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Approximate Periods of Strings
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Abstract� The study of approximately periodic strings is relevant to
diverse applications such as molecular biology� data compression� and
computer�assisted music analysis� Here we study di�erent forms of ap�
proximate periodicity under a variety of distance rules� We consider three
related problems� for two of which we derive polynomial�time algorithms�
we then show that the third problem is NP�complete�

� Introduction

Repetitive or periodic strings have been studied in such diverse �elds as molecu�
lar biology� data compression� and computer�assisted music analysis� In response
to requirements arising out of a variety of applications� interest has arisen in algo�
rithms for �nding regularities in strings� that is� periodicities of an approximate
nature� Some important regularities that have been studied in the literature are
the following�

� Periods� A string p is called a period of a string x if x can be written as
x � pkp� where k � 	 and p� is a pre�x of p� The shortest period of x is
called the period of x� For example� if x � abcabcab� then abc� abcabc� and x
are periods of x� while abc is the period of x� If x has a period p such that
jpj � jxj�
� then x is said to be periodic� Further� if setting x � pk implies
k � 	� x is said to be primitive� if k � 
� pk is called a repetition�

� Covers� A string w is called a cover of x if x can be constructed by concate�
nations and superpositions of w� For example� if x � ababaaba� then aba and
x are the covers of x� If x has a cover w �� x� x is said to be quasiperiodic�
otherwise� x is superprimitive�

� Seeds�A substring w of x is called a seed of x if it is a cover of any superstring
of x� For example� aba and ababa are some seeds of x � ababaab�

� Repetitions� A substring w of x that is a repetition is called a repetition
or tandem repeat in x� For example� if x � aababab� then aa and ababab are

� fjssim� kparkg	theory�snu�ac�kr� Supported by KOSEF Grant 
���

���������
y csi	dcs�kcl�ac�uk� Supported in part by the CCSLAAR Royal Society Researh Grant�
z smyth	mcmaster�ca� Supported by NSERC Grant No� A���
�



repetitions in x� in particular� a� � aa is called a square and �ab�� � ababab
is called a cube�

The notions cover and seed are generalizations of periods in the sense that
superpositions as well as concatenations are used to de�ne them� A signi�cant
amount of research has been done on each of these four notions�

� Periods� The preprocessing of the Knuth�Morris�Pratt algorithm 
	�� �nds
all periods of x in linear time � in fact� all periods of every pre�x of x� In
parallel computation� Apostolico� Breslauer and Galil 

� gave an optimal
O�log logn� time algorithm for �nding all periods� where n is the length of
x�

� Covers� Apostolico� Farach and Iliopoulos 
�� introduced the notion of cov�
ers and described a linear�time algorithm to test whether x is superprimi�
tive or not �see also 
�� �� 	���� Moore and Smyth 

�� and recently Li and
Smyth 


� gave linear�time algorithms for �nding all covers of x� In paral�
lel computation� Iliopoulos and Park 
	�� obtained an optimal O�log logn�
time algorithm for �nding all covers of x� Apostolico and Ehrenfeucht 
��
and Iliopoulos and Mouchard 
	�� considered the problem of �nding maxi�
mal quasiperiodic substrings of x� A two�dimensional variant of the covering
problem was studied in 
		� 	��� and minimum covering by substrings of given
length in 
	���

� Seeds� Iliopoulos� Moore and Park 
	�� introduced the notion of seeds and
gave an O�n logn� time algorithm for computing all seeds of x� For the same
problem Berkman� Iliopoulos and Park 
�� presented a parallel algorithm
that requires O�log n� time and O�n logn� work�

� Repetitions� There are several O�n logn� time algorithms for �nding all
the repetitions in a string 
	�� �� 
��� In parallel computation� Apostolico and
Breslauer 
	� gave an optimal O�log logn� time algorithm �i�e�� total work is
O�n logn�� for �nding all the repetitions�

A natural extension of the repetition problems is to allow errors� Approx�
imate repetitions are common in applications such as molecular biology and
computer�assisted music analysis 
�� 	
�� Among the four notions above� only
approximate repetitions have been studied� If x � uww�v where w and w�

are similar� ww� is called an approximate square or approximate tandem re�
peat� When there is a nonempty string y between w and w�� we say that w and
w� are an approximate nontandem repeat� In 

	�� Landau and Schmidt gave an
O�kn log k logn� time algorithm for �nding repeated patterns whose edit distance
is at most k in a text of length n� Schmidt also gave an O�n� logn� algorithm
for �nding approximate tandem or nontandem repeats in 

�� which uses an
arbitrary score for similarity of repeated strings�

In this paper� we introduce the notion of approximate periods which can
be considered as an approximate version of three notions periods� covers� and
seeds� Here we study di�erent forms of approximate periodicity under a vari�
ety of distance rules� We consider three related problems� for two of which we
derive polynomial�time algorithms� we then show that the third problem is NP�
complete�



� Preliminaries

A string is a sequence of zero or more characters from an alphabet �� The set
of all strings over the alphabet � is denoted by ��� The empty string is denoted
by �� The ith character of a string x is denoted by x
i�� A substring of x that
starts at position i and ends at position j is denoted by x
i��j��

A string w is a pre�x of x if x � wu for u � ��� Similarly� w is a su�x of x
if x � uw for u � ��� A string w is a subsequence of x �or x is a supersequence of
w� if w is obtained by deleting zero or more characters �at any positions� from
x� For example� ace is a subsequence of aabcdef �

��� Measures

Absolute measures� To measure the similarity �or distance� between two
strings� the Hamming distance and the edit distance are widely used� The
Hamming distance between two strings x and y is de�ned to be the smallest
number of change operations to convert x to y� The edit distance is de�ned to
be the smallest number of change� insert� and delete operations to convert x
to y� In more general cases� especially in molecular biology� a penalty matrix
is used� A penalty matrix speci�es the substitution cost for each pair of
characters and the insertion�deletion cost for each character� An arbitrary
penalty matrix can also be used as a relative measure because it can contain
both positive and negative costs 

��� It is common to assume that a penalty
matrix satis�es the triangle inequality 
����

Relative measures� When we want to compare the similarity between x and
y and the similarity between x� and y�� we need relative measures �rather
than absolute measures� because the lengths of the strings x� y� x�� y� may be
di�erent� There are two ways to de�ne relative measures between x and y�

� First� we can �x one of the two strings and de�ne a relative measure with
respect to the �xed string� The error ratio with respect to x is de�ned to
be t�jxj� where t is an absolute measure between x and y�

� Second� we can de�ne a relative measure symmetrically� The symmetric
error ratio is de�ned to be t�l� where t is an absolute measure between
x and y� and l � �jxj � jyj��
 

��� Note that we may take l � jxj � jyj
�then everything is the same except that the ratio is multiplied by 
��

� Problem De�nitions

Given two strings x and p� we de�ne approximate periods as follows� If there
exists a partition of x into disjoint blocks of substrings� i�e�� x � p�p� � � � pr
�pi �� �� such that the distance between p and pi for every 	 � i � r is less
than or equal to t� we say that p is a t�approximate period of x �or p is an
approximate period of x with distance t�� Each pi� 	 � i � r� will be called
a partition block of x� Note that there can be several versions of approximate
periods according to the de�nition of distance� This de�nition of approximate



periods can be considered as an approximate version of the three notions periods�
covers� and seeds discussed above� because

�i� superpositions in de�ning covers and seeds and

�ii� extra characters at the ends of a given string in de�ning periods and seeds

can be accounted for in some degree when we use edit distances for the measure�
Of course� if we allow overlaps between pi�s� then we could extend the de�nition of
an approximate period� But this will merely increase the complexity of problems
of �nding approximate periods�

We consider the following problems related to approximate periods�

Problem �� Given x and p� �nd the minimum t such that p is a t�approximate
period of x�

Since p is �xed in this case� it makes no di�erence whether we use the
absolute Hamming �or edit� distance or the error ratio with respect to p� We can
also use a penalty matrix for the measure� If a threshold k on the edit distance
is given as input in Problem 	� the problem asks whether p is a k�approximate
period of x or not�

Problem �� Given a string x� �nd a substring p of x that is an approximate
period of x with the minimum distance�

Since the length of p is not �a priori� �xed in this problem� we need to use
relative measures �i�e�� error ratios or penalty matrices� rather than absolute
measures�

Problem �� Given a string x� �nd a string p that is an approximate period of x
with the minimum distance�

This problem is harder than Problem 
 because p can be any string� not
necessarily a substring of x�

� Algorithms and NP�Completeness

Basically we will use arbitrary penalty matrices for the measure of similarity in
each problem� Recall that a penalty matrix de�nes the substitution cost for each
pair of characters and the insertion or deletion cost for each character�

��� Problem �

Our algorithm for Problem 	 consists of two steps� Let n � jxj and m � jpj�

	� Compute the distance between p and every substring of x�




� Compute the minimum t such that p is a t�approximate period of x� We use
dynamic programming to compute t� Let wij be the distance between p and
x
i��j�� These values of wij are obtained from the �rst step� Let ti be the
minimum value such that p is a ti�approximate period of x
	��i�� Let t� � ��
For i � 	 to n� we compute ti by the following formula�

ti � min
��h�i

�max�th� wh���i���

The value tn is the minimum t such that p is a t�approximate period of x�

To compute the distances in step 	� we use the dynamic programming table
called the D table� To compute the distance between two strings x and y� a D
table of size �jxj�	���jyj�	� is used� Each entryD
i� j� �� � i � jxj� � � j � jyj�
stores the minimum cost of transforming x
	��i� to y
	��j�� Initially� D
�� �� � ��
D
i� �� � D
i� 	� �� � ��x
i�� ��� and D
�� j� � D
�� j � 	� � ���� y
j��� Then we
can compute all the entries of the D table in O�jxjjyj� time by the following
recurrence�

D
i� j� � min

��
�
D
i� 	� j� � ��x
i�� ��
D
i� j � 	� � ���� y
j��
D
i� 	� j � 	� � ��x
i�� y
j��

where ��a� b� is the cost of transforming the character a to b� �� is a space� so
��a��� means the deletion cost of a and ���� a� means the insertion cost of a��

Theorem �� Problem � can be solved in O�mn�� time when an arbitrary penalty
matrix is used for the measure of similarity� If the edit distance 	resp� the Ham�
ming distance
 is used for the measure� it can be solved in O�mn� time 	resp� in
O�n� time
�

Proof� For an arbitrary penalty matrix� step 	 takes O�mn�� time since we make
a D table of sizem��n�i�	� for each position i of x� In step 
� we can compute
the minimum t in O�n�� time since we compare O�n� values at each position of
x� Thus� the total time complexity is O�mn���

When the edit distance is used for the measure of similarity� this algorithm
for Problem 	 can be improved� In this case� ��a� b� is always 	 if a �� b� ��a� b� �
�� otherwise� Now it is not necessary to compute the edit distances between p
and the substrings of x whose lengths are larger than 
m because their edit
distances with p will exceed m� �It is trivially true that p is an m�approximate
period of x�� Step 	 now takes O�m�n� time since we make a D table of size
m� 
m for each position of x� Also� step 
 can be done in O�mn� time since we
compare O�m� values at each position of x� Thus the time complexity is reduced
to O�m�n��

However� we can do better� Step 	 can be solved in O�mn� time by the
algorithm due to Landau� Myers� and Schmidt 

��� Given two strings x and y
and a forward �resp� backward� solution for the comparison between x and y�
the algorithm in 

�� incrementally computes a solution for x and by �resp� yb�
in O�k� time� where b is an additional character and k is a threshold on the edit



distance� This can be done due to the relationship between the solution for x
and y and the solution for x and by� When k � m �i�e�� the threshold is not
given�� we can compute all the edit distances between p and every substring of x
whose length is at most 
m in O�mn� time using this algorithm� Therefore� we
can solve Problem 	 in O�mn� time if the edit distance is used for the measure
of similarity�

If we use the Hamming distance for the measure� it takes trivially O�n� time
since x must be partitioned into blocks of size m� �

When the threshold k on the edit distance is given as input for Problem 	�
it can be solved in O�kn� time because each step of the above algorithm takes
O�kn� time�

��� Problem �

Let p be a candidate string for the approximate period of x� If the Hamming �or
edit� distance is used for Problem 
� we need to use relative measures because
the length of p varies� �If the absolute Hamming or edit distance is used� every
substring of x of length 	 is a 	�approximate period of x�� We can use the error
ratio t�l for the measure of similarity� where t is the Hamming �or edit� distance
between the two strings and l is either the average length of the two strings
�symmetric error ratio� or the length of p �error ratio with respect to p��

When the relative edit distance is used for the measure of similarity� Problem

 can be solved in O�n�� time by our algorithm for Problem 	� If we take each
substring of x as p and apply the O�mn� algorithm for Problem 	 �that uses
the algorithm in 

���� it takes O�jpjn� time for each p� Since there are O�n��
substrings of x� the overall time is O�n���

Without using the somewhat complicated algorithm in 

��� however� we can
solve Problem 
 in O�n�� time by the following simple algorithm for arbitrary
penalty matrices�

Let R be the minimum distance so far� Initially� R � �� For i � 	 to n�
we do the following� For each i� we process the n� i�	 substrings that start at
position i� Let m be the length of a chosen substring of x as p� Let m � 	�

	� Take x
i��i � m � 	� as p and compute the distance between p and every
substring of x� This can be done by making n D tables with p and each of
n su�xes of x� By adding just one row to each of previous D tables �i�e�� n
D tables when p � x
i��i�m � 
��� we can compute these new D tables in
O�n�� time� �Note that when m � 	� we create new D tables��


� Compute the minimum distance t such that p is a t�approximate period of
x� This step is similar to the second step of the algorithm for Problem 	� Let
whj be the distance between p and x
h��j� which is obtained from step 	� Let
tj be the minimum value such that p is a tj�approximate period of x
	��j�
and let t� � �� For j � 	 to n� we compute tj by the following formula�

tj � min
��h�j

�max�th� wh���j���



The value tn is the minimum t such that p is a t�approximate period of x� If
t is smaller than R� we update R with t� If m 	 n� i� 	� increase m by 	
and go to step 	�

When all the steps are completed� the �nal value of R is the minimum distance
and a substring that is an R�approximate period of x is an answer to Problem

�

Theorem �� Problem � can be solved in O�n�� time when an arbitrary penalty
matrix is used for the measure of similarity� If the Hamming distance is used for
the measure� it can be solved in O�n�� time�

Proof� For an arbitrary penalty matrix� we make n D tables in O�n�� time in
step 	 and compute the minimum distance in O�n�� time in step 
� For m � 	
to n � i � 	� we repeat the two steps� Therefore� it takes O�n�� time for each
i and the total time complexity of this algorithm is O�n��� If the relative edit
distance is used� this algorithm can be slightly simpli�ed as in Problem 	� but
it still takes time O�n���

If the relative Hamming distance is used for the measure� Problem 
 can be
solved in O�n�� time because there are O�n�� candidates for p and O�n� time is
required for each candidate� �

��� Problem �

Given a set of strings� the shortest common supersequence �SCS� problem is
to �nd a shortest common supersequence of all strings in the set� The SCS
problem is NP�complete 

�� 
��� We will show that Problem � is NP�complete
by a reduction from the SCS problem� In this section we will call Problem � the
AP problem �abbreviation of the approximate period problem��

The decision versions of the SCS and AP problems are as follows�

De�nition �� Given a positive integer m and a �nite set S of strings from ��

where � is a �nite alphabet� the SCS problem is to decide if there exists a string
w with jwj � m such that w is a supersequence of each string in S�

De�nition �� Given a number t� a string x from ����� where �� is a �nite
alphabet� and a penalty matrix� the AP problem is to decide if there exists a
string u such that u is a t�approximate period of x�

Now we transform an instance of the SCS problem to an instance of the AP prob�
lem� We can assume that � � f�� 	g since the SCS problem is NP�complete even
if � � f�� 	g 

�� 
��� First� we set �� � � 	 fa� b��� �� 
�� 
�� �g� Assume that
there are n strings s�� � � � � sn in S� Let x � �s���s�� � � ��sn��
�

m��
�
m��

Then� set t � m and de�ne the penalty matrix as in Figure 	� where a shaded
entry can be any value greater than m� It is easy to see that this transformation
can be done in polynomial time� Note that the penalty matrix M is a metric�

Lemma �� Assume that x is constructed as above� If u is an m�approximate
period of x� then u is of the form �
� where 
 � fa� bgm�
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Fig� �� The penalty matrix M

Proof� We �rst show that u must have one � and one ��

	� Suppose that u has no � �resp� ��� Clearly� there exists a partition block of
x which has at least one � �resp� ��� and the distance between u and the
block is greater than m� Therefore� u must have at least one � and at least
one ��


� Suppose that u has more than one � �or ��� Assume that u has two ��s�
�The other cases are similar�� Then u must also have two ��s because unless
the number of ��s equals that of ��s in u� at least one partition block of x
cannot have the same numbers of ��s and ��s to those of u� Consider the last
partition block of x� Since the last block must have two ��s and two ��s as
u� it contains �
�

m��
�
m�� For the distance between u and the last block

of x to be at most m� u must have at least m characters from f
�� 
�g� In
such cases� however� the distance between u and any other partition block
of x will exceed m�

It remains to show that u � �
� where 
 � fa� bgm� Since u has one � and
one �� x must be partitioned just after every occurrence of �� Let u be of the
form ��
��� where �� 
� � � f�� 	� a� b� 
�� 
�� �g

�� Consider the last two blocks
�
�

m� and �
�
m� of x� If 
 contains i 
��s for i � 	� 
 must also have i 
��s and

the remaining m� 
i characters in 
 must be from fa� bg so that the distances
between u and the last two blocks of x do not exceed m� However� this makes
the distance between u and any other partition block of x exceed m due to 
��s
and 
��s in 
� Hence 
 cannot have 
� or 
�� Also� 
 cannot have any character
from f�� 	� �g since �� 	 and � have cost 
 with 
� and 
� in the last two blocks
of x� For the distances between u and the last two blocks of x to be at most m�
� and � must be empty and 
 must be of the form fa� bgm� �



Theorem �� The AP problem is NP�complete�

Proof� It is easy to see that the AP problem is in NP� To show that the AP
problem is NP�complete� we need to show that S has a common supersequence
w such that jwj � m if and only if there exists a string u such that u is an
m�approximate period of x�

�if� By Lemma 	� u � �
� where 
 � fa� bgm� Since u is an m�approximate
period of x� the distance between u and each partition block �si� is at most m�
�The distances between u and the last two blocks �
�

m� and �
�
m� are always

m�� Since j
j � m and the distance between 
 and si is at most m� each � �resp�
	� in si must be aligned with a �resp� b� in 
� That is� each a �resp� b� in 
 must
be aligned with � �resp� 	� or � in si� If we substitute � for a and 	 for b in 
�
we obtain a common supersequence w of s�� � � � � sn such that jwj � m� �Note
that if a or b in 
 is aligned with � for all si� we can delete the character in 

and we can obtain a common supersequence which is shorter than m�� A similar
alignment was used by Wang and Jiang 
����

�only if� Let s be a common supersequence of S such that jsj � m� Let 
 be
the string constructed by substituting a for � and b for 	 in s� Partition x just
after every occurrence of �� The distance between each partition block of x and
�
� is at most m since each a �resp� b� in 
 can be aligned with � �resp� 	�� ��

�� or 
� in each partition block� Therefore� �
� is an m�approximate period of
x� �
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