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1. Notations and terminology. Our terminology conforms with that

of [2]. The inner product of vectors x and y in a Hubert space 3C is

denoted (x, y). An operator in 3C is a continuous linear mapping

T: 3C->3C. The *-algebra of all operators in 3C is denoted L(3C). A

complex number p. is a proper value for T if there exists a nonzero

vector x such that iT—pI)x = 0; such a vector x is a proper vector for

T. A complex number p. is an approximate proper value for T in case

there exists a sequence of vectors x„ such that ||x„|| = 1 and ||7x»— jux„||

—»0; equivalently, there does not exist a number e>0 such that

(r-M7)*(r-M7)^€7.
The spectrum of an operator T, denoted s(P), is the set of all com-

plex numbers p, such that T—pI has no inverse. The approximate

point spectrum of T, denoted ail), is the set of all approximate proper

values of T. The point spectrum of T, denoted piT), is the set of all

proper values of T. Evidently PiT) £a(P) O(P). If T is normal,

s(P)=a(P) (see [2, Theorem 31.2]); if Pis Hermitian, a(P) contains

a (necessarily real) number a such that |a| =||P|| (see [2, Theorem

34.2]), and in particular one has an elementary proof of the fact that

the spectrum of T is nonempty.

2. Introduction. The spectrum of a Hermitian operator is shown

to be nonempty by completely elementary means. It would be nice

to have an elementary proof for normal operators (see [2, p. 111]).

The purpose of this note is to give a proof based on Banach limits.

Incidentally, 3C will be extended to a curious Hubert space X, in

which it becomes natural to speak of "approximate proper vectors."

Our motivation for the construction of X was as follows. Suppose

T is a normal operator, and p and v are distinct approximate proper

values of T. Choose sequences of unit vectors {x„} and {y„} such

that ||rx„—jux„||—>0 and ||7y„—i»y»||—»0. Then,

I (m - y)ixn, yn)\  =  I (m*» — Txn, yn) + (*», T*yn - v*yn) I

Ú  \\pXn-   Txn\\  +||rV->'*yn||

= I|m*» - P*»|| + II 7>» - vyn\\ -* 0.

Thus, (x„, yn)—»0, and we have a generalization of the following well-
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known fact: for a normal operator, proper vectors belonging to dis-

tinct proper values are orthogonal. This suggests thinking of the

sequences {x„} and {yn} as being "approximate proper vectors,"

with their inner product defined to be lim(x„, yn).

In what follows, we denote by glim a fixed "Banach generalized

limit," defined for bounded sequences ¡X„} of complex numbers (see

page 34 of [l]); thus,

(1) glim(X„ + pn) = glim X„ + glim pn,

(2) glim(XX„) = X glim Xn,

(3) glim X„ = lim X„ whenever {x„} is convergent,

(4) glim X„ ̂  0 when X„ ̂  0 for all n.

We shall not make use of a "translation-invariant" property of glim;

all we need are properties (l)-(4), in other words, a positive linear

form on the vector space xn of bounded sequences, which vanishes on

the space Co of null sequences, and has the value 1 for the constant

sequence {1}. It follows from (1) and (4) that glim Xn is real when-

ever X„ is real for all n; this implies in turn that glim(Xn*) = (glim X„)*

for any bounded sequence {X„}.

3. An extension 3C of 3C. Denote by (B the set of all sequences

5= {x„}, with x„ in 3C (n = l, 2, 3, • • • ), such that ||x„|| is bounded

[that is, {||x„||} is in xn]. If s= {x„} and t = {y„}, write s = t in case

Xn = yn for all n. The set (B is a vector space relative to the definitions

s+t={xn+yn] and Xs= {Xx„}.

Suppose s={x„} and t= {y„} belong to (B; since | (x„, y„)\

g||x„|| ||yB||, it is permissible to define

(b(s, t) = glim(xn, yn).

Evidently <p is a positive symmetric bilinear functional on <S> (see

[2, §2]), hence |<p(s, t) \2 g 0(s, s)<p(t, t) (see [2, §5]). Let

%={s:<p(s, s)=0] = {s:<p(s, t)=0 for all t in (BJ. Clearly 91 is a

linear subspace of (B; we write s' for the coset s+91. The quotient

vector space (P = (B/9l becomes an inner product space on defining

(s't t')=<t>(s, t). Thus, if u= {xn}' and v= {yn}',

(u, v) = glim (xn, yn).

If x is in 3C, we write {x} for the sequence all of whose terms are x,

and x' for the coset {x}+3l. Evidently (x', y') = (x, y), and x—>x'

is an isometric linear mapping of 3C onto a closed linear subspace

3C' of (P. Regard (Pasa linear subspace of its Hubert space completion
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X. Thus, X' E&EX, where 3C' is a closed linear subspace of X, and

(P is a dense linear subspace of 3C.

4. A representation of L(3C). Every operator T in 3C determines an

operator /° in X, as follows.

If 5= ¡x„} is in (B, then the relation || 7xn||2^||7||2||xn||2 shows that

{ Txn} is in (B. Defining T0s = { Txn}, we have a linear mapping

T0: (B—>(B such that <p(Tos, T0s) ^\\t\\2<j>(s, s). In particular if s is in

31, that is if <p(s, s)=0, then TQs is also in 2d. It follows that {x„}'

—>{ Txn}' is a well-defined linear mapping of (P into (P, which we de-

note r°; thus, TV = (7V)',and the inequality (T°u, T°u) g|| r[|2(w, w),

valid for all m in (P, shows that T0 is continuous, with ||ro|]^| /||.

Since in particular T°x' = (Tx)' for all x in 3C, it is clear that | T°\\

^\\T\\, thus ||r°|| =||r||. The continuous linear mapping 7"° extends

to a unique operator in X, which we also denote T°.

The mapping r—>/° of L(3Q.) into L(X) is easily seen to be a faith-

ful   "-representation:   (S+T)° = S°+T\   (KT)o=\T<>,   (ST)o = S<>To,

(r*)°=(r°)*, /»=/, and ||r°|| = ||r||.
Suppose r^O, that is, (Tx, x) ^0 for all x in 3C. If w= {x„}' is in

ô°, then (Txn, x„)^0 for all n, hence (T°u, w)=glim(rx„, x„)^0;it

follows that (T°v, v)^0 for all v in X. Clearly: for an operator T in 3C,

one has T^O if and only if r°^0.

Lemma. 7/ T is any operator in 3C, a(T°) =a(T).

Proof. A complex number p fails to belong to a(T) if and only if

there exists a number e>0 such that (T—pI)*(T—pI)^eI. By the

above remarks, this condition is equivalent to (T°—pI)*(T°—pI)

^el.

Theorem 1. For every operator T in 3C,

a(T) = a(T°) = p(T°).

Proof. The relations a(T) =a(T°)'Z)p(T0) have already been noted.

Suppose p is in a(T). Choose a sequence x„ in 3C such that ||x„|| = 1

and ||/x„—aix„||—>0,andset w = {*»}'• Clearly ||m|| = 1 and||r°M— pu\\2

= glim ||7x„ — ¿ix„||2 = 0, hence T°u=pu; that is, p is in p(T°).

Theorem 2. // T is any normal operator in 3C, T has an approximate

proper value p such that \p\ =\\T\\.

Proof. Without loss of generality, we may suppose ||r|| = l. If 1

is in s(T), the relation s(T)=a(T) ends the proof. Let us assume

henceforth that / — T is invertible.
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Let 5= T*T. Since ||S|| = 1, and since 5^0, it follows from the re-

marks in §1 that 1 is an approximate proper value for S. By Theorem

1, 1 is a proper value for S°. Let 9TC be the null space of S° — I, thus

yfL={v:S,)v = v}^{0}. Since TS = ST and T*S = ST*, 3H is invariant

under T° and (P0)*; thus, 9IÏ reduces T°. We denote by r°/3Tl the

restriction of T° to 911. Since S0/9ll = 7, we have (r°/91l)*(7:o/9TC)

= iT0*/m.)iT0/m.) = iT0*T0)/<3fl = S°/m = I; clearly r°/9R: is a

unitary operator in 9TC. Write U= r°/9TC. Since 7— T has an inverse

in L(3C), I—T° has an inverse in i-(X); since 9TC reduces I—T°, it

follows that 7— 77 has an inverse in 1,(911). Let R be the Cayley trans-

form of U, that is, 7? = i(7+7J)(7— U)~l; R is a Hermitian operator

in 911. Define .4 =i(7+T)(7-P)"1; clearly ¿°/9tl = 7?.

Let a be any approximate proper value for R (see §1). It is clear

from the definition that a is also an approximate proper value for A0.

By Theorem 1, there is a nonzero vector u in <P such that A°u = au.

Since ¿4° = t(7+ro)(7—P0)-1, an elementary calculation gives T°u

= ia — i)ia+i)~1u. Thus, p = ia — i)ia+i)~i belongs to piT°)=aiT°)

= ö(P), and |jLi] =1 = ||P||.
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