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Approximate Polynomial GCD over Integers 

Kosaku Nagasaka 

Cmduate School of Humml Detleiopmcnt and Envinmmcflt, Kobe Univcrsit,y, Javan 

Abs tract 

Symbolic numeric algorithms for polynomials (He very important, especially for practicul COIll

putations since we have to operate with empirical polynomials having numel"ical errors on t heir 

coefficients. Recently, for those polynomials, lots of a lgorithms have been introduced, approx

imate univariate ceo and approximate lIIultivariate factorizat ion for example. However, for 

polynomials over integers having ooefiicicnts rounded from empir ical data, changing their coeffi

cients over Teals docs lIot rcmaill them in the polynomial ring over integers, he,nee we need several 

a pproximate operations over integers. In this paper, we discuss about computing a polynom ial 

C GD of unhrdriat.e or multivariate polynomials o\'er integers approximately. Here, "approxi

mately" me1lns that we compute 11 polynomial CCO ovcr integers by changing their coefficients 

sl ightly over integers so that the input polynomial!; sti ll remain over integers. 

Key wonts: approximate polynomial CC O, numerical polynomial CCO 

1. Introduction 

For polynomials with empirical data on their coefficients, we haxc to usc approxi

]na~c GCD algorithms to fi nd appropriate factors. T herc I;lre many studies and varia liS 

algorithms (Karcanias et al., 2006; Dim ~-Toca and Gonzalez-Vega, 2006; Christou and 
l\-1itrouli , 2005; Li and Zcng, 2005; Zeng and Dayton, 2004; Zarowski et al. , 2000; Corless 

et al., 2004; Zhi, 2003; Pan, 2001; Zhi and Noda, 2000b,a; Rupprecht. 1999; Karmarkar 

and Lakshman , 1998; Pan, 1998; Emiris et al. , 1997; ROssner and Seifert, 1996; Emiris 
et al. , 1996; Mit1'Ouli and I<arcanias, 1993; Ochi et aI. , 1991 ; Sa.saki and Noda, 1989; 
Schonhage, 1985), if the given polynomial pair and the desired eCD arc over the complex 

field . Fat· polynomials mcr integers having coelticients rounded from empirical data , we 
can not usc those algorithms since t hey compute ecos over complex numbers . \Ve nced 
another type of algorithms. However, such an algorithm has not been st udied enough. 

There arc only two known algori thms : the aut hor's poster presentation at ISSAC 2008 
and the von zur Cathell and Shparlinski's one at LATIN 2008. In this paper, we introduce 

algorithms to compute the following approximate CCO over integers. 
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U IlL: http ://wvWllla1n.h.kobe-u.ac . jprnagasaka/ (Kos.'lku Nagasaka). 
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D efini t ion 1 (Approximate CeD Over Integers). 

Let f(x) and g(x) be polynomials in variables x = x" ... , Xl over Z, and let e be a small 

posi ~ive in~eger. If f(x) and g(x) satisfy 

!(X) ~ '(x)h(x) + il,(X) , g(ii) ~ s(x)h(x) + il,,(x) , ,~ max{ II Ll ,II, II Ll ,II), ( I) 

for some polynomials Ll f , Llg E Z[Xl, then we say tha~ ~he above polynomial h(x) is an 

a pprox ima t e G C D ove r integers. We also say ~hat t(x) and s(x) are a pproximate 

cofactors ove r integers , and we say that their tolerance is E. ( 111)11 denotes 11 suitable 

norm of polynomial p(x).) <J 

We note that we compute l\ CCO of two polynomials over inlegers approximately. Here, 

"approximately" means t.hat we compute a polynomial c e o over integers by cha nging 

their coefficients slightly over integers so that t he input pair of polynomials still remains 

over inlegers. The conventional appt'Oximate ceo algorithms can not be used for t.his 

problem since determining leading coefficients and content scalars and rounding to in

tegers can not be done easily s ince such conversions make polynomials far from desired 

nearest eco s over integers. 

E xample 2. Let f(x) and g{x) be the following polynomials over integers, which arc 

rela~ively prime and supposed to have numerical errors on their coefficients. 

f{x ) 54x 6 
- 36x5 

- 192x" + 42x3 + 76x 2 
- 62x + 15, 

g{x) 73x5 + 36x4 
- 103x3 - 70x 2 - 48x + 35. 

We would find the following approximate CeD over integers, where the underlined figures 

are slightly changed to make them having a polynomial ceo. 

f{x) ~ (fix·1 
- 1O:r3 

- 8x2 + 7x - 3){9x2 + 9x - 5) 

= 54x6 
- 36x5 

- 192x'l + 4!x3 + 76x2 - 62x + 15, 

g{x) ::>:,; (8x3 - 4x2 - 3x - 7){9x 2 + 9x - 5) 

= 7'1x5 + 36x4 
- I03x3 

- 70x2 - 48x + 35. 

If we Rpply t.he convent.ionRI Rpproximat.p. c,r:O algorithm hy Kaltofen P. t. i'lL (200fl) for 

example, the following approximate ceo is foulld. However , it is difficult to make them 

being polynomials over integers although their tolerance is very small: e = 10- 8 . 

f{ x) ~ (l.OOx2 + O.99x - O.55 )(54 .34x4 
- 90.20x 3 - 72.20X2 + 63.65x - 27.07), 

g(x) ~ (l.OOx 2 + O.99x - O.55)(72.84x3 - 36.20X2 - 26.83x - 63.33). 
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Example 3 . Let ! (XI,X2) and g(Xl,X2) be the following polynomials over integers , 
which are relatively prime and supposed to have numerical errors on their coefficients. 

!(XhX2) = 89x~x~ - 8 7 xlx~ - 136x~ + 15 x~x2 

+ 132xlx2 + 119x2 - 42xi + 166xI + 139, 

g(XI,X2} = 5 6 xix~ - 45xlx~ - 98 x~ - 13xix2 

+ 46xIX2 + 225x2 - 12xi + 80xI - 112. 

We would find the following approximate ceo over integers, where the underlined figures 
are slightly changed to make them haviug a polynomial CCO. 

!(XI,X2) :::::: (18xlx2 + 15x2 + 14xI + 10) X (5XIX2 - 9X2 - 3x I + 14) 

= 90 xix~ - 87xlx~ - 13§:l ;~ + l§xix2 

+ 131xl x2 + 120x2 - 42xT + 166xI + 140, 

g(X"X2} :::::: ( I 1XIX2 + 1 IX2 + 4:1:1 - 8) x (5XIX2 - 9X2 - 3x I + 14) 

= 5Q XTX~ - 4 .:! xlx~ - 92 x~ - 13x ix2 

+ 4.Q.XIX2 + 22§X2 - 12xT + BOxl - 112. 

In this case, ,1 I = -x Tx ~-x~ -XTX2+XIX2 -X2 - 1 and ,1g = XiX~ -X 'X~+X~+X'X2 -X2 . 
l-,'iorcover , we note that any a.pproximate CCO is not unique since they may have several 
GCOs even for the same tolerance. <l 

The algorithm by von zur Cathen and Shparlinski (2008) and its revised version 
(von wr Cathen et al. , 2010) are based on the result from approximate integer common 
divisors by Howgrave-Graham (2001 ) hence the algorithm only works for very t iny tol

erances and one of input polynomials f( x) and 9(X) must be exact. Tn this paper , we 
compute approximate eco s over integers by using the well-known subresultant mapping 

and lattice basis reduction (the LLL algorithm by Lenstra et a!. ( 1982» hence t he present 
algorithm works for not only very tiny but a.lso small toleranccs and for two approximatc 
polynomials. In Section 2, KC introduce a simple algorithm and examples with exact and 
approximate polynomials. However, the simple algorithm is very t ime-consuming so we 
give some criteria to improve the algorithm in Section 3 , includ ing various numerical 
examples. In Sect ion 4 , \ve extend the algorithm to several polynomials and int roduce 
its application. Some remarks are given in Section 5. 

2. Approximate GCD by La tt ice Basis R eduction 

Computing a polynomial eCD is llsually done by PRS (polynomial remainder se
quence by the tnlditional Euclidean algorithm) in case of exact coefficients, and QR or 
Singular value decompositions in case of lIumerical coefficients (we note that some recent 

algorithms use more complicated matrix decompositions). Such conventional algorithms 
are rela.ted to the well· known subrcsultant mapping. QUI" algorithm also uscs the several 
well-known facts of the subrcsultant mapping. In the below, we sim ply review them and 

introduce how to Ui;C the lattice basis reduction with the mapping. 
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2.1. Subresultant mapping 

Let f (x) and 9(X) be multivariate polynomials over integers, of total degrees n = 

tdeg(f) and m = tdeg(g), respectively. In t.his paper, we call the following mapping 
5,.(J ,9) the subresultant mapping of f (x) and 9(X) of order 1'. 

S, (1,9) , 
P m- r- 1 X P,, - r - l - P ,,+m- r - l 

~ *')1(£) + ' (£)g(£) 

where l' = O, ... , min{ n,m.} - and Pd dellotes the set of polynomials in variables 

X I , ... , xe, of total de g rc ~ d. This mapping is the same as in Gao et <11. (2004 ), and has 

the same property that f (x)/ t (X) and g{X)/s( x ) is the GCD of f (x) and g(x) if1· is the 

greatest integer such that this mapping is not injective. 

We const.ruct. the coefficient vector iJof polynomial p(X) by the lexicographic ascending 

order. To SC(J the num\x!r of elements of a coeffi cient vector, we define the Hotation: 

f3d. r = (d-;H). The number of terms x;' ... xi' satisfying i ] + ... + it::; d is denoted by 

f3d.O . Hence, the s izes of the coefficient vectors j and 9 of f Ui ) and g {:l ) are (J".o and {3m.O, 

respectively. The k- th cCHlvolution matrix Ck(f) is defined to satisfy Ck(f )p = TV for any 
polynomialz){£) of total degree k - 1, wherc 1'; E zth - •. GX 1 and Cd !) E Z.8Q H- ,.O >< .8k - I.G . 

Using this matrix , we £1130 have t he matrix reprcscntat ion of the subresultant mapping: 

SyLr( f , g) = (C ,n - r(f) G,,_,.(g» of size ({3Mm - I.,.) X (13m - I.,· + {3n - I ... ), satisfying 

S, (1,9) , 
P", - ,.- l >< PIl - r - 1 - P ,,+m - r- l 

---.,.------,> t - t 
I-t s f+ t g =Sylr(f, g)(s t ) . 

Computing s(x) and 1(£) such that the mapping is not inj l.'C tivc is done by comput ing 

tbe null space of matrix Syl ,.(f , g). HCllce, fiuding the polynolnial GCO is reduced to 

finding null vectors. Some upproximate ceo algorithms (Corless ct aI. , 2004; Zarowski 

et aI. , 20(0) use the QR decomposition of Sylo(f, g)l, t. lte transpose of the Sylvester 

mat rix of / (x) and g(x) (sec also Laidacker (1969) for the exact case) . Morcover, including 

them, most of algorithms are based on t his subresultant mapping (see I<arcanias et al. 

(2006); Rupprecht (1999) fo r morc information ). 

2.2. Exact CGO by shQrt vectors 

\,Ve introduce the exact version of our algorithm using t he subresultant mapping and 

the lattice basis nxluction (the LLL algorithm by LCllst ra et a1. (1982» which is useful 

to find null vectors, s ince the LLL algorithm can find a short vector tl satisfying 

fOI' the given lattice L = {-r J'vl + ... + f dVdI7'; E Z} ~ 'l} . t\'loreover, there al'e lots of 

research (Selmon and Euch.ner, 1994; Lenstra et al. , 1982; Backes and Wetzel , 2(02) 

studying t he LLL algorithm, and is the notable remark tlmt mostly the LLL algorithm 

may find vcry short vectors comparing wi t.h the bound 2(d-l)!2 . 
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We construct the lattice generated by row vectors of C(I , g, T, c) which is defined as 

the followi ng matrix where l' denotes the OJ'der of the subresultam mapping. 

where Ei denotes the identity matrix of size i x i and C E Z. The size of C(J,g,r,c) is 

(/3,,- 1.,. + /3", - 1,,.) X (/3"- 1,,. + /3", - 1,,. + /3"+",-1,,.) . 

Lemma 4. Let B be Ihe maximum of coefficients of any factors of f(x) anli g(x) . 
For the lattice generated by 1"OW vectors of C(I, g, 1', co) with cn = 2 (.O"-I .• +tl,,,-, .• -1}/2 

';/3"-1 ,,. + /3", _I,,. B . the LLL algo1""i.thm can find a short vector whose first /3"-1 ,,. + 

/3".- 1.,' elements an, a multiple of the tmnsl'ose of the coefficient VeClO1"S of cofact01"s 

of f(x) and g(x) by their CGD, if 'r is the greatest integer such thet the subresultant 

mapping is not injective 

Proof. T here are cofactors t(x) alld s(x) of f (x) and g(X) by their CeD, respectively, if 

l' is the greatest integer such that the suhrcsultunt mapping is not injective. Hence, the 

lattice generated by row \'cctors of CU, g, 1", co) has the following veclor fl.",;" . 

-ii",;" = (the transpose of the coefficient vectors of s(f) and t(x) , 0 .. ·0 ). --(J,,+m _ l.,. 

The LLL algorithm can filld a short vector i1 satisfying 

Since all the non-zero elements of right (3,,+,., - 1.,. columns of row vectors of CU, g, r , CD) 

are larger than or equal to CD = 2 «(J" - I ... +(J", - I. .. - l)/2.,j(J,,_ I,,. + /3",-l.r B in absolute 

value, the right (J,,+ ,"-l.r columns of the fo und short vector 11 must be zeros . This mcans 

that the transpose of the vector formed by the first /3,,- 1.,. + /3m- l.,. clcrllents of i1 is ill 

the null space of Sylr(f, y ) and the lcmma is proved . 0 

For example, B would be the ma..ximum of Landau-lVlignotte bounds (t\llignotte, 1974) 

of f (x) and g(x) for univariate polynomials, or B = max{2"t II f 112, 2"' ( II 9 112} for 

multivariate polynomials, givell by Gel/fond (1960). We note that we can decrease the 

bound eB by using the coefficiellts bounds of factOl"S of f (x) and g(fi) separately, however, 

t bis is not so important since the LLL algorithm may find appropriate short vectors with 

vc ry small C « CD . 

Example 5. We compute a polynomial CeD of the following very simple polynomials. 

J(x) ~ 28x' - x - 15 (7x + 5)(4x - 3), 

g(x) ~ 42x' + 65" + 25 ~ (h + 5)(6x + 5). 
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Wc constrllct the following matrix C(f ,g,r, c) with ,. = 0 a.nd c = 1, and apply the LLL 

algorithm to thc lattice generated by row vectors of CU, g, 1·, c). 

100 0 - 15 - 1 280 

o 1 0 0 0 - 15 -1 28 

o 0 1 0 25 65 42 0 

o 0 0 1 0 25 65 42 

- 5 - 6 -3 4 0 0 0 0 

- 1 - 2 - II - tO - 9 -3 - 14 

o 0 0 -15 -1 28 0 

- 1 -1 -1 1 -10 -24 -4 14 

The first row is a short Yector corrcsponding to cofactors, hCIl(.'C \\"e get 41.: - 3 and 61.: + 5 

&'3 cofactors and 71.: + 5 as Lhe polynomial CeD of I(x) and g(x) . We note that Lemma. 4 

guarantees only with such a large CD so we have to enlarge c and apply the LLL algorithm 

repeatedly if \\·e could not fi lld appropriate short vectors. <J 

Example 6. We compu:e the polynomial ceo of the following very simple polynomia ls. 

I(i) = [ 2 x~ - 1O:/;IX2 + 21.:1 - 12 x~ + 23x2 - to = (6xI + 41.:2 - 5)(21.:1 - 3X2 + 2), 

g(i) = 30x~ + 62xl1.:2 - 43 ~c I + 28x~ - 47x2 + 15 = (6xI + 4X2 - 5 )( 5 ~t · 1 + 7x2 - 3). 

\Ve construct the following matrix C(J, g, T, c) wi th T = 0 and c = ]; 

1 0 0 0 0 0 -10 23 -12 0 2 - 10 0 12 0 0 

010 0 00 0 - 10 23 - 12 0 2 - 10 0 12 0 

CU, g, ", c) ~ 
00 1 000 0 0 0 0 - 10 23 - 12 2 - to 12 

000 1 0 0 15 - 47 28 0 - 43 62 0 30 0 0 

o 00 0 1 0 0 15 - 47 28 0 - 43 62 0 30 0 

000001 0 0 0 0 15 - 47 28 - 43 62 30 

and apply t he LLL algorithm to the latt ice generated by row vectors of C(J,g ,r, c) : 

- 3 7 5 - 2 3 - 2 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 - 10 23 - 12 0 2 - 10 0 12 0 0 

0 0 0 0 - 10 13 11 - 12 2 - 8 - 10 12 12 0 
~ 

0 0 0 0 0 0 0 0 0 - 10 23 - 12 2 - 10 12 

- 3 - 2 - 1 5 - 9 - 6 8 - 6 - 4 20 - 5 16 6 

0 2 0 0 1 - 1 0 - 5 - 1 4 - 15 8 14 43 -8 - 30 

The first row is a short vector correspond ing to cofacto rs, hence we get 2Xl - 3X2 + 2 and 

5xI + 7 X2 - 3 as cofactors and 6 X1 + II X2 - 5 as the polynomial ceo of I(x) and g(i) . <3 

6 



2.3. Approximate GCD by sh01t vectors 

For finding an approximate ceo, there may not cxist any null vector in the latt ice 

since we can usc the conventional algorithm if it exists. However, there may exist vectors 

having small norms instead of null vectors, SO we can find appropriate vectors by the 

lattice basis reduction. This meHns thM, we can compute CHndidate cofactors 1.(£) and 

sex) E Z[X] such that s(£)/(£) + t(X)9(X) ~ O. If ~here is an approximate ceo over 

integers, let it be 11(£) , h(x) may satisfy J(x) :::::: t(x)h(x) and g(x) :::::: -s(£) II(£) . Since 

all t he polynomials arc ovcr integers, f (x) and g(.i) may not be divisible by 11.(£) , hence 

it is not possible to find h(x) by dividing by the approximate cofactors computed . \;Ye 

use the LLL algori thm again to get h(X). l€t 1t(f,g,1',C,t, s) be the following matrix of 

si ze (!1r+1.0+ I) x (!1".o +!1""O +!1r+I,O + 1), 

where j and § denote t he coefficient vectors of J (X) and g(X') , respect ively. Although the 

following lemma docs not guarantee that we can find an approximate ceo, there may 

exist vectors hav ing small norms so we can find appropriate vectOl"S by the lattice basis 

reduct ion , as for finding null vectors. 

Le m ma 7. Let B be the ma.rimurn oj coefficients of any fact01'S oj f (X) and g(x) . For the 

lattice generated by row t'ect01'S oJ 'H. (1, g, 1', ClI , t , s) with CII = 2 fJ~+L.o/ 2..j /3,'+1,0 + 1 B + 1, 

Ihe LLL algorithm can ji.1ul a short vector whose 2-nd, ... , (!1r+ l.O + i )-lit elements are 

a multiple of the tmnspose oj the coefficient vector of the GCD of f(fi) and g(x), if ·,. is 

the greatest intege1' stIch that the subresuitant mapping is not injective.. 

Proof. The proof is si milar to ~ h at. of Lemma 4, o 

We note that the first delllcnt of the short vector whose 2-nd , ... , (!1"+1.0 + l )-t h 

clements are a multiple of the transpose of t he coefficient vector of t he polynomial CeD 

of f(x) and 9(X'} is always 1 representing t.he given polynomials f( fi) and g(X') ill the 

exact case, 

Example 8 . We compu te an approximate GeD over integCJ's of the following very simple 

polynomials which are slight.ly different from t.he polynomials in Example 5. 

f(x) (7x+5)(4x- 3)+ I , 

g(x) 42x'l + 65x + 25 = (7x + 5)(6x + 5). 

We construct the following matrix £ (f,9, T, c) with l' = 0 a.nd c = 1, and apply the LLL 
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algorithm to the lattice generated by row vectors of CU, g, or, c). 

1 0 0 0 -14 -1 28 0 

o 1 0 0 0 - 14 - 1 28 

o 0 1 0 25 65 42 0 

o 0 0 1 0 25 65 42 

-5 -6 -3 'I -5 -6 0 0 

4 4 2 - 3 - 6 - 5 - 3 - 14 

9 II 5 - 7 - I - 13 - 4 14 

o 0 0 - 14 - 1 28 0 

We take the first row vector as candidate cofaetors since the right hand part of the first 

row is the smallest. \Ve construct the following matrix 'H. (J, g, 1', C, t , $) with C = 1 and 

apply thc LLL algorithm, to computc an approximatc CCD. 

(

[00 - [" - [28 256542 ) ( O[ 0 - 340560 ) 

o I 0 - 3 4 a 5 6 0 --+ 0 a 0 - 3 4 0 5 6 

o 0 1 0 - 3 4 0 5 6 I - 5 - 7 0 0 0 0 0 

Hcnce, \\'c get 7x + 5 as an approximate polynomial CCD over integers and 4x - 3 and 

6x+5 as approximate cofactors and t he tolerance is J. l\'!oreover , this approximate CeD 
is the nearest onc since c = I always means that the corresponding approximate GCD 

over integers is the nearest, for relatively prime polynomials, \Ve note agaiu that Lemma 

<I and Lemma 7 guarantee only with such large Co and Cff so \\'e have to enlarge Co 

and Cff and apply the LLL a lgori thm repeatedly if we could not fi nd appl'Opriate short 

vectors, 

Example 9 . We compute an approximate GCD over integers of the following very simple 

polynomials which are slight ly different from the polynomials in Example G, 

f(x) = 12xi - IOxlxz + £Xl - 12 x~ + 23x2 - !.Q 

= (OXl + 4xz - 5)(2xl - 3 ~ tz + 2) - X l + I, 

g(X) = 30xi + G2XlXZ - 43xl + 2 8 x ~ - 47xz + l.Q 

= (6Xl + 4.1:z - 5 )(5XI + 7x2 - 3) + 2 X2 - 1. 

\Ve construct the following matrix CU, g, or, c) with 1" = 0 a.nd c = I: 

100000 - 9 23 - 12 0 - 10 0 12 

o I 0 0 0 0 0 -9 23 -12 0 -10 0 

CU, g , 1' , c) = 
o 0 [ 000 0 ° 0 0 - 9 23 - 12 

000 1 0 0 [4 -45 28 0 -43 62 0 30 

000010 0 [4 -45 28 
° 

-43 62 0 

o 0 0 00 [ 0 0 0 0 [4 - 45 28 - 43 

8 

0 0 

[2 0 

- 10 [2 

0 0 

30 0 

62 30 



and apply t he LLL algorithm to the lattice generated by row vectors of C(J,g,r,c) : 

3 - 7 - 5 2 - 3 2 0 - 6 0 - 10 II 0 5 0 0 

0 0 0 0 0 - 9 23 - 12 0 - 10 0 12 0 0 

0 1 0 0 0 0 0 - 9 23 - 12 0 - 10 0 12 0 
~ 

2 - 4 ~ 4 - 2 - 4 9 2 - 8 9 - 13 - 8 7 -6 - 18 

- 3 7 6 - 2 3 - 2 - I 0 6 0 12 - 12 - 4 - 10 12 

-5 13 9 -3 6 - 4 3 -13 5 12 -13 6 22 31 -2 -12 

We take the first row vector as candidate cofactors since the r ight hand pan of t he first 

row is Lhe smallest. \Ve cons truct the following mat rix 'H(f, g, 7' , C, t., s ) with c = 1: 

1 0 0 0 -9 23 - 12 1 -10 12 14 -4528 -43 62 30 

0] 0 0 2 - 3 
'H(1, g,1',c, t ,s) = 

0 2 0 0 - 3 7 0 5 0 0 

0 0 I 0 0 2 -3 0 2 0 0 -3 7 0 5 0 

0 00 I 0 0 0 2 - 3 2 0 0 0 - 3 7 5 

and apply t he LLL algorithm , to compute an approximate ceo: 

o [ 0 0 2 - 3 0 2 0 0 - 3 7 0 5 0 0 

o 0 0 0 2 - 3 0 2 0 0 - 3 7 0 5 0 

00 0 o 0 0 2 - 3 2 0 0 0 - 3 7 5 

1 5 -4 - 6 1 0 0 - 1 0 0 - 1 2 0 0 0 0 

\Ve take the last row vector as an approximate ceo since the first element of the row 

is 1 meaning the coeffi cient vectors of f (x) and g(x) . Hence, we get ZXI - 3 X2 + 2 and 

5 x [ + 7X2 - 3 as cofactors, GXI + 4X2 - 5 as the ceo of f (X) and g(x] , and e = 2 in the 
max norm. 

Based 011 the a bove lemmas and examples, we have the fo llowing algorit hm. 

A lgorit hm 1. (approximate ceo over integers) 

Inp u t: 1,9 E Z [X] , 

O u t put : h, t, S E Z[.i] satisfying f (x):::::: t(x)h(x) and 9(£) ~ 8(£)h(£). 
1 . e;- 1 and while e < mi n{llf ll , IIg ll } do 2- 14 (or do ollce for the possible smallest e) 
2. 1' ;- min{n , 111} - I and while l' ? 0 do 3- 13 (or do once for.,. = 0) 

3. c;- max{ lI l lI, IlglI } and construct a matrix £ (I, 9,1', C] 

4. while c s: Cu do 5-12 (or do once for c = ma.x{ lI l lI, Ilg lI }) 
5. apply the LLL algorithm to t he lat tice generated by rows of £(1, g, T , c) 

6. for eacll basis vcctor sorted by the norm of right /3"+,,,- l, r columns, do 7- 11 

7. d ;- max{ lI l lI, Ilglll and construct a matrix 1t(j, 9, ''', d, t , s) 
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8 . while d S elf do 9- 11 (or do once for d = ma.x{ 1I / 11. IlglI }) 
9. apply the LL L algorithm to the lattice generated by rows of 1t(j, g, 'r , d, /., s) 

10. let h(x) , t (i'), s(£) be candidate approximate GCD and cofactors, 

and output h(i) , t(i} , s(i) if II I - tIL Il + IIg - sh.lI :::; 2£ 

11. d ~ d x m~'{ lI f ll, IlglI ) 
12. c ~ " ",,,,,{ li lli, Ilgll) 
13. r +-'r - I 

14. c +- C x JO 

15. output "not found" . 

3. Further IDlproveme l1.ts and N umerical Exp eriments 

Algorithm 1 is t. ime-consuming since we can not determine which lattice basis vector 

is related to a pa ir of approximate cofactors ill advance and we need to t ry 011 all the 

candidate basis vectors . We note that the number of candida te vectors is (3,, - 1.,.. + {J", - I ,"' . 
To decrease the numbcr of trials, \\'e int roduce the following criteria by which we can 

determine which short vector is useless in advance. 

C riterion 1 (Zero Constant Term ). 

Let t (x) and s(x) be the polynomials given by a vector fi in the latt ice generated by 

row vectors of C(j, g, 'r , c) as in the proof of Lemma ,I. ,17 is !lot corresponding to ally 

approximate GCD, if 

t(O) = 0 while If (O) 1 > E or s(o) = 0 while Ig(O)1 > c . 

Proof. Por any polynomial h(x) satisfying the equation (L), tiO) = O.-:neans that t (.f) h(.f) 
does not have any non·zero constant term, and we have Ll f(O) = f (O). Therefore, for the 

given tolerance E, there is not any polynomial h(.f) such that II Llf(X) [[:::; E if IJ(O)[ > E. 

Anot her condition: s(O) = 0 and Ig(O)1 > E, is also proved by the same way. 0 

Crite rion 2 (Degenerated Cofactors) . 

Let t(i) and s(X') be the polynomials given by a vector i7 in the lattice generated by 

row vectors of £ (j, g,7·, C) as in the proof of Lemma 4. ofi is not corresponding to any 

approximate GCD, if 

n - tdcg(t) > m - tdeg(s) while Iltenn ,, (j) II > E, 

or n - tdcg(t)<m - tdeg(s) whiJe l[term",(g) [[ > E, 

where termd(p) denotes the 5um of monomials of total degree d, of polynomial p(x ). 

Pmof. 11. - tdeg( t) > 111 - tdeg(s) implies td eg(h ) = 111 - tdeg(s) and tdeg(t.h) < t.deg(J) 

for any approximate GCD 11.(£) satisfy ing the equation (1). This means t hat Llf(.f) = 

J(i) - t(i) h(i) has tenn,,(f) at !ca.<; t . Therefore, for the given tolerance E, there is 

not any polynomial h(i') such t hat II Ll,(£) II :::; E if Iltenu ,,(j) II> E. Anot her condit ion: 

n - tdeg(t) < m - tdeg(s) and II term",(g)lI > E, is also proved by the same way. 0 
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C riterion 3 (Leading r..'Ionomials) . 
Let lex) and seX) be the polynomials of total degree 11 - k and m - k, respectively, given 

by a vector tl. in the lattice generated by row vectors of CU,g,1',C) as in the proof of 

Lemma 4. 11 is not corresponding to any approximate GGO, if 

or 

in the case of Icf_., - k(t) l + Icf ... _k(s) 1 = 0, where cfx<! (p) denotes the coefficient of term 
~ . "' j • 

x1 of polynomial p{x). 

Proof. Let hex) be any approximate GCD of f (x) and g(X) satisfying the e<luation 

(l). In the case of I cf", ~ _ l . (t)1 + I cf ",:,, _ ~(s) 1 = 0, we have degx, (th) < deg",, {J) and 

deg",; (th) < dcg",; (g). i-lcnce, 11/(x)' and 11g(x) must have cfx;,U) and cf",;n (q) , re

spectively. Therefore, for t he given tolerance e, there is not any polynomial hex) such 

that II 11/(x) II ::; e and II 11g(X) II ::; e, if max{ lcfx;,U) I, Icf"'i, (g)l} > e . 111 the case of 

Icf :r:'.- ~(t) 1 + Icf", ,,' -k (s) 1 #- 0 , fo r ,my i E {I, ... ,f } , hex) must sat isfy the following 

ilUxiualitics. ' 

incqj 

max{ incqj , -ineqg} is minimum if cf x ~ (II) satisfies 

which is the solution of i.nctl! + incqg = O. Substituting the above cfx ~ (h) for that of 

ine'lj and ine(/g proves the criterion. '0 

\Ve have generate<i 100 pairs of bivariate polynom ials of total degree randomly chosen 

from [2, 10]' having their ceo of total degree randomly chosen from [1,51, coefficients 
of their factors randomly chosen from [- 100,1001 and added noise polynomials of the 

sa me total degree, whose coefficients randomly chosen from [- 10, 10]. Table 1 shows the 

result where "#succcss" denotes the number of pairs for which our algorithm found their 
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without any crileria with criteria 1, 2 aud 3 

average time (#SIlCCCSS) 32.1622 sec. (94 / 100) 9.10895 sec. (94/ 100) 

average time (#failure) 11.24!M sec. (G/ IOO) 5.0G832 sec. (6/ 100) 

Table 1. l1cslllt of benchmark 

approximate eCD. Wi~h the above criteria. I , 2 and 3, our algorithm becomes about 3 
times faster than the original version. 

According to the above lemmas and the result of numerical examples, we ilL':iert the 

following step 6- 1 just after t.he step 6 in Algorithm 1 and rename it Algorithm 2. 

6- 1. ciluuse alLu~her vedur if tile chosen VL"(;LUJ saLisl1es any cri teria 1, 2 ur 3 

3.1. Numerical Experiments and Remarks 

To see the efficiency of Algorithm 2, we have generated 100 pairs of polynom ials sat
isfying the following conditions, and compute their approximate ecos by the algorithm 

with e = 10 in the step 1 and doing the steps 5- 12 only once. We note t hat all the exper

irnents have been computed on LimlX with Inte! Core 2 6700 2.66G Hz and 2GB memory, 

by our implementation on Nlathematica 6.0 , and we lise the max norm for polynomials 

though t he algorithm works for other norms. 

No.1) A pair of bivariate polynomials of tota] degree randomly chosen from [2, 10] , having 

their Ge O of totul dCf:,'Tcc randomly choseu from [1, 5], coefficients of their factors 

randomly chosen from [- 100,100] and a<ldcd noise bivariate polynomials of the 

same total degree, whose coefficients randomly chosen from [- 10,10]. 
No.2) A pair of polynomials in XI, X2 , X3 of total degree randomly chosen from [2,6]' 

having their eco of total degree randomly chosen from [1,3], roefficients of t heir 

factors randomly chosc.n from [- 100, 100] and added noise polynomials in XI , X2 , X3 

of the same total degrl:.'C, whose coefficients randomly chosen from [- 10, 10]. 

No.3} A pair of bivariate polynomials of total degree randomly chosen from [2, 12] and 

[2, II], having their eco of total degree randomly chosen from [1 , 5]' coefficiell ts of 

their factors randomly chosen from [- 100, loo] and added noise bivariate polyno

mials of the same total degree, whose coefficients randomly chosen from [- 10, lO]. 
No.4) A pair of polynomials in XI , X2 , X3 of total degree randomly chosen from [2, 8] and 

[2, 71, having their ceo of total degree randomly chosen from [1,4], coefficients 

of their factors randomly choscn from [- 100, 100] a.nd added noise polynomials 

in .1: ] , :1:2 , x;J of the same total degree, whose coefficients randomly chosen from 

[- 10,101· 

#succcss (avg. time) / search for r = 0 #success (avg. ~ime) / search for all r 

No.1 90/ 100 (2.06262 sec.) 95/ 100 (0.148304 sec.) 

No.2 91 / 100 (1.73053 :sec.) 96/ 100 (0.151634. sec.) 

No.3 87/ 100 (4.26505 sec.) 94 / 100 (0.317935 sec.) 

No.4 94/ 100 (30.8244 sec.) 99/ 100 (0.344426 sec.) 

Table 2. Result of benclullaz k 
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Table 2 shows the results which suggest that we should search for aliT . One may think 
that searching for all 1· (incl uding 1· = 0) must be slower than searching for only 1· = 0 

since the null space for 1· = 0 includes all t he null vectors at one time. However, for large 

1· (note that thc algorithm starts with a large ·r ), thc size of C(f, g, r,c) is small and the 
number of irrclc\'ant vectors which can not bc detected by thc early tcn11ination cri tcria 
is also small and the step 6- 1 detects t hat the next steps can not find any approximate 

CeD and drast ically decreases the number of 'NU, g, 1·, c, t, s) which we should construct. 
j'vloreover, we show the interesting example below. The underlined fil:,rure is the dom

iltallt part of the noise polynomials, showing that the tolerance of approximate GCD 

must be less than or equal to 10 in the ma.x: norm. 

f (x) (- l1 x5 + 7 xfx~ + 1 2 )( 17x~ x5 - 9X,Xl + 7) + lOX,Xl - 7, 

g(x) (- ) l x~ + 7 xfx~ + [2 )( 2I x ~ x5 + 7xfx2 - 8) - 9 x~x1 · 

Algorithm 2 computes the following approximate CCO and cofactors of f(x) and g(x) . 

appgcd(f, g) = heX) = - 23x3 + 1 5xfx~ + 25, 

t.(x) = 8x1x5 - 4X1X2 + 3, seX) = lOx ~x5 + 3xfx2 - 4. 

In this case, we have e = 9 while we expected e = 10. Hence, (- llx; + 7xi x~ + 12) is 
not the nearest approximate GCD in the max norm , and the above heX) computed by 

Algorithm 2 is closer to, or must be the nearest onc. 

4_ GCD of Se veral Polynomials and Its Application 

Our algorithm is applicable for simplifying mathematical expressions. We note that 
this idea eomes from the discussion at the poster session of lSSAC 2008. The author 

wishes to t.hank seveml participants especially Adam Stl·wbonski , for their suggestions. 
For example, let 1)(X, y , z) be the following polynomial which is primitive and irreducible 
over Z. 

7)(X , y,z) = (_ 2yx2 + 2x2 +y2 x _ 2yx+ 3x_y+ l )z2 

+ (_ 4yx2 + 4x2 + 2y2x - 4yx+y - 1) Z +y - 2x. 

By computing an approximate CCD over integers of coefficient polYllomials f o, It , h · 

fo (x, Y) 

h(x, y) 

_?yx2 + 2x2 + y2x - 2yx + 3x - y + 1, 

_ 4yx2 + 4x2 + 2y2x - 4yx+y - I , 

h (x,y) = y - 2x, 

o.ppgcd(fo, 11, h ) = 2x - y + 1. 

We get 

1)(X,y,Z) = (2x - y+ 1) (( - yx+x+ 1)z2+ (-2yx+ 2x - l )z- 1) + 1. 

13 



III this case, we have to compute an approximate ceo of three polynomials while Al
gorithm 2 is only for two polynomials. To extend our algorithm to several polynomi

als, we use t he following generalized subresultant mapping S r(fo, . . , .fI. ) of polynomials 

10(5!), .. . ,/d!i) of ordcr r (sec also Rupprecht (1999)) . 

IT' ;=0 P n l - r - 1 ~ IT" ;=1 P no - n, - r - l 

("0 ) 
c ,jOHOJ. ) S c(Jo, . .. ,h) , 

1j:k' 

~ 

uklo ~ "!Jolk 

where H; = tdeg(J;) (i = 0, .. , k). This mapping can be expressed by the following 

Sylvester su bresultant matrix Syl ,.(Jo, . . , I k) and we can compute candidate cofactors 
1/0, ' .. , Uk and approximate CCOs by the LLL algorithm as in Algorithm 2. 

C"'o- ,.(Jt} Cn t- .. (Jo) 0 0 

C .. o- r (J2) 0 Cnl-r(JO) ii 
Sylr(fo, . .. ,Jkl ~ 

G".-c(h ) 0 0 Cnk-,. (fo ) 

Moreover, matrices CU, g ,1', c) and 1t(f, 9 , 1", C, t , s) are also extended to several poly
nomials as follows. 

1i(J;s,'/",c,u;s) = ( S{3,+I.O+ l 
c · Cr+2 ( - lIo)' c · Cr+Z(Ul)' 

~, 

c· fo 

The s izes of C(J;s , r, c) alld 'H. (JiS , 1", c, "UiS) arc (L ;=O, ... ,k ,6:,,;- I,r) x (L ;=O, ... ,k .o,,;- I.r + 
L i= l , ... ,k .o"o+",- I,r) and (Pr+ I.O + I) x CL ;=O, ... ,k (3",,0 + .0,'+1 .0 + 1), respectively. \;Ye 

havc almost same lemmas as Lemma 4 and Lemma 7 with Co = 2{L ... o k{J,,; - I.,.- I}/Z 

VL; =o .. .. ,k (3,,;_ I, .. B and CH = 2{J,.+l·o/2 J .o,·+I.O + 1 B + 1. The carly tenniuiltion criter ia 

1, 2 and 3 are also easi ly extended to several polynomials. We just apply Criteria I , 2 

and 3 fo r each pa ir of all the combinations of fo (x) and other polynomials. 

5. Various Remarks 

To get a reduced lattice basis vectors, our implementation uses Mathemat-ica's built-in 

function "LatticeRed uce" which is Storjohann 's variant (Storjohann, 1!J!JuJ of t he LLL 
algorithm. Though t his algorithm is faster than t he original LLL algorithm , it is not 

fast since there arc several variants using floating-point numbers. Hence, our algorithm 
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becomes much faster if we use such it fast algorithm to get lattiee basis vectors. For 
example, II tl-5.<1 .2 by Victor Shoup ha<; a function LLLFP which is a variant of Schnorr 

and Euchner's algorithm (Schnorr and Euchncr, 1991 ). 

One may be interested in the concrete condi t ion (upper or lower bounds of tolerance) 
for approximate Ge D over inteb'Crs. Iloweve,f , our approach does not answer to this ques

tion s ince our algorithm only searches for approximate cofactors s(X') and t. (x) satisfying 

IIs(x)f(x) + l(X)g(x) lI ::::;j 0 which is not a neccssal)' condition of that f(x) and 9(x) have 

an approximate GCD over integers. For the following (rare) counter condition : 

IIs(;')/(£) + t(£)g(i) 1I ~ Ils(£) Llf(i) + t(£)Ll,(;') II » 0, 

it is difncult lu rllld alJ.Y appropriaLe CCD alJd the algurithm may filJd polyuUllJial h(X) 
such that Ilf(x) - t(i)h(i) ll» 0 and 119(.i) - s(x)h(x) ll» O. Of course, the lattice gener
ated by row vectors of CU, g , T, c) includes the vector corresponding to the approximate 

cofac tors but this vector is not short nnd we can not find it by the LLL algorithm. 

Conversely, our algorithm can find any approximnte CGD if candidate cofactors s(i) 
and l (i) correspond to the short vector by the LLL algorithm. to.'loreover, according to 

our experiments, s(x)f(x) + t(£)g(x) may have terms whose coefficients nre very small 

even if II s(x)f(x) + t(x)g(x) II» O. In such a situat ion , multiplying a column vector of 

CU, g, 'J' , c) by a larger integer gives an appropriate row vector and an approximate GCD. 

In fact, 5.9% of failure cases become to have approximate GCDs computed, though this 

technique is time-consuming even for univariate polynomials . 
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