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Alignment of protein structures is a fundamental task in compu-
tational molecular biology. Good structural alignments can help
detect distant evolutionary relationships that are hard or impos-
sible to discern from protein sequences alone. Here, we study the
structural alignment problem as a family of optimization problems
and develop an approximate polynomial-time algorithm to solve
them. For a commonly used scoring function, the algorithm runs in
O(n10��6) time, for globular protein of length n, and it detects
alignments that score within an additive error of � from all optima.
Thus, we prove that this task is computationally feasible, although
the method that we introduce is too slow to be a useful everyday
tool. We argue that such approximate solutions are, in fact, of
greater interest than exact ones because of the noisy nature of
experimentally determined protein coordinates. The measurement
of similarity between a pair of protein structures used by our
algorithm involves the Euclidean distance between the structures
(appropriately rigidly transformed). We show that an alternative
approach, which relies on internal distance matrices, must incor-
porate sophisticated geometric ingredients if it is to guarantee
optimality and run in polynomial time. We use these observations
to visualize the scoring function for several real instances of the
problem. Our investigations yield insights on the computational
complexity of protein alignment under various scoring functions.
These insights can be used in the design of scoring functions for
which the optimum can be approximated efficiently and perhaps
in the development of efficient algorithms for the multiple struc-
tural alignment problem.

protein structural comparison � internal distances matrices

1. Introduction

A fundamental task in structural molecular biology is com-
parison of protein structures. Evolution conserves protein

structure significantly more than protein sequence. Additionally,
structural similarity often reflects a common function or origin
of proteins (1). In view of this, structural biologists have been
making intensive efforts to systematically classify all known
protein structures (2, 3), yielding structural databases such as
Structural Classification of Proteins (SCOP) (4), Families of
Structurally Similar Proteins (FSSP) (5), and CATH (6). Auto-
matic methods for structure comparison are useful for generat-
ing such databases. They also may be utilized for classifying
newly determined structures, based on similarities with previ-
ously classified structures (5). The rapid growth of the Protein
Databank (PDB) (7) underscores the need for fast and accurate
methods for structure comparison.

The ‘‘structural-alignment’’ problem is the structural analog of
the well known sequence-alignment problem. The input to the
former consists of two protein structures in three-dimensional
space, �3. The desired output is a pair of maximal substructures,
one from each protein, that exhibit the highest degree of
similarity. A sequential alignment of the two substructures yields
a sequence of residue pairs that is called a correspondence.
Typically, we simplify the model by comparing the structures
using one atom per residue, generally but not necessarily the CA
atom; this makes the unit of comparison (a CA atom) correspond

to a unit of sequence (a residue). There are two main methods
to quantify similarity. The first method computes internal dis-
tances between corresponding pairs of atoms in the two proteins
and compares these distances in the two proteins under consid-
eration. The second method uses the actual Euclidean distance
between corresponding atoms in the two proteins under com-
parison. To do this, the method must also determine the rigid
transformation that optimally positions the two structures vis-
á-vis each other.

These two methods of quantifying similarity give rise to two
approaches for solving the structural-alignment problem. Inves-
tigators subscribing to the first approach have developed heu-
ristic algorithms that compare the internal distance matrices in
search of the optimal correspondence. An advantage of these
algorithms is that they bypass the need to find an optimal rigid
transformation (e.g., refs. 8–14). The most commonly used
structural alignment server, DALI (9), belongs to this group.
Along the second approach, heuristic algorithms have been
developed to optimize the correspondence and the rigid trans-
formation simultaneously (e.g., refs. 15–22). Excellent reviews of
these and other methods can be found in refs. 3 and 23–25. A
prevailing sentiment in both research communities is that struc-
tural alignment requires exponential computational resources,
and thus, investigations should concentrate on heuristic ap-
proaches (13, 24, 26). Indeed, none of the above-mentioned
heuristics guarantees finding an optimal alignment with respect
to any scoring function.

One of the main tenets of the present work is that measure-
ments of protein coordinates are necessarily noisy, and conse-
quently, there is not much point in seeking exact solutions for the
structural-alignment problem. Rather, approximate solutions
are called for. Coordinates are merely approximations to a
‘‘true’’ position: proteins are flexible, f luctuating about a mean
position, and the physical experiment that provides the coordi-
nates is noisy (27, 28). It follows that in the proper approximate
model, the error is additive and not too small. Distinct solutions
to the structural-alignment problem that are close to the opti-
mum (depending on measurement errors) are a priori all equally
interesting. Furthermore, as noted by Zu-Kang and Sippl (29),
multiple correspondences may exist, all equally viable from the
biological perspective, and hence all are equally interesting from
the computational point of view.

In this article, we present a polynomial-time algorithm that
optimizes both the correspondences and rigid transformations (i.e.,
we operate within the second approach). Our algorithm is not
heuristic: it guarantees finding �-approximations to all solutions of
the protein structural-alignment problem. To bound the size of the
solution space, we first consider the complexity of searching
rotation and translation space. We show that it depends polyno-
mially on the lengths of the proteins, n, and on 1�� for an
approximation parameter �. On the other hand, the number of
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possible correspondences grows exponentially with the length.
Based on these observations, we suggest an algorithm for structural
alignment: search exhaustively the relatively small space of all rigid
transformations for an optimal alignment. Because the algorithm is
exhaustive, when it fails to find a good alignment, it is certain that
none exist. The contribution of this article should be viewed as
mostly theoretical rather than practical. We prove that, contrary to
common belief (13, 24, 26), finding �-approximations of the optimal
solutions is computationally feasible, albeit too slow to be a useful
everyday tool. Furthermore, our approach offers a way to visualize
the structural-alignment score as a function of all rigid transfor-
mations, which is useful for developing intuitions for better opti-
mization algorithms and heuristics. We display scores for three
examples: (i) two structures with a unique good alignment, (ii) two
structures with several good alignments, and (iii) two structures that
cannot be aligned.

Our solution applies to a broad class of interesting scoring
functions, including, most importantly, STRUCTAL (17), a com-
monly used score. It can be implemented to optimize the
STRUCTAL score in time complexity O(n10��6) for two globular
proteins with length that is at most n. We also point out some of
the difficulties involved with the (numerous) attempts to solve
the structural-alignment problem based on the internal distance
matrices of the two proteins.

We introduce the necessary terminology in section 2 and
investigate scoring functions in section 3. In section 4, we
consider the space of alignments for three specific pairs of
proteins and draw our conclusions in section 5.

2. Preliminaries
For the present article, a ‘‘protein’’ is a chain of atoms residing
in three-dimensional space. Consider a protein A of n atoms, A �
(a1, . . . , an), with ai � �3. We assume, without loss of generality,
that A is positioned with its center of mass at the origin and is
bounded by a box of dimensions XA � YA � ZA. It is known (30)
that the volume of a protein is linear in the number of its
residues, that is, XA�YA�ZA � O(n). We also let RA denote the
radius of the bounding sphere of the protein A. In the special
case of ‘‘globular’’ proteins, the size of the protein along all axis
XA, YA, ZA is O(n1/3) and RA � O(n1/3). In line with our
perspective that this is mostly a theoretical study, we use the O
notation freely. Recall the notation g(n) � O[f(n)] means at
most cf(n) for a constant c independent of n.

A ‘‘subchain’’ of protein A is a subset of its atoms, arranged
by order of appearance in A. Denote the k-long subchain defined
by P � (p1, p2, . . . , pk), where 1 � p1 � p2 � � � � � pk � n, by
A(P) � (ap1

, ap2
, . . . , apk

). A ‘‘gap’’ is two consecutive indices
pi, pi�1 such that pi � 1 � pi�1.

Consider two proteins, A of n atoms and B of m atoms, and
two subchains, P of protein A and Q of protein B; we assume,
without loss of generality, that n � m. We call two subchains P
and Q of equal length, �P� � �Q�, a ‘‘correspondence.’’ Thus, a
correspondence associates pairs of atoms from two proteins that
appear in the same position in their respective subchains. Note
that although the two complete proteins can differ in length, the
subchains cannot. In the world of protein sequences, the anal-
ogous term is alignment; at times, it is used here, too, inter-
changed with correspondence. The number of gaps in a corre-
spondence, denoted GP,Q, is the sum of the number of gaps in
P and Q.

Structural-Alignment Problem. Given two proteins A and B, find
two subchains P and Q of equal length such that

1. A(P) and B(Q) are similar, and
2. The correspondence length �P� � �Q� is maximal under

condition 1.

A protein can be rigidly transformed (i.e., rotated and trans-
lated) without affecting its inherent structure. Rotations and
translations are each specified by three parameters (31). Because
we are interested in the relative position and orientation of
the two proteins, we can hold A fixed and only transform B; the
rigidly transformed B is denoted by B̂ � (b̂1, . . . , b̂m). The
relative position and orientation of the proteins are useful for
solving the protein-alignment problem.

There are various measures of similarity, or deviation, be-
tween two subchains. Among the more commonly used are
distance root mean squared (dRMS) deviation and coordinate
root mean squared (cRMS) deviation, which we define here for
completeness.

For subchains P and Q of length k, dRMS is defined as

dRMS � � 2
k2 � k �

i�1

k�1 �
j�i�1

k

��api
� apj

� � �bqi
� bqj

��2� 1/2

,

and cRMS is defined as

cRMS � min
B̂
� 1

k �
i�1

k

�api
� b̂qi

�2� 1/2

,

where B̂ is the image of protein B under a rigid transformation.
The transformation that achieves this minimum can be found in
closed form (e.g., by using Kabsch’s procedure in ref. 32).

The general structural-alignment problem gives rise to a
family of concrete optimization problems, which are specified by
the weight given to the (preferably small) deviation of the
subchains and the (preferably large) length of the correspon-
dence. Note that cRMS and dRMS measure only deviation and,
therefore, must be complemented by a score that favors longer
correspondences. An important score that plays a key role here
is that used by STRUCTAL (17). It is closer in spirit to cRMS in
that it compares matching pairs of the correspondence and
considers the rotated and translated position of the structures.
It also penalizes for gaps in the correspondence.

STRUCTAL scoreP,Q � max
B̂

�
i�1

k 20
1 � �api

� b̂qi
�2�5

� 10 �GP,Q.

When using this score, we seek a rigid transformation and a
correspondence that achieves a maximal (rather than minimal)
value.

3. Approximate Structural Alignment
We focus on scores that evaluate the similarity of two structures
by explicitly applying a rigid transformation to one and then
comparing the transformed structure with the other. For such
scores, the optimization problem is to find transformations and
correspondences of (near) optimal score.

The polynomial-time algorithm we present calculates the
optimal score for a substantial number of rotations and trans-
lations. It then sifts through these scores to find the best ones,
i.e., the pairs (transformation and correspondence) with near
globally maximum scores. For the algorithm to run in polynomial
time, the following two conditions must hold:

1. Given a fixed transformation, it should be possible to find in
polynomial time an optimal correspondence. We elaborate on
this possibility in section 3.1.

2. The number of rigid transformations under consideration
must be bounded by a polynomial. This issue is addressed in
section 3.2.
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Next, we define guidelines that can be used in designing novel
scoring functions for structural alignment; scores that follow
these guidelines come hand in hand with a polynomial-time
algorithm that finds all near-optimal alignments. Researchers
are still far from a thorough understanding of the desirable
characteristics of scoring functions for this problem. Some
obvious interesting options that are yet to be investigated are
variable gap penalties depending on the location of the gap
within the structure (e.g., higher penalty inside a helix) and
scores that take into account sequence information.

3.1. Separability of Scoring Function. As mentioned above, we are
assuming that for a fixed rotation and translation, the optimal
correspondence can be determined in polynomial time. This
requirement strongly points to scores that can be optimized by
using dynamic programming. When applicable, a dynamic pro-
gramming algorithm finds in polynomial time an optimal solu-
tion among an exponential number of potential correspon-
dences. Score functions that are amenable to dynamic
programming must satisfy two requirements: (i) optimal sub-
structure, where the restriction of an optimal correspondence to
any substructure is itself an optimal correspondence of the
substructure, and (ii) the space of relevant subproblems is small
(polynomial). For more details, see ref. 33. Scores that satisfy
these conditions are called ‘‘separable.’’ The STRUCTAL score is
separable, and the optimal correspondence can be determined
by using dynamic programming in O(n2) time and space (17, 34).

3.2. Lipschitz Condition on Scoring Functions. Here, we provide
conditions on a scoring function under which its overall behavior
can be approximated by evaluating it only polynomially many
times. Recall that a scoring function assigns a value to every
correspondence and rotation and translation. We present a
scheme for approximating all rotations and translations with
(local) optimal correspondence that is near the global optimum.

A rigid transformation in �3 consists of a translation and a
rotation. A translation is parameterized by a vector (tx, ty, tz) in
�3. Here, it suffices to have tx, ty, tz range over [�(XA � XB)�2,
(XA � XB)�2], [�(YA � YB)�2, (YA � YB)�2], and [�(ZA �
ZB)�2, (ZA � ZB)�2], respectively (recall that XA, YA, ZA and
XB, YB, ZB are the sides of the bounding boxes of A and B). There
are many ways to parameterize the group of rotations SO(3). For
the purpose of our proofs, we represent each rotation by three
angles (r1, r2, r3) in the range [0, 2�] (31), which constitutes a
4-fold cover of SO(3). For the purpose of sampling (see section
4), we use the parametrization of rotations by means of quater-
nions (unit vectors in �4) (35): a rotation by an angle � about
the normalized vector (nx, ny, nz) is described by (nx cos ��2,
ny cos ��2, nz cos ��2, sin ��2). This representation has the
advantage that angular separation of quaternions captures the
natural metric of SO(3). In this representation, opposite points
in S3 are identified, reflecting the topology of SO(3). Equiva-
lently, it suffices to consider only half of S3.

Assume we have a correspondence between subchains P of
protein A and Q of protein B. Fix protein A in space. For every
rigid transformation of protein B, one can compute the corre-
spondence-dependent scoring (CDS) function by using the dis-
tances between corresponding atom pairs in space. We index the
real-valued CDS function by P and Q and denote it ScP,Q.

The CDS function is defined over the space of all rigid transfor-
mations. Note that there are exponentially many correspondences
and thus exponentially many CDS functions defined in this manner.
Specifically, there are �i�1

min(n,m) (i
n) (i

m) functions. In this article, we
are concerned with a scoring function of the form

F�r1, r2, r3, tx, ty, tz� � max
�P���Q�

ScP,Q�r1, r2, r3, tx, t y, t z� .

This is the upper envelope of all CDS functions (see Fig. 1).
The following lemma gives conditions on the scoring function.

When these conditions hold, it is possible to derive good
approximations of all the near-optimal maxima of the function
from only polynomially many evaluations of the function.

Definition 3.1: A CDS function ScP,Q satisfies coordinate-wise
Lipschitz conditions with values cr and ct if for all rigid trans-
formations p� � (r1, r2, r3, tx, ty, tz) and for all 	 	 0,

�ScP,Q�p� � 	 �e� r� � ScP,Q�p� � � � cr	

�ScP,Q�p� � 	 �e� t� � ScP,Q�p� � � � ct	 ,

where e�1, . . . , e�6 are the standard basis vectors in �6, e�r � {e�1,
e�2, e�3}, and e�t � {e�4, e�5, e�6}.

Lemma 3.1. Let the CDS functions satisfy coordinate-wise Lipschitz
conditions with values cr, ct. For every � 	 0, there exists a finite
set G � G(�) of rotations and translations such that

1. �G� � O(ncr
3ct

3��6), and
2. For every choice of a translation and a rotation p� , there is a point

p�G � G with �F(p�) � F(p�G)� � �.

We refer to the set G as an �-net for the scoring function.
Proof: The set G(�) is the product of six sets of equally spaced

points in each of its six dimensions. In the three dimensions of
rotations, the spacing is 	r � ��3cr; the size of the set in each
dimension of rotation is O(cr��). Similarly, in the three dimen-
sions of translation, the spacing is 	t � ��3ct, and the size of the
set is O[(WA � WB)ct��], where W � X, Y, Z, respectively.
Taking into account that a protein of n residues satisfies X�Y�Z �
O(n), the total size of G follows.

The coordinate-wise Lipschitz condition for each CDS func-
tion ScS,T implies that the same condition holds for their upper
envelope F. Given a point p� in rotation and translation space, the
nearest point p�G � G can be reached by moving at most 	r�2
along each of the three dimensions of rotation and 	t�2 along
each of the three dimensions of translation. Because F satisfies
Lipschitz condition, the change in value of F induced by each
such step is at most 	cr�2 in the first case and 	ct�2 in the latter.
Thus, the overall change is at most 3cr	r�2 � 3ct	t�2 � ��2 �
��2 � �.

Lemma 3.1 suggests the following algorithm to find all points
with near-maximal values of the scoring function F. Let M be the
global maximum of F, and call a point p� �-maximal if F(p�) �
M � �. For every point p� that is �-maximal, there is a nearby
point p�G � G with F(p�G) � F(p�) � �. We would like every
�-maximal point to be accounted for by a nearby point in G.
Given �, evaluate F on all points of G(�) defined above. Next,
select the subset of these points within 2� from the maximal

Fig. 1. A schematic view of the scoring functions, parameterized by the rigid
transformation. The (exponentially many) CDS functions are depicted in dark
gray, and their upper envelope is marked in black. We are concerned with all
solutions in the light-gray region: top values in the upper envelope.
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value found. This algorithm will guarantee finding approxima-
tions to all �-maximal points, satisfying our requirement.
3.2.1. STRUCTAL-type scores. Consider the family of STRUCTAL-type
scores,

F�r1, r2, r3, tx, ty, tz� � max
�P���Q�

�
i�1

�P� C1

C2 � �api
� bqi

�2 � C3�GP,Q ,

where C1, C2, and C3 are positive constants. In the STRUCTAL
score, they are set at C1 � 100, C2 � 5, and C3 � 10. Lemma
3.2 shows that all such functions are well behaved and thus can
be approximated by a polynomial-sized net.

STRUCTAL-type scoring functions can be approximated to
�-accuracy with a net of size O(n8��6) for globular proteins and
O(n10��6) for nonglobular ones. In particular, we show

Lemma 3.2. Any CDS function of the form

�
i�correspondence

C1

C2 � �ai � bi�2

satisfies the Lipschitz condition of Lemma 3.1 with ct � O(n) and
cr � O(n4/3) in case of globular proteins. For nonglobular proteins,
cr � O(n2).

Proof: First consider a single pair of atoms a and b and their
contribution to the scoring function. A translation of b by 	 along
any axis can change �a � b� by at most 	. A rotation of b by 	 around
any axis can change �a � b� by at most R	. The function 
(x) :�
C1�(C2 � x2) has a bounded derivative �

(x)� � M(C1, C2) � M. By
the mean-value theorem, it follows that a change of 	 in any of the
six coordinates will result in a change of at most M R	 � M	 in the
scoring function, the first term being due to rotations and the other
to translations. There are at most n contributions to a CDS function
(n is the number of atoms in the longer protein), and thus, the total
change is bounded by nMR	 from rotations and nM	 from trans-
lations. For globular structures, R � O(n1/3), and in general, R �
O(n). We have shown that the coordinate-wise Lipschitz condition
is satisfied with cr � O(n4/3) for globular proteins and cr � O(n2) for
nonglobular ones.

Altogether, finding approximations to all �-near-optimal
points for STRUCTAL-type scoring functions takes O(n10��6)
time for globular proteins, which is because of O(n8��6) evalu-
ations of the scoring function at the points of G(�), each
evaluation taking O(n2) time. More generally, our scheme is an
approximate polynomial algorithm for every separable scoring
function that requires only polynomially many evaluation points
(see Lemma 3.1). Notice that this scheme gives all near-optimal
function values rather than all near-optimal correspondence. It
would be interesting to determine whether the task of finding all
near-optimal correspondences can be solved efficiently.

3.3. A Closely Related NP-Hard Problem. Associated with every
protein chain A of n atoms is an n � n real symmetric matrix D,
where D(i, j) is the Euclidean distance in �3 between the ith and jth
atoms of A. This matrix is called ‘‘the (internal) distances matrix’’
and is invariant under rigid and mirror transformations of the
protein. The internal distances matrix that corresponds to a sub-
chain S of the protein A is the submatrix (minor) of D consisting of
the rows and columns indexed by the elements of S.

The two representations of a protein, by atomic coordinates
and by the internal-distances matrix, are of course closely
related. Calculating the distances matrix from the atomic coor-
dinates is easy (and takes quadratic time). It is also known that
the coordinates of the protein can be recovered in polynomial
time from the distances matrix by using distance geometry (36).
This calculation is possible because proteins lie in a three-

dimensional Euclidean space. The recovered atomic coordinates
are the original ones, modulo a rigid (and possibly a mirror)
transformation.

It follows that any algorithm that uses either of these two
representations can be converted into one that uses the other.
The conversion is straightforward: add a preprocessing and a
postprocessing step that translate, in polynomial time, between
representations.

The internal-distances matrix representation of proteins may
seem attractive, because it limits the search to the correspondences
without need to optimize on the rigid transformations. Methods
that use the internal-distance matrix representation directly com-
pare pairs of submatrices and optimize a measure that is derived
from dRMS deviation. When the correspondence is found, the rigid
transformation that optimally superimposes the two substructures
can be recovered with Kabsch’s procedure (32). It is generally
considered a minor problem that the final positioning and orienting
of the structures optimizes the cRMS deviation, whereas the
correspondence optimizes a different measure (dRMS).

We point out that a correct and efficient solution to the
approximate structural-alignment problem must exploit the fact
that proteins lie in three-dimensional Euclidean space. In par-
ticular, we show that a slightly generalized problem in which the
internal distances come from a general metric space (not nec-
essarily Euclidean) is NP-hard. We define a particular scoring
function to focus the discussion; a similar argument applies to
variants of this scoring function.

Intuitively, the problem is hard because all (exponentially
many) pairs of subchains are potential solutions. Notice that if
we restrict the number of gaps by a constant, there are only
polynomially many potential solutions, which substantially re-
duces the computational complexity of the problem. The
CLIQUE problem is well known to be NP-hard (37): the input
is a graph and an integer k, and the output should be either a
k-clique or, if there is no such clique, the answer ‘‘no.’’ We reduce
the CLIQUE problem to the problem at hand to demonstrate its
hardness, that is, we show how an algorithm that finds an
�-approximation to the optimal solution can be used efficiently
to solve CLIQUE.

Fig. 2. Visualization of score values for a net of discrete rotations. We model
rotations by using quaternions: each rotation is a four-dimensional vector of
unit length. We consider a net that covers the space of quaternions, or the unit
sphere S3 in �4. We use a net that is the union of nets on a discrete set of
three-dimensional spheres. For each three-dimensional sphere, we use a
Cartesian product of longitude and latitude values and plot it in two dimen-
sions. The width of the two-dimensional plot varies with the radius of its
corresponding sphere. The scores are described by using color (specific values
and colors are not shown but are shown in Figs. 3 and 4). Notice that there is
a distortion associated with this display, especially around the poles. Two
spheres, overlaid with their net points and their corresponding two-
dimensional plots, are shown.
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Lemma 3.3. Let DA, DB be distance matrices of two metric spaces (think
of them as the internal-distance matrices of chains A and B). Let the
score of two subchains P and Q, of equal length �P� � �Q� � k, be

ScP,Q � �
i�1

k �
j�1, j�i

k

2��1 � 
DA�pi, pj� � DB�qi, qj��
2� .

For every 0 � � � 1, it is NP-hard to find subchains that are within
� from the optimal score.

Proof: Given a graph G � (V, E), �V� � n we ‘‘construct’’ two
chain structures and use the algorithm for finding correspon-
dences of near-optimal scores. The first structure, denoted SA,
has n ‘‘atoms’’ and encodes the graph G: each vertex is associated
with an atom (using some ordering), and the distance between
two atoms is the length of a shortest path in G between the two
corresponding vertices. The internal-distances matrix associated
with this structure is an n � n matrix DA, where DA(i, j) is the
length of the shortest path from vi to vj. The second structure,
denoted SB, has k ‘‘atoms;’’ it encodes a clique of size k. The
internal-distances matrix in this case, denoted DB, has zeros on
the diagonal and ones elsewhere. If the score is strictly 	2(k2 �
k) � 1, return the subset of SA (a k-clique); otherwise, return
‘‘no.’’ Because SB has k atoms, the score is a sum of at most k2 �
k terms. Also, the distances are integers, which restricts the
possible values of the terms in the sum; 2 and 1 are the two largest
values. Thus, if a good score is found, it is �2(k2 � k). This
optimal value is achieved when a k-clique in SA is found;
otherwise, there is clearly no k-clique.

An algorithm that solves the approximate structural-
alignment problem by using only the metric properties (and not
the fact that it is a three-dimensional Euclidean metric) also
solves the above generalized problem. Thus, such an algorithm
either fails to find optimal approximations or it is inefficient (or
that P � NP, which generally is viewed as unlikely).

To summarize, the problem in finding good correspondences is

that there are (exponentially) many potential candidates. The
number of possibilities can be greatly reduced because the struc-
tures lie in three-dimensional Euclidean space and the scores are
separable. However, if these restrictions are removed, an exponen-
tial blow-up in computational complexity seems unavoidable.

4. Results
We examine the properties of the STRUCTAL score for structural
alignment of various pairs of proteins; we focus on the domain
of rotations while optimizing the translation parameters. By the
observations discussed above, it suffices to calculate the STRUC-
TAL score on a net in the space of transformations. Let R be a
net for the space of rotations, T a net for translations, and R �
T a net for all rigid transformations. Ideally, we would like to
visualize the STRUCTAL score over R � T to determine all (near)
maxima. Visualizing a function of six parameters is, of course,
very hard. We thus focus our attention on the three-dimensional
space of rotations and define

STT�r1, r2, r3� � max
�tx,ty, tz��T


STRUCTAL�r1, r2, r3, tx, t y, t z�� .

The advantage of focusing on STT is that it can be visualized; the
disadvantage is that multiple maxima due to translation changes
alone are hidden.

To reduce the time for exploring the scoring function over the
space of rotations, we heuristically calculate the maximum over
a smaller set of translations, denoted T(ot). T(ot) is the set of
translations that position an atom from protein A exactly on top
of an atom from protein B, �T(ot)� � O(nm). This heuristic
speeds up the calculation by a factor of O(n2). The sets T and
T(ot) are different; the maximum over T can be higher or lower
than the maximum over T(ot). However, we assume that the best
translation in T positions at least one atom from A on top of (or
close to) an atom from B, implying that STT(ot) and STT

reasonably approximate each other. In the supporting informa-
tion, which is published on the PNAS web site, we show a

Fig. 3. Example of a pair of structures with a single meaningful alignment. We plot the STT(ot) score for aligning 5rxn (54 residues) and 1brf (53 residues) over
the space of rotations. These proteins have the same SCOP fold classification, rubredoxin-like, and each has three �-strands and three helices. The STT(ot) score
function has a single maximum, implying one meaningful way of aligning the pair. The maximal score found is 993, aligning 53 residues to 0.797 Å cRMS.

Fig. 4. Example of a pair of structures with two meaningful alignments [this example was noted by Zu-Kang and Sippl (29)]. We plot the STT(ot) score for aligning
1mjc (69 residues) and 1shf (59 residues). The two maxima can be seen clearly, as can additional, less significant maxima. One of the two best alignments scores
458, aligning 41 residues to 2.89 Å cRMS; the other scores 454, aligning 38 residues to 2.52 Å cRMS. These proteins are of the same SCOP class, all-�, and a different
SCOP fold (OB and SH3-like barrel, respectively).
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comparison of the values of STT and STT(ot) for 1,000 random
rotations and demonstrate that the two scores indeed approxi-
mate each other well.

We parameterize the group of rotations by using quaternions
(35). Notice that a Cartesian product of longitude and latitude
nets is a net for a sphere S2 in R3. Here, we use a longitude net
that is uniformly spaced and a latitude net that uniformly spaces
its cosine values. This net can be visualized in the plane by
placing the longitude values along the x axis and the latitude
values along the y axis. Note that unlike the sphere, this display
does not show the wrapping around of the longitude values; it
also has a distortion around the poles. Fig. 2 shows examples of
three-dimensional spheres, overlayed with their net points and a
planar layout of the nets. The two-dimensional spheres can be
sampled more efficiently (e.g., ref. 38); our sampling scheme
allows easy planar visualization of the score function values on
the spheres.

We visualize the function STT(ot) for specific pairs of proteins
by using short videos. The position in the frame sequence serves
as an additional dimension (aside of the two planar coordinates).
The data figures show an (ordered) subset of the video frames.
The full videos are available in supporting information. Denote
a unit quaternion in �4 by q� � (x, y, z, w) (�q� � 1). The set of
unit quaternions of a fixed w is a sphere S2 in R3 of radius
�1 � w2. Each frame in the video has a fixed w value, which
determines the width and position of the frame in the sequence.
Because we are concerned only with half of S3, w is equally
spaced in the interval [�1, 0]. Varying w, we place a net on the
corresponding sphere and evaluate the scoring function at all net
points. Then, the score values are visualized in the plane as
described above by using a color scale ranging from blue (low)
to red (high). The number of points on a net varies with the area
that it covers, totaling in �106 points.

We examine three types of behaviors of the STRUCTAL-scoring
function when aligning pairs of proteins. Fig. 3 shows the score
when considering two proteins with a single meaningful maxi-
mum: 5rxn and 1brf (SCOP fold classification rubredoxin-like).
This figure shows a clear, single, high-scored maximum yielding
a good alignment. Fig. 4 shows the scoring function for two
proteins with several meaningful maxima: 1mjc and 1shf-a
(SCOP fold OB and SH3-like barrel, respectively). This example
is listed in the work of Zu-Kang and Sippl (29). A closer
examination of the different maxima in Fig. 4 shows that the

multiple high-scoring orientations are because of an internal
symmetry in the structures 1mjc and 1shf-a; these alignments
(sequences and superpositioning of the structures) are given in
supporting information. This symmetry, coupled with the two
structures being fairly similar to each other, accounts for the
multiple orientations that position many atoms from one struc-
ture near corresponding atoms from the other. Last, we plot
(shown in supporting information) the scores when aligning two
structurally different proteins: 1jjd and 1dme (both SCOP fold
metallotheionein). In this case, there are only rotations with low
scoring alignments, proving that there are no good alignments.

5. Conclusions
We have presented a polynomial scheme for protein structural
alignment. Exploring the space of rigid transformations solves
this problem efficiently, because it exploits the fact that proteins
reside in a three-dimensional Euclidean space. It seems unclear
how to incorporate this crucial information if one phrases the
problem through internal-distances matrices. Unless three-
dimensionality is taken into account, the problem becomes
significantly harder (NP-hard). We found sufficient conditions
for a scoring function such that all optima can be found in
polynomial time. Devising novel scoring functions that detect
biologically significant substructures is still an open area of
research.

Experiments with the STRUCTAL-scoring function on several
pairs of proteins suggest that this scoring function is ‘‘well
behaved’’ on the domain of rotations. Studying the landscape of
various scoring functions can prove valuable for the purpose of
developing robust and efficient tools for structural alignment.

Note that an immediate extension of this algorithm solves
multiple structural alignment. Namely, sampling the space of
rigid transformations and finding the maximum by using dy-
namic programming can find all approximate global maxima of
the upper envelope of the CDS functions. For a fixed, small
number of globular proteins, it is a polynomial algorithm [e.g.,
for three globular proteins, it takes O(n19��12) time]. Multiple
structural alignment is a wide open problem, and although the
direct extension has prohibitive running time, the analysis de-
scribed in this article offers a means of tackling it.
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