall that a penalty matrix de�nes the substitution cost for each
pair of characters and the insertion or deletion cost for each character�

��� Problem �

Our algorithm for Problem 	 consists of two steps� Let n � jxj and m � jpj�

	� Compute the distance between p and every substring of x�

� Compute the minimum t such that p is a t�approximate period of x� We use
dynamic programming to compute t� Let wij be the distance between p and
xi��j�� These values of wij are obtained from the �rst step� Let ti be the
minimum value such that p is a ti�approximate period of x	��i�� Let t� � ��
For i � 	 to n� we compute ti by the following formula�

ti � min
��h�i

�max�th� wh���i���

The value tn is the minimum t such that p is a t�approximate period of x�

To compute the distances in step 	� we use the dynamic programming table
called the D table� To compute the distance between two strings x and y� a D
table of size �jxj�	���jyj�	� is used� Each entryDi� j� �� � i � jxj� � � j � jyj�
stores the minimum cost of transforming x	��i� to y	��j�� Initially� D�� �� � ��
Di� �� � Di� 	� �� � ��xi�� ��� and D�� j� � D�� j � 	� � ���� yj��� Then we
can compute all the entries of the D table in O�jxjjyj� time by the following
recurrence�

Di� j� � min

��
�
Di� 	� j� � ��xi�� ��
Di� j � 	� � ���� yj��
Di� 	� j � 	� � ��xi�� yj��

where ��a� b� is the cost of transforming the character a to b� �� is a space� so
��a��� means the deletion cost of a and ���� a� means the insertion cost of a��

Theorem �� Problem � can be solved in O�mn�� time when an arbitrary penalty
matrix is used for the measure of similarity� If the edit distance 	resp� the Ham�
ming distance
 is used for the measure� it can be solved in O�mn� time 	resp� in
O�n� time
�

Proof� For an arbitrary penalty matrix� step 	 takes O�mn�� time since we make
a D table of sizem��n�i�	� for each position i of x� In step
� we can compute
the minimum t in O�n�� time since we compare O�n� values at each position of
x� Thus� the total time complexity is O�mn���

When the edit distance is used for the measure of similarity� this algorithm
for Problem 	 can be improved� In this case� ��a� b� is always 	 if a �� b� ��a� b� �
�� otherwise� Now it is not necessary to compute the edit distances between p
and the substrings of x whose lengths are larger than
m because their edit
distances with p will exceed m� �It is trivially true that p is an m�approximate
period of x�� Step 	 now takes O�m�n� time since we make a D table of size
m�
m for each position of x� Also� step
 can be done in O�mn� time since we
compare O�m� values at each position of x� Thus the time complexity is reduced
to O�m�n��

However� we can do better� Step 	 can be solved in O�mn� time by the
algorithm due to Landau� Myers� and Schmidt
��� Given two strings x and y
and a forward �resp� backward� solution for the comparison between x and y�
the algorithm in
�� incrementally computes a solution for x and by �resp� yb�
in O�k� time� where b is an additional character and k is a threshold on the edit

distance� This can be done due to the relationship between the solution for x
and y and the solution for x and by� When k � m �i�e�� the threshold is not
given�� we can compute all the edit distances between p and every substring of x
whose length is at most
m in O�mn� time using this algorithm� Therefore� we
can solve Problem 	 in O�mn� time if the edit distance is used for the measure
of similarity�

If we use the Hamming distance for the measure� it takes trivially O�n� time
since x must be partitioned into blocks of size m� �

When the threshold k on the edit distance is given as input for Problem 	�
it can be solved in O�kn� time because each step of the above algorithm takes
O�kn� time�

��� Problem �

Let p be a candidate string for the approximate period of x� If the Hamming �or
edit� distance is used for Problem
� we need to use relative measures because
the length of p varies� �If the absolute Hamming or edit distance is used� every
substring of x of length 	 is a 	�approximate period of x�� We can use the error
ratio t�l for the measure of similarity� where t is the Hamming �or edit� distance
between the two strings and l is either the average length of the two strings
�symmetric error ratio� or the length of p �error ratio with respect to p��

When the relative edit distance is used for the measure of similarity� Problem

 can be solved in O�n�� time by our algorithm for Problem 	� If we take each
substring of x as p and apply the O�mn� algorithm for Problem 	 �that uses
the algorithm in
���� it takes O�jpjn� time for each p� Since there are O�n��
substrings of x� the overall time is O�n���

Without using the somewhat complicated algorithm in
��� however� we can
solve Problem
 in O�n�� time by the following simple algorithm for arbitrary
penalty matrices�

Let R be the minimum distance so far� Initially� R � �� For i � 	 to n�
we do the following� For each i� we process the n� i�	 substrings that start at
position i� Let m be the length of a chosen substring of x as p� Let m � 	�

	� Take xi��i � m � 	� as p and compute the distance between p and every
substring of x� This can be done by making n D tables with p and each of
n su�xes of x� By adding just one row to each of previous D tables �i�e�� n
D tables when p � xi��i�m �
��� we can compute these new D tables in
O�n�� time� �Note that when m � 	� we create new D tables��

� Compute the minimum distance t such that p is a t�approximate period of
x� This step is similar to the second step of the algorithm for Problem 	� Let
whj be the distance between p and xh��j� which is obtained from step 	� Let
tj be the minimum value such that p is a tj�approximate period of x	��j�
and let t� � �� For j � 	 to n� we compute tj by the following formula�

tj � min
��h�j

�max�th� wh���j���

The value tn is the minimum t such that p is a t�approximate period of x� If
t is smaller than R� we update R with t� If m 	 n� i� 	� increase m by 	
and go to step 	�

When all the steps are completed� the �nal value of R is the minimum distance
and a substring that is an R�approximate period of x is an answer to Problem

�

Theorem �� Problem � can be solved in O�n�� time when an arbitrary penalty
matrix is used for the measure of similarity� If the Hamming distance is used for
the measure� it can be solved in O�n�� time�

Proof� For an arbitrary penalty matrix� we make n D tables in O�n�� time in
step 	 and compute the minimum distance in O�n�� time in step
� For m � 	
to n � i � 	� we repeat the two steps� Therefore� it takes O�n�� time for each
i and the total time complexity of this algorithm is O�n��� If the relative edit
distance is used� this algorithm can be slightly simpli�ed as in Problem 	� but
it still takes time O�n���

If the relative Hamming distance is used for the measure� Problem
 can be
solved in O�n�� time because there are O�n�� candidates for p and O�n� time is
required for each candidate� �

��� Problem �

Given a set of strings� the shortest common supersequence �SCS� problem is
to �nd a shortest common supersequence of all strings in the set� The SCS
problem is NP�complete
��
��� We will show that Problem � is NP�complete
by a reduction from the SCS problem� In this section we will call Problem � the
AP problem �abbreviation of the approximate period problem��

The decision versions of the SCS and AP problems are as follows�

De�nition �� Given a positive integer m and a �nite set S of strings from ��

where � is a �nite alphabet� the SCS problem is to decide if there exists a string
w with jwj � m such that w is a supersequence of each string in S�

De�nition �� Given a number t� a string x from ����� where �� is a �nite
alphabet� and a penalty matrix� the AP problem is to decide if there exists a
string u such that u is a t�approximate period of x�

Now we transform an instance of the SCS problem to an instance of the AP prob�
lem� We can assume that � � f�� 	g since the SCS problem is NP�complete even
if � � f�� 	g
��
��� First� we set �� � � 	 fa� b��� ��
��
�� �g� Assume that
there are n strings s�� � � � � sn in S� Let x � �s���s�� � � ��sn��
�

m��
�
m��

Then� set t � m and de�ne the penalty matrix as in Figure 	� where a shaded
entry can be any value greater than m� It is easy to see that this transformation
can be done in polynomial time� Note that the penalty matrix M is a metric�

Lemma �� Assume that x is constructed as above� If u is an m�approximate
period of x� then u is of the form �
� where
 � fa� bgm�

*

2

* 2

*

2

*

2

1

2

21122

0

0

0

0

0

0

0

0

0

$

2

1

1

1

1

∆

#

$

21111∆

2

1

1

1

1

1

1

112

22

2 2

2 2

22

2

2

1

b

a b

1a

0

0 1

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

2

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

1

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
�������

���
���
���
���

���
���
���
���
���

1

���
���
���
���
���

���
���
���
���
���

2

Fig� �� The penalty matrix M

Proof� We �rst show that u must have one � and one ��

	� Suppose that u has no � �resp� ��� Clearly� there exists a partition block of
x which has at least one � �resp� ��� and the distance between u and the
block is greater than m� Therefore� u must have at least one � and at least
one ��

� Suppose that u has more than one � �or ��� Assume that u has two ��s�
�The other cases are similar�� Then u must also have two ��s because unless
the number of ��s equals that of ��s in u� at least one partition block of x
cannot have the same numbers of ��s and ��s to those of u� Consider the last
partition block of x� Since the last block must have two ��s and two ��s as
u� it contains �
�

m��
�
m�� For the distance between u and the last block

of x to be at most m� u must have at least m characters from f
��
�g� In
such cases� however� the distance between u and any other partition block
of x will exceed m�

It remains to show that u � �
� where
 � fa� bgm� Since u has one � and
one �� x must be partitioned just after every occurrence of �� Let u be of the
form ��
��� where ��
� � � f�� 	� a� b�
��
�� �g

�� Consider the last two blocks
�
�

m� and �
�
m� of x� If
 contains i
��s for i � 	�
 must also have i
��s and

the remaining m�
i characters in
 must be from fa� bg so that the distances
between u and the last two blocks of x do not exceed m� However� this makes
the distance between u and any other partition block of x exceed m due to
��s
and
��s in
� Hence
 cannot have
� or
�� Also�
 cannot have any character
from f�� 	� �g since �� 	 and � have cost
 with
� and
� in the last two blocks
of x� For the distances between u and the last two blocks of x to be at most m�
� and � must be empty and
 must be of the form fa� bgm� �

Theorem �� The AP problem is NP�complete�

Proof� It is easy to see that the AP problem is in NP� To show that the AP
problem is NP�complete� we need to show that S has a common supersequence
w such that jwj � m if and only if there exists a string u such that u is an
m�approximate period of x�

�if� By Lemma 	� u � �
� where
 � fa� bgm� Since u is an m�approximate
period of x� the distance between u and each partition block �si� is at most m�
�The distances between u and the last two blocks �
�

m� and �
�
m� are always

m�� Since j
j � m and the distance between
 and si is at most m� each � �resp�
	� in si must be aligned with a �resp� b� in
� That is� each a �resp� b� in
 must
be aligned with � �resp� 	� or � in si� If we substitute � for a and 	 for b in
�
we obtain a common supersequence w of s�� � � � � sn such that jwj � m� �Note
that if a or b in
 is aligned with � for all si� we can delete the character in

and we can obtain a common supersequence which is shorter than m�� A similar
alignment was used by Wang and Jiang ����

�only if� Let s be a common supersequence of S such that jsj � m� Let
 be
the string constructed by substituting a for � and b for 	 in s� Partition x just
after every occurrence of �� The distance between each partition block of x and
�
� is at most m since each a �resp� b� in
 can be aligned with � �resp� 	�� ��

�� or
� in each partition block� Therefore� �
� is an m�approximate period of
x� �

References

�� A� Apostolico and D� Breslauer� An optimal O�log logN��time parallel algorithm
for detecting all squares in a string� SIAM Journal on Computing ��� � ��

���
����������

�� A� Apostolico� D� Breslauer and Z� Galil� Optimal parallel algorithms for peri�
ods� palindromes and squares� Proc� ��th Int� Colloq� Automata Languages and

Programming� Lecture Notes in Computer Science ��� ��

��� �
�����

�� A� Apostolico and A� Ehrenfeucht� E�cient detection of quasiperiodicities in
strings� Theoretical Computer Science ��
� ���

��� ��������

�� A� Apostolico� M� Farach and C�S� Iliopoulos� Optimal superprimitivity testing for
strings� Information Processing Letters �
� � ��

��� �����

�� A� Apostolico� F�P� Preparata� Optimal o��line detection of repetitions in a string�
Theoretical Computer Science ��� ��
���� �
������

�� O� Berkman� C�S� Iliopoulos and K� Park� The subtree max gap problem with
application to parallel string covering� Information and Computation ���� � ��

���
��������

�� D� Breslauer� An on�line string superprimitivity test� Information Processing Let�

ters �� ��

��� ��������

�� D� Breslauer� Testing string superprimitivity in parallel� Information Processing

Letters �
� � ��

��� ��������

� T� Crawford� C�S� Iliopoulos and R� Raman� String Matching Techniques for Mu�
sical Similarity and Melodic Recognition� Computing in Musicology� �� ��

���
�����

�� M� Crochemore� An optimal algorithm for computing the repetitions in a word�
Information Processing Letters ��� � ��
���� �������

��� M� Crochemore� C�S� Iliopoulos and M� Korda� Two�dimensional Pre�x String
Matching and Covering on Square Matrices� Algorithmica � ��

��� ��������

��� M� Crochemore� C�S� Iliopoulos and H� Yu� Algorithms for computing evolutionary
chains in molecular and musical sequences� Proc� �th Australasian Workshop on

Combinatorial Algorithms ��

��� ��������
��� C�S� Iliopoulos and M� Korda� Optimal parallel superprimitivity testing on square

arrays� Parallel Processing Letters �� � ��

��� �

����
��� C�S� Iliopoulos� D�W�G� Moore and K� Park� Covering a string� Algorithmica ��

��

��� �����
��
��� C�S� Iliopoulos and L� Mouchard� An O�n log n� algorithm for computing all maxi�

mal quasiperiodicities in strings� to appear in the Proceedings of CATS���� �Com�

puting� Australasian Theory Symposium	� Auckland� New Zealand� Lecture Notes
in Computer Science ��

�� ��������

��� C�S� Iliopoulos and K� Park� A work�time optimal algorithm for computing all
string covers� Theoretical Computer Science ��� ��

��� �

����

��� C�S� Iliopoulos and K� Park� An optimal O�log log n��time algorithm for parallel
superprimitivity testing� J� Korea Inform� Sci� Soc� �� ��

��� �������

��� C�S� Iliopoulos and W�F� Smyth� On�line algorithms for k�covering� Proc� �th Aus�

tralasian Workshop on Combinatorial Algorithms ��

���
�����
�
� D�E� Knuth� J�H� Morris and V�R� Pratt� Fast pattern matching in strings� SIAM

Journal on Computing �� � ��
���� �������
�� G�M� Landau� E�W� Myers and J�P� Schmidt� Incremental string comparison� SIAM

Journal on Computing ��� � ��

��� ��������
��� G�M� Landau and J�P� Schmidt� An algorithm for approximate tandem repeats�

Proc�
th Symp� Combinatorial Pattern Matching� Lecture Notes in Computer
Science ��� ��

��� �������

��� Y� Li and W�F� Smyth� An optimal on�line algorithm to compute all the covers of
a string� preprint�

��� D� Maier� The complexity of some problems on subsequences and supersequences�
J� Assoc� Comput� Mach� �� ��
���� ��������

��� M�G� Main and R�J� Lorentz� An algorithm for �nding all repetitions in a string�
Journal of Algorithms � ��
���� ��������

��� M� Middendorf� More on the complexity of common superstring and supersequence
problems� Theoretical Computer Science ���� � ��

��� �������

��� D� Moore and W�F� Smyth� A correction to �An optimal algorithm to compute all
the covers of a string��� Information Processing Letters ��� � ��

��� ������

��� K�J� R�aih�a and E� Ukkonen� The shortest common supersequence problem over
binary alphabet is NP�complete� Theoretical Computer Science �� ��
���� ����
�
��

��� J�P� Schmidt� All highest scoring paths in weighted grid graphs and its application
to �nding all approximate repeats in strings� SIAM Journal on Computing ��� �
��

���
���

��

�
� P�H� Sellers� Pattern recognition genetic sequences by mismatch density� Bulletin
of Mathematical Biology ��� � ��
���� �������

�� L� Wang and T� Jiang� On the complexity of multiple sequence alignment� J� Comp�

Biol� � ��

��� ��������

