
Approximate Planning in Large POMDPs

via Reusable Trajectories

Michael Kearns
AT&T Labs

mkearns@research.att.com

Yishay Mansour
Tel Aviv University

mansour@math.tau.ac.il

Abstract

AndrewY. Ng
UC Berkeley

ang@cs.berkeley.edu

We consider the problem of reliably choosing a near-best strategy from

a restricted class of strategies TI in a partially observable Markov deci
sion process (POMDP). We assume we are given the ability to simulate

the POMDP, and study what might be called the sample complexity -

that is, the amount of data one must generate in the POMDP in order
to choose a good strategy. We prove upper bounds on the sample com
plexity showing that, even for infinitely large and arbitrarily complex

POMDPs, the amount of data needed can be finite, and depends only
linearly on the complexity of the restricted strategy class TI, and expo
nentially on the horizon time. This latter dependence can be eased in a
variety of ways, including the application of gradient and local search

algorithms. Our measure of complexity generalizes the classical super
vised learning notion of VC dimension to the settings of reinforcement
learning and planning.

1 Introduction

Much recent attention has been focused on partially observable Markov decision processes
(POMDPs) which have exponentially or even infinitely large state spaces. For such do
mains, a number of interesting basic issues arise. As the state space becomes large, the

classical way of specifying a POMDP by tables of transition probabilities clearly becomes
infeasible. To intelligently discuss the problem of planning - that is, computing a good
strategy 1 in a given POMDP - compact or implicit representations of both POMDPs, and
of strategies in POMDPs, must be developed. Examples include factored next-state dis

tributions [2, 3, 7], and strategies derived from function approximation schemes [8]. The
trend towards such compact representations, as well as algorithms for planning and learn
ing using them, is reminiscent of supervised learning, where researchers have long empha

sized parametric models (such as decision trees and neural networks) that can capture only
limited structure, but which enjoy a number of computational and information-theoretic
benefits.

Motivated by these issues, we consider a setting were we are given a generative model, or

lThroughout, we use the word strategy to mean any mapping from observable histories to actions,

which generalizes the notion of policy in a fully observable MDP.

1002 M Kearns. Y. Mansour and A. Y. Ng

simulator, for a POMDP, and wish to find a good strategy 7r from some restricted class of
strategies II . A generative model is a "black box" that allows us to generate experience (tra

jectories) from different states of our choosing. Generative models are an abstract notion of
compact POMDP representations, in the sense that the compact representations typically
considered (such as factored next-state distributions) already provide efficient generative

models. Here we are imagining that the strategy class II is given by some compact repre
sentation or by some natural limitation on strategies (such as bounded memory). Thus, the
view we are adopting is that even though the world (POMDP) may be extremely complex,

we assume that we can at least simulate or sample experience in the world (via the gener

ative model), and we try to use this experience to choose a strategy from some "simple"
class II.

We study the following question: How many calls to a generative model are needed to have
enough data to choose a near-best strategy in the given class? This is analogous to the

question of sample complexity in supervised learning - but harder. The added difficulty
lies in the reuse of data. In supervised learning, every sample (x, f(x)) provides feedback
about every hypothesis function h(x) (namely, how close h(x) is to f(x)) . If h is restricted

to lie in some hypothesis class 1i, this reuse permits sample complexity bounds that are far

smaller than the size of 1i. For instance, only O(log(I1il)) samples are needed to choose
a near-best model from a finite class 1i. If 1i is infinite, then sample sizes are obtained

that depend only on some measure of the complexity of1i (such as VC dimension [9]), but
which have no dependence on the complexity of the target function or the size of the input

domain.

In the POMDP setting, we would like analogous sample complexity bounds in terms of

the "complexity" of the strategy class II - bounds that have no dependence on the size or
complexity of the POMDP. But unlike the supervised learning setting, experience "reuse"

is not immediate in POMDPs. To see this, consider the "straw man" algorithm that, starting

with some 7r E II, uses the generative model to generate many trajectories under 7r, and

thus forms a Monte Carlo estimate of V 7r (so). It is not clear that these trajectories under
7r are of much use in evaluating a different 7r' E II, since 7r and 7r' may quickly disagree

on which actions to take. The naive Monte Carlo method thus gives 0(1111) bounds on the

"sample complexity," rather than O(log(IIII)), for the finite case.

In this paper, we shall describe the trajectory tree method of generating "reusable" tra
jectories, which requires generating only a (relatively) small number of trajectories - a

number that is independent of the state-space size of the POMDP, depends only linearly

on a general measure of the complexity of the strategy class II, and depends exponentially
on the horizon time. This latter dependence can be eased via gradient algorithms such as
Williams' REINFORCE [10] and Baird and Moore's more recent YAPS [1], and by local
search techniques. Our measure of strategy class complexity generalizes the notion of VC

dimension in supervised learning to the settings of reinforcement learning and planning,
and we give bounds that recover for these settings the most powerful analogous results in

supervised learning - bounds for arbitrary, infinite strategy classes that depend only on
the dimension of the class rather than the size of the state space.

2 Preliminaries

We begin with some standard definitions. A Markov decision process (MDP) is a tuple

(S, So, A, {P (,1 s, a)}, R), where: S is a (possibly infinite) state set; So E S is a start

state; A = {al' . .. ,ad are actions; PC Is, a) gives the next-state distribution upon taking
action a from state s; and the reward function R(s, a) gives the corresponding rewards.

We assume for simplicity that rewards are deterministic, and further that they are bounded

Approximate Planning in Large POMDPs via Reusable Trajectories 1003

in absolute value by Rmax. A partially observable Markov decision process (POMDP)

consists of an underlying MOP and observation distributions Q(ols) for each state s,
where 0 is the random observation made at s.

We have adopted the common assumption of a fixed start state,2 because once we limit

the class of strategies we entertain, there may not be a single "best" strategy in the class
different start states may have different best strategies in II. We also assume that we are

given a POMOP M in the form of a generative model for M that, when given as input any

state-action pair (s, a), will output a state S' drawn according to P(·ls, a), an observation
o drawn according to Q(·ls), and the reward R(s, a). This gives us the ability to sample
the POMOP M in a random-access way. This definition may initially seem unreasonably

generous: the generative model is giving us a fully observable simulation of a partially
observable process. However, the key point is that we must still find a strategy that performs
well in the partially observable setting. As a concrete example, in designing an elevator

control system, we may have access to a simulator that generates random rider arrival times,
and keeps track of the waiting time of each rider, the number of riders waiting at every floor
at every time of day, and so on. However helpful this information might be in designing

the controller, this controller must only use information about which floors currently have
had their call button pushed (the observables). In any case, readers uncomfortable with
the power provided by our generative models are referred to Section 5, where we briefly
describe results requiring only an extremely weak form of partially observable simulation.

At any time t, the agent will have seen some sequence of observations, 00,··., Ot,

and will have chosen actions and received rewards for each of the t time
steps prior to the current one. We write its observable history as h

((00, ao, TO), ... , (Ot-l , at-I, Tt-l), (Ot, _, _)). Such observable histories, also called tra
jectories, are the inputs to strategies. More formally, a strategy 7r is any (stochastic) map
ping from observable histories to actions. (For example, this includes approaches which

use the observable history to track the belief state [5].) A strategy class II is any set of
strategies.

We will restrict our attention to the case of discounted return,3 and we let, E [0,1) be the

discount factor. We define the t::-horizon time to be HE = 10gl'(t::(1 - ,)/2Rmax). Note

that returns beyond the first HE-steps can contribute at most t::/2 to the total discounted

return. Also, let Vmax = Rmax/(l - ,) bound the value function. Finally, for a POMDP
M and a strategy class II, we define opt(M, II) = SUP7rEII V7r (so) to be the best expected
return achievable from So using II.

Our problem is thus the following: Given a generative model for a POMOP M and a
strategy class II, how many calls to the generative model must we make, in order to have

enough data to choose a 7r E II whose performance V7r(so) approaches opt(M, II)? Also,
which calls should we make to the generative model to achieve this?

3 The Trajectory Tree Method

We now describe how we can use a generative model to create "reusable" trajectories.
For ease of exposition, we assume there are only two actions al and a2, but our results
generalize easily to any finite number of actions. (See the full paper [6].)

2 An equivalent definition is to assume a fixed distribution D over start states, since So can be a
"dummy" state whose next-state distribution under any action is D.

3The results in this paper can be extended without difficulty to the undiscounted finite-horizon
setting [6].

1004 M. Keams, Y. Mansour and A. Y. Ng

A trajectory tree is a binary tree in which each node is labeled by a state and observation

pair, and has a child for each of the two actions. Additionally, each link to a child is

labeled by a reward, and the tree's depth will be H~, so it will have about 2H e nodes.
(In Section 4, we will discuss settings where this exponential dependence on H ~ can be
eased.) Each trajectory tree is built as follows: The root is labeled by So and the observation

there, 00 ' Its two children are then created by calling the generative model on (so, ad and

(so, a2), which gives us the two next-states reached (say s~ and s~ respectively), the two

observations made (say o~ and o~), and the two rewards received (r~ = R(so, ad and

r~ = R(so, a2). Then (s~ , aD and (s~, o~) label the root's aI-child and a2-child, and the

links to these children are labeled r~ and r~. Recursively, we generate two children and

rewards this way for each node down to depth H ~ .

Now for any deterministic strategy tr and any trajectory tree T, tr defines a path through

T: tr starts at the root, and inductively, if tr is at some internal node in T, then we feed

to tr the observable history along the path from the root to that node, and tr selects and
moves to a child of the current node. This continues until a leaf node is reached, and we
define R(tr , T) to be the discounted sum of returns along the path taken. In the case that

tr is stochastic, tr defines a distribution on paths in T, and R(tr , T) is the expected return
according to this distribution. (We will later also describe another method for treating

stochastic strategies.) Hence, given m trajectory trees T1 , ... , T m, a natural estimate for

V7r(so) is V7r(so) = ,; 2:::1 R(tr, Ti). Note that each tree can be used to evaluate any

strategy, much the way a single labeled example (x , f(x)) can be used to evaluate any

hypothesis h(x) in supervised learning. Thus in this sense, trajectory trees are reusable.

Our goal now is to establish uniform convergence results that bound the error of the es

timates V7r (so) as a function of the "sample size" (number of trees) m. Section 3.1 first

treats the easier case of deterministic classes II; Section 3.2 extends the result to stochastic

classes.

3.1 The Case of Deterministic II

Let us begin by stating a result for the special case of finite classes of deterministic strate

gies, which will serve to demonstrate the kind of bound we seek.

Theorem 3.1 Let II be any finite class of deterministic strategies for an arbitrary two

action POMDP M. Let m trajectory trees be created using a generative modelfor M, and

V7r(so) be the resulting estimates. lfm = 0 ((Vrnax /t)2(log(IIII) + log(1/8))), then with

probability 1 - 8, I V7r (so) - V7r (so) I :s t holds simultaneously for alltr E II.

Due to space limitations, detailed proofs of the results of this section are left to the full
paper [6] , but we will try to convey the intuition behind the ideas. Observe that for any

fixed deterministic tr, the estimates R(tr, Ti) that are generated by the m different trajectory

trees Ti are independent. Moreover, each R(tr, T i) is an unbiased estimate of the expected

discounted H ~ -step return of tr , which is in turn t/2-close to V7r(so). These observations,
combined with a simple Chernoff and union bound argument, are sufficient to establish

Theorem 3.1. Rather than developing this argument here, we instead move straight on to
the harder case of infinite II.

When addressing sample complexity in supervised learning, perhaps the most important

insight is that even though a class 1i may be infinite, the number of possible behaviors of

1i on a finite set of points is often not exhaustive. More precisely, for boolean functions,

we say that the set Xl, ... , Xd is shattered by 1i if every of the 2d possible labelings of

Approximate Planning in Large POMDPs via Reusable Trajectories 1005

these points is realized by some h E 1i. The VC dimension of 1i is then defined as the

size of the largest shattered set [9]. It is known that if the VC dimension of 1i is d, then the

number <P d (m) of possible labelings induced by 1i on a set of m points is at most (em J d)d,
which is much less than 2m for d « m. This fact provides the key leverage exploited by
the classical VC dimension results, and we will concentrate on replicating this leverage in

our setting.

If II is a (possibly infinite) set of deterministic strategies, then each strategy tr E II is simply

a deterministic function mapping from the set of observable histories to the set {al' a2},

and is thus a boolean function on observable histories. We can therefore write VC(II) to
denote the familiar VC dimension of the set of binary functions II. For example, if II is

the set of all thresholded linear functions of the current vector of observations (a particular

type of memoryless strategy), then VC(II) simply equals the number of parameters. We

now show intuitively why a class II of bounded VC dimension d cannot induce exhaustive

behavior on a set T l , ... ,T m of trajectory trees for m » d. Note that if trl, tr2 E II are such

that their "reward labelings" (R(trl' T l), ... ,R(trl' T m)) and (R(tr2, Tt), ... , R(tr2, T m))
differ, then R(trl, Ti) =f. R(tr2' Ti) for some 1 ::; i ::; m. But if trl and tr2 give different
returns on Ti , then they must choose different actions at some node in T i . In other words,

every different reward labeling of the set of m trees yields a different (binary) labeling of
the set of m . 2H • observable histories in the trees. So, the number of different tree reward

labelings can be at most <Pd(m· 2H<) ::; (em· 2H<Jd)d. By developing this argument

carefully and applying classical uniform convergence techniques, we obtain the following

theorem. (Full proof in [6].)

Theorem 3.2 Let II be any class of deterministic strategies for an arbitrary two-action

POMDP M, and let VC(II) denote its VC dimension. Let m trajectory trees be created

using a generative model for M, and "\I7r (so) be the resulting estimates. If

(1)

then with probability 1 - 6, I V 7r (so) - "\I7r (so) I ::; € holds simultaneously for alltr E II.

3.2 The Case of Stochastic II

We now address the case of stochastic strategy classes. We describe an approach where

we transform stochastic strategies into "equivalent" deterministic ones and operate on the

deterministic versions, reducing the problem to the one handled in the previous section. The

transformation is as follows: Given a class of stochastic strategies II, each with domain X
(where X is the set of all observable histories), we first extend the domain to be X x [0,1].
Now for each stochastic strategy tr E II, define a corresponding deterministic transformed

strategy tr' with domain X x [0,1], given by: tr'(h, r) = al if r ::; Pr[tr(h) = ad,

and 7r'(h,r) = a2 otherwise (for any hEX, r E [0,1]). Let II' be the collection of

these transformed deterministic strategies tr'. Since II' is just a set of deterministic boolean

functions, its VC dimension is well-defined. We then define the pseudo-dimension of the

original set of stochastic strategies II to be p VC(II) = VC(II').4

Having transformed the strategy class, we also need to transform the POMDP, by augment

ing the state space S to be S x [0,1]. Informally, the transitions and rewards remain the

same, except that after each state transition, we draw a new random variable r uniformly in
[0,1], and independently of all previous events. States are now of the form (s, r), and we let

r be an observed variable. Whenever in the original POMDP a stochastic strategy tr would

4This is equivalent to the conventional definition of the pseudo-dimension of IT [4], when it is

viewed as a set of maps into real-valued action-probabilities.

1006 M Kearns, Y. Mansour and A. Y. Ng

have been given a history h, in the transformed POMDP the corresponding deterministic

transformed strategy 7r' is given (h, r), where r is the [0, l]-random variable at the current
state. By the definition of 7r', it is easy to see that 7r' and 7r have exactly the same chance

of choosing each action at any node (randomization over r).

We are now back in the deterministic case, so Theorem 3.2 applies, with VC(II) replaced
by pVC (II) = VC(II'), and we again have the desired uniform convergence result.

4 Algorithms for Approximate Planning

Given a generative model for a POMDP, the preceding section's results immediately sug

gest a class of approximate planning algorithms: generate m trajectory trees T1 , ... , T m,

and search for a 7r E II that maximizes V7r (so) = (1/ m) L R(7r, Ti). The following
corollary to the uniform convergence results establishes the soundness of this approach.

Corollary 4.1 Let II be a class of strategies in a POMDP M, and let the number m of

trajectory trees be as given in Theorem 3.2. Let it = argmax7r Err{V7r(so)} be the policy
in II with the highest empirical return on the m trees. Then with probability 1 - 0, it is

near-optimal within II:

V7T(SO) ~ opt(M, II) - 2€. (2)

If the suggested maximization is computationally infeasible, one can search for a local

maximum 7r instead, and uniform convergence again assures us that V7r (so) is a trusted es
timate of our true performance. Of course, even finding a local maximum can be expensive,

since each trajectory tree is of size exponential in H{.

However, in practice it may be possible to significantly reduce the cost of the search. Sup
pose we are using a class of (possibly transformed) deterministic strategies, and we perform

a greedy local search over II to optimize V7r (so). Then at any time in the search, to evalu

ate the policy we are currently considering, we really need to look at only a single path of

length Hf in each tree, corresponding to the path taken by the strategy being considered.
Thus, we should build the trajectory trees lazily - that is, incrementally build each node

of each tree only as it is needed to evaluate R(7r, Ti) for the current strategy 7r. If there are
parts of a tree that are reached only by poor policies, then a good search algorithm may
never even build these parts of the tree. In any case, for a fixed number of trees, each step
of the local search now takes time only linear in H f •5

There is a different approach that works directly on stochastic strategies (that is, without re

quiring the transformation to deterministic strategies). In this case each stochastic strategy

7r defines a distribution over all the paths in a trajectory tree, and thus calculating R(7r, T)
may in general require examining complete trees. However, we can view each trajectory

tree as a small, deterministic POMDP by itself, with the children of each node in the tree

being its successor nodes. So if II = {7re : e E IRd} is a smoothly parameterized family

of stochastic strategies, then algorithms such as William's REINFORCE [10] can be used

to find an unbiased estimate of the gradient (d/ de) V7r 9 (so), which in turn can be used to

5 See also (Ng and Jordan, in preparation) which, by assuming a much stronger model of a POMDP

(a deterministic function 1 such that I(s, a, r) is distributed according to P('ls, a) when r is dis

tributed Uniform[O,l]), gives an algorithm that enjoys uniform convergence bounds similar to those
presented here, but with only a polynomial rather than exponential dependence on H,. The algorithm

samples a number of vectors r(i) E [0, IjH., each of which, with I, defines an H,-step Monte Carlo

evaluation trial for any policy 7r . The bound is on the number of such random vectors needed (rather

than on the total number of calls to f).

Approximate Planning in Large POMDPs via Reusable Trajectories 1007

perform stochastic gradient ascent to maximize V7r8 (so). Moreover, for a fixed number of

trees, these algorithms need only O(H€) time per gradient estimate; so combined with lazy

tree construction, we again have a practical algorithm whose per-step complexity is only

linear in the horizon time. This line of thought is further developed in the long version of
the paper.6

5 The Random Trajectory Method

Using a fully observable generative model of a POMDP, we have shown that the trajectory

tree method gives uniformly good value estimates, with an amount of experience linear in

VC(II), and exponential in H€. It turns out we can significantly weaken the generative
model, yet still obtain essentially the same theoretical results. In this harder case, we as

sume a generative model that provides only partially observable histories generated by a

truly random strategy (which takes each action with equal probability at every step, regard

less of the history so far). Furthermore, these trajectories always begin at the designated

start state, so there is no ability provided to "reset" the POMDP to any state other than so.
(Indeed, underlying states may never be observed.)

Our method for this harder case is called the Random Trajectory method. It seems to lead

less readily to practical algorithms than the trajectory tree method, and its formal descrip

tion and analysis, which is more difficult than for trajectory trees, are given in the long

version of this paper [6]. As in Theorem 3.2, we prove that the amount of data needed is
linear in VC(II), and exponential in the horizon time - that is, by averaging appropriately

over the resulting ensemble of trajectories generated, this amount of data is sufficient to

yield uniformly good estimates of the values for all strategies in II.

References

[1] L. Baird and A. W. Moore. Gradient descent for general Reinforcement Learning. In Advances

in Neural Information Processing Systems 11, 1999.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural assumptions and

computational leverage. Journal of Artificial Intelligence Research, 1999.

[3] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. UAI,

pages 33-42, 1998.

[4] David Haussler. Decision theoretic generalizations of the PAC model for neural net and oter

learning applications. Information and Computation, 100:78-150, 1992.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable

stochastic domains. ArtifiCial Intelligence, 101, 1998.

[6] M. Kearns, Y. Mansour, and A. Y. Ng. Approximate planning in large POMDPs via reusable

trajectories. (long version), 1999.

[7] D. Koller and R. Parr. Computing factored value functions for poliCies in structured MDPs. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.

[8] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, 1998.

[9] Y.N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

[10] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning, 8:229-256, 1992.

6In the full paper, we also show how these algorithms can be extended to find in expected O(He)
time an unbiased estimate of the gradient of the true value V 7T 8 (so) for discounted infinite hori

zon problems (whereas most current algorithms either only converge asymptotically to an unbiased
estimate of this gradient, or need an absorbing state and "proper" strategies).

