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1 Introduction

Some of the most fundamental questions in theoretical physics are related to the observa-

tion of huge hierarchies in Nature. According to the traditional criteria [1], such hierarchies

are “natural” if they are a consequence of an approximate symmetry. Low-energy super-

symmetry provides an explanation for the stability, but not the origin, of the hierarchy

between the electroweak scale and the GUT or Planck scale. To also explain its origin

one should find a reason why the scale of supersymmetry breakdown is so much smaller

than the fundamental scale. In Minkowski vacua, with gravity-mediated supersymmetry

breaking, superpartner masses are of the order of the gravitino mass m3/2. This in turn

is essentially given by the vacuum expectation value (VEV) of the superpotential W . For

supersymmetry to stabilize the electroweak hierarchy, 〈W 〉 should be of the order of a TeV,

or about 10−15 in Planck units.
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A conventional strategy to obtain vacuum solutions with small supersymmetry break-

ing (and cosmological constant zero) in a given model is to identify field configurations

in which 〈W 〉 completely vanishes at the perturbative level. A suppressed 〈W 〉 and su-

persymmetry breaking should then be obtained from non-perturbative effects. This has

the appealing feature that the scale of supersymmetry breakdown is set by dimensional

transmutation [2], and is thus naturally small.

Recently it has been argued that the hierarchy between the fundamental and the

supersymmetry breaking scale might also be due to an approximate U(1)R symmetry.

Approximate U(1)R symmetries appear naturally in the low-energy effective field theories

of heterotic string compactifications on orbifolds. They may explain a highly suppressed

〈W 〉 in settings in which the typical VEVs of the relevant fields are only somewhat below

the fundamental scale [3].

In any case, even if hierarchically small soft masses are explained, the minimal super-

symmetric extension of the standard model, the MSSM, still suffers from the so-called µ

problem. That is, the coefficient µ of the Higgs bilinear coupling µ Hu Hd has to be of the

order of the soft masses as well, in order to give rise to a reasonable phenomenology. There

are various proposals to solve this problem [4, 5].

The main point of this study is to show that approximate R-symmetries have the

potential to solve both these problems simultaneously. A U(1)R symmetry, under which

Hu Hd is neutral, forbids both the µ term and any non-trivial 〈W 〉. If U(1)R is merely

an approximate symmetry, 〈W 〉 can be viewed as an order parameter for U(1)R breaking,

setting consequently also the size of the µ term. Hence, a µ term of the order of the

gravitino mass m3/2 can be explained by an approximate R-symmetry. We explore this

relation both in the context of field theory and string-derived MSSM models.

This paper is organized as follows. In section 2 we recollect some basic facts on

supersymmetric ground states and explain how an (approximate) R-symmetry allows us

to control the VEV of the superpotential. In section 3 we discuss how an R-symmetry

can relate the µ term to m3/2 in field-theoretic examples with generic superpotentials.

Section 4 is devoted to a discussion of solutions of the µ problem in string-derived models.

Section 5 contains a collection of example models in which approximate R-symmetries lead

to suppressed superpotential VEVs. Finally, section 6 contains our conclusions.

2 Supersymmetric ground states

2.1 Trivial vs. non-trivial field configurations

Consider a 4D N = 1 supergravity theory with chiral superfields Φi (1 ≤ i ≤ M), which

could, for instance, arise as the low-energy effective field theory governing the massless

spectrum of some string compactification. The scalar potential is given by

V = eK
(
DiW D̄W Ki̄ − 3|W |2

)
. (2.1)

Here we ignore possible contributions of D-terms and follow the usual notation conventions:

K is the Kähler potential, Di = ∂i + (∂iK) is the Kähler-covariant derivative with respect
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to the superfield Φi, and Ki̄ is the inverse Kähler metric. We work in units where the

Planck scale is set to unity, MP = 1.

To account for supersymmetry breaking and an (almost) vanishing cosmological con-

stant, one should find systems in which both terms in the parentheses in equation (2.1)

are nonzero and (almost) cancel each other. Furthermore, in order to solve the gauge

hierarchy problem of the standard model (SM), one is lead to consider settings in which

〈W 〉 ∼ 10−15, such that the gravitino mass is at the TeV scale.

In string-derived models, calculating the full scalar potential is usually impossible for

practical purposes. Even in the relatively simple setting of orbifold compactifications,

computing higher-order superpotential coefficients tends to be fairly cumbersome, and the

number of fields entering the scalar potential (2.1) is typically of the order of dozens or

hundreds. For these reasons it is usually not feasible to analytically minimize the full scalar

potential. However, often one is only interested in the low-energy physics appearing from

the expansion about some vacuum. A good strategy is therefore to make an ansatz for a

vacuum configuration, defined by a set of fields with non-vanishing VEVs, with the help

of string selection rules and phenomenological considerations. One should then show a

posteriori that this choice is self-consistent. The properties of the model which one may

deduce from this ansatz should, of course, not depend too sensitively on the specific values

of the coefficients.

In the traditional approach, one would seek configurations in which DiW and W

vanish at the perturbative level, leading to a supersymmetric Minkowski vacuum. To be

more specific, let us briefly discuss an example. In [6] a heterotic orbifold model (with the

precise chiral spectrum of the MSSM) was discussed, in which the potential for SM singlets

from the second and fourth twisted sectors is F - and D-flat to all orders in perturbation

theory. This is because any allowed superpotential coupling involves at least two other

fields, such that W as well as ∂aW vanish (where a runs over the SM singlets from the

second and fourth twisted sectors). Hence the scalar potential (2.1) equals zero. That is,

the system that emerges by setting all other fields to zero has, at the perturbative level, a

supersymmetric Minkowski ground state, but also a huge moduli space.

Let us now look instead at systems where all fields enter a non-trivial superpotential.

These emerge, for instance, if one switches on other fields in the above model. An immediate

objection against such systems is that, in order to obtain a small gravitino mass, one has

to satisfy

DiW ≪ 1 and 〈W 〉 ≪ 1 (2.2)

simultaneously, which constitutes M + 1 constraints for M fields Φi. In other words, one

might expect that for solutions of DiW ≪ 1, which can be chosen such that the D-terms

vanish (cf. [7]), one would always obtain 〈W 〉 of order one. However, while this argument

certainly applies for completely generic superpotentials, it is not true in the presence of an

approximate U(1)R symmetry. In this case, one obtains [3]

〈W 〉 ∼ 〈Φ〉N , (2.3)

where 〈Φ〉 denotes the typical VEV scale of the Φi fields and N is the order at which the

approximate U(1)R is explicitly broken in W . If 〈Φ〉 is slightly suppressed against the
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fundamental scale and N is sufficiently large, 〈W 〉 can be hierarchically small and induce

a gravitino mass in the TeV range. In other words, a mild hierarchy between 〈Φ〉 and the

fundamental scale is power-law enhanced in the presence of an approximate R-symmetry,

very similarly to the well-known Froggatt-Nielsen scheme [8]. In such settings one often

finds that all Φi fields attain masses, with the would-be R-axion gaining a mass of the

order W /〈Φ〉2. In particular, one obtains point-like vacuum configurations, i.e. vacua with

dimension zero moduli space, where a hierarchically small gravitino mass is explained by

an approximate, perturbative symmetry (rather than by non-perturbative effects).

2.2 Supersymmetric Minkowski vacua as a consequence of U(1)R

Let us review the derivation of equation (2.3) in a way which slightly differs from the one

in [3]. Consider first a globally supersymmetric model of chiral superfields which has an

exact U(1)R symmetry. Then, in a supersymmetric vacuum, the expectation value of the

superpotential vanishes: since the R-charges ri in each term of W add up to 2, W is a

weighted homogeneous polynomial in the fields satisfying

2W =
∑

i

ri Φi ∂iW . (2.4)

In supersymmetric vacua the ∂iW vanish, and therefore 〈W 〉 = 0.

For a model with an exact U(1)R symmetry, a critical point of the superpotential

necessarily also represents a supersymmetric vacuum in supergravity: ∂iW = 0 and W = 0

imply DiW = 0. This is irrespective of whether or not the corresponding field configuration

represents a physical vacuum of some globally supersymmetric effective theory, obtained by

decoupling Planck-scale physics. (In fact, in concrete string-derived models, critical points

of W often arise from the interplay of higher-dimensional operators suppressed by powers

of MP, and thus disappear in the limit MP → ∞.)

Not all supersymmetric vacua in supergravity have W = 0. Vanishing F -terms imply

∂iW = −W ∂iK, so that equation (2.4) becomes

2W = −W

∑

i

ri Φi ∂iK . (2.5)

This means that either 〈W 〉 = 0 as above, or
∑

i riΦi∂iK = −2 in the vacuum. In the

following we will only consider supergravity vacua of the former type, that is with 〈W 〉 = 0,

obtained from critical points of the superpotential.

In settings with a U(1)R symmetry, the existence of supersymmetric but R-breaking

vacua is by itself non-trivial (see, for instance, [9]), and will be discussed in what follows.

2.3 A note on supersymmetric vacua with broken R-symmetry

It is sometimes claimed in the literature that spontaneously broken R-symmetry in generic

models implies broken supersymmetry (as part of the “Nelson-Seiberg theorem” [9]). More

precisely, for globally supersymmetric models1 of chiral superfields with generic superpo-

tentials, the claim is that

1In this section we work in global supersymmetry, but the arguments carry over to supergravity in a

straightforward way.
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(i) if the model admits a supersymmetry-breaking global vacuum, then it possesses an

exact U(1)R symmetry (which may be broken or unbroken in the vacuum);

(ii) if the model possesses an exact U(1)R symmetry and a global vacuum in which it is

spontaneously broken, then the vacuum also breaks supersymmetry spontaneously.

The cause for concern here is the second statement, since we are relying on models with

supersymmetric vacua in which R-symmetry is spontaneously broken.

However, there is a loophole in the Nelson-Seiberg argument, which can be used to

construct counterexamples [10]. Let us recall how the Nelson-Seiberg argument works:

assume there are N chiral superfields Φi with R-charges ri, normalized such that W carries

R-charge 2. Assume that ΦN breaks R-symmetry, so 〈ΦN 〉 6= 0 and rN 6= 0. Write W as

W = Φ
2/rN

N f
(
Φ̃1, . . . , Φ̃N−1

)
, (2.6)

where the Φ̃j are chiral superfields constructed from ΦN and from the other Φj =

Φ1, . . . ,ΦN−1 as

Φ̃j = Φj Φ
−rj/rN

N . (2.7)

The conditions for unbroken supersymmetry are, using that ΦN 6= 0 and rN 6= 0 by

assumption,

0 =
∂W

∂Φj
= Φ

2/rN

N

N−1∑

k=1

∂f

∂Φ̃k

∂Φ̃k

∂Φj
= Φ

(2−rj)/rN

N

∂f

∂Φ̃j

(j = 1, . . . , N − 1) , (2.8a)

0 =
∂W

∂ΦN
=

2

rN
Φ

2/rN−1
N f + Φ

2/rN

N

N−1∑

j=1

∂f

∂Φ̃j

Φj

(
− rj

rN

)
Φ
−rj/rN−1
N (2.8b)

which is equivalent to

f = 0 and
∂f

∂Φ̃j

= 0 . (2.9)

These are N equations in the N − 1 variables Φ̃j and thus do not have a solution if f is a

generic function. Therefore there is either no vacuum, or supersymmetry is spontaneously

broken.

The loophole is now that f is not necessarily generic even if W is. For example, if rN

is not an integer fraction of 2, a constant term in f is not allowed even though it could well

be formally compatible with all symmetries, because it would represent a non-polynomial

piece in the superpotential. Clearly, it is sufficient that f is at least quadratic in the

Φ̃i fields; then equations (2.8) are always satisfied at Φ̃i = 0. Such f can be obtained

in effective theories where all massive modes are integrated out and the superpotential

W starts with cubic terms; examples for such systems include the effective supergravity

description of orbifold compactifications.

A simple example where it is possible to see explicitly how the argument fails has three

chiral superfields X, Y , Z with the R-charges rX = 3, rY = 1 and rZ = −2. The most

general superpotential compatible with these charge assignments is

W = Y 2 + X Y Z + X2 Z2 + Y 4 Z + (terms of order 6 and higher) . (2.10)
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We have set all coefficients to 1, because their values are irrelevant to the argument as long

as they are nonzero. Note that the R-charges are unambiguously fixed by the first four

leading-order terms which we have explicitly written: the quadratic term fixes rY = 1, the

quintic term then fixes rZ = −2, and the other two fix rX = 3.

Neglecting the higher-order terms, the F -term equations read

FX : Y Z + 2X Z2 = 0 , (2.11a)

FY : 2Y + X Z + 4Y 3Z = 0 , (2.11b)

FZ : X Y + 2X2 Z + Y 4 = 0 . (2.11c)

They are solved by Y = Z = 0, with X a flat direction.2 Along this flat direction, at any

point X 6= 0, R-symmetry is spontaneously broken while SUSY is preserved. In fact any

vacuum with unbroken supersymmetry but spontaneously broken R-symmetry must have a

supersymmetric flat direction, because the potential must accommodate a Goldstone boson

and its complex partner.

This solution remains unchanged when one takes into account higher-order terms in

W , since these must be at least quadratic in Z and hence give contributions to the F -term

equations which are at least linear, vanishing at Z = 0.

Following the procedure from the previous section, we can write the superpotential as

W = X2/3
(
Ỹ 2 + Ỹ Z̃ + Z̃2 + Ỹ 4Z̃

)
. (2.12)

Here Ỹ = Y X−1/3 and Z̃ = Z X2/3. The term in brackets (f in the above notation) is

now not a generic polynomial — for instance it is missing a constant term, because this

would correspond to a non-polynomial X2/3 term in W .

2.4 U(1)R breaking at higher order

Having seen that also in the presence of a U(1)R symmetry there can be supersymmetric

solutions with nontrivial VEVs, we now turn to discuss the impact of higher order, explicit

U(1)R breaking superpotential terms.

We are interested in a critical point of the exactly U(1)R-symmetric W in which all field

VEVs are at least slightly below the Planck scale, 〈Φi〉 < 1. Adding explicit R-breaking

terms of some high order & N in the fields should shift the original expectation values by

a small amount ǫ.

More precisely, in the exactly U(1)R symmetric case there is a flat direction in field

space, which is the curve parameterizing the VEV of the R-axion. Adding explicit R-

breaking terms should lead to an isolated vacuum at a distance ǫ from this curve. If the

field expectation values before R-breaking were somewhat small near the new vacuum, it

is self-consistent to take ǫ small as well, provided N is sufficiently large.

Assuming for simplicity that the original expectation values are all of roughly the

same size, we can estimate the magnitude of ǫ. Let us write W as the sum of an exactly

2They are also solved by X = Y = 0, with Z a flat direction, a case which can be discussed completely

analogously. There are no further solutions.
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R-symmetric lower-order part W0 and an R-breaking order-N piece ∆W ,

W = W0 + ∆W . (2.13)

A supersymmetric vacuum for the R-symmetric truncation W0 at Φ0 has ∂iW0(Φ
0) =

0, W0(Φ
0) = 0, and DiW0(Φ

0) = 0. If it shifts by ǫ with the full superpotential, and

supersymmetry is preserved, then

0 = DiW

∣∣∣
Φ0+ǫ

= DiW

∣∣∣
Φ0

+ ∂jDiW

∣∣∣
Φ0

ǫj + ∂̄DiW

∣∣∣
Φ0

ǫ̄ + O(|ǫ|2)

= DiW0

∣∣∣
Φ0

+ Di(∆W )
∣∣∣
Φ0

+ ∂jDiW0

∣∣∣
Φ0

ǫj + ∂̄DiW0

∣∣∣
Φ0

ǫ̄ + O
(
|ǫ|2, |∆W ǫ|

)

= Di(∆W )
∣∣∣
Φ0

+ ∂j∂iW0

∣∣∣
Φ0

ǫj + O
(
|ǫ|2, |∆W ǫ|

)
. (2.14)

If 〈Φ〉 is a typical VEV, then 〈∂j∂iW0〉 ∼ 〈Φ〉 for superpotentials W0 which start at cubic

order in the fields (as in models which describe the massless degrees of freedom of some

string compactification), and 〈Di(∆W )〉 ∼ 〈Φ〉N−1. We obtain the estimate

ǫ ∼ 〈Φ〉N−2 . (2.15)

This shift will cause the terms in W0 to contribute to a non-vanishing superpotential expec-

tation value of the order 〈W0〉 ∼ 〈Φ〉N . The R-breaking term ∆W itself will also directly

induce a superpotential expectation value of the same order. The resulting 〈W 〉 ∼ 〈Φ〉N
can be hierarchically small even if 〈Φ〉 is only moderately small but N is large.

Let us stress that the above is a very rough estimate whose details can easily change,

depending on the model. However, it should be clear that with our basic assumptions

(sub-Planckian field VEVs and an R-breaking term of higher order) the essential result

will remain the same, namely, there is a hierarchically suppressed 〈W 〉. We will discuss

explicit examples in section 5.

A higher-order R-breaking term turns the formerly Minkowski vacuum into an AdS

vacuum; since the induced 〈W 〉 is hierarchically small, this translates directly into the

smallness of the AdS vacuum energy. Additional (possibly non-perturbative) dynamics

should then break supersymmetry to yield an “F -term uplift” of the AdS vacuum to a

local Minkowski or dS minimum of the scalar potential (see e.g. [11–13]). Since in such

constructions the uplifting sector does not significantly change 〈W 〉, the gravitino mass in

the uplifted model will be given by the pre-uplift 〈W 〉 and can thus naturally be of the

order of a TeV.

Models which do not rely on a separate uplifting sector are also conceivable. Consider,

for instance, a Kähler potential of the form [14, section 4]

K = −3 ln
(
T + T − h(Cα, C β̄)

)
+ K̃(Sn, Sm) . (2.16)

Here T is the usual Kähler modulus, of which the perturbative superpotential is indepen-

dent, and Cα and Sn are chiral superfields. The scalar potential is

V =
e

eK

(T + T − h)3

(
∂αW ∂β̄W hαβ̄

(
T + T − h

3

)
+ DnW DmW K̃nm

)
, (2.17)
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where hαβ̄ denotes the matrix inverse of ∂α∂β̄h. Assuming the T modulus to be stabilized,

stationary points of V occur at

∂αW = DnW = 0 . (2.18)

These stationary points are, in general, not supersymmetric, and they come with vanishing

vacuum energy (at least at the tree level). Evidently, if W is suppressed at a point where

∂αW = ∂nW = 0 due to an approximate R-symmetry, then it will be of the same order in

the nearby vacuum (2.18).

These considerations indicate that one might ultimately even obtain an understanding

of the smallness of the vacuum energy. Approximate U(1)R symmetries indeed allow us

to control the vacuum energy, although not to the level needed to explain the observed

cosmological constant.

Having outlined the general picture, we now turn to particular classes of models in

which an approximate R-symmetry is useful to solve the µ problem.

3 Approximate R-symmetry and the µ term

3.1 The effective µ term

In the MSSM there is a single dimensionful parameter at the supersymmetric level: the

Higgsino mass µ. In any model which UV-completes the MSSM at the GUT scale or

at the Planck scale, one would naively expect µ to be either zero or of the order of the

UV-completion scale. Vanishing µ is ruled out experimentally since massless Higgsinos

would be in conflict with direct search limits. A µ parameter significantly larger than the

soft SUSY-breaking Higgs masses, on the other hand, would require excessive fine-tuning

to obtain the correct Z mass. This in turn would spoil one of the main motivations for

low-energy supersymmetry.

To solve this so-called “µ problem”, one should find a mechanism connecting µ with the

scale of supersymmetry breaking. It should naturally give a µ parameter of the order of the

gravitino mass m3/2, which sets the scale for the soft masses. There are some well-known

proposals on how to obtain a µ term of the correct size,

1. from the superpotential [4], or

2. from the Kähler potential [5].

Consider a supersymmetric extension of the MSSM by a number of chiral superfields

Φi, which could represent e.g. string moduli or some general hidden sector fields. Let us

for the moment ignore MSSM matter fields, since they will couple to the Higgs fields only

by Yukawa terms, and thus be irrelevant for the Higgs potential (the coupling between

the up-type Higgs and lepton doublets can be forbidden by matter parity). The Kähler

potential and superpotential read, in an expansion up to quadratic order in the Higgs fields,

K = K + Yu |Hu|2 + Yd |Hd|2 + (Z Hu Hd + h.c.) + . . . , (3.1a)

W = W0 + µ̂ Hu Hd + . . . , (3.1b)

– 8 –
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where K, Yu,d, Z, W0 and µ̂ are functions of the Φi (K and Yu,d are real, while W0 and µ̂

are holomorphic). We are assuming that none of the Φi carries the same quantum numbers

as either Hu or Hd.

Let us take 〈W0〉 to be real for convenience. The effective µ parameter is then given by

µ = (YuYd)
−1/2

(
e

K

2 W0 Z − F
ı̄ ∂Z
∂Φ

ı̄ + e
K

2 µ̂

)
, (3.2)

evaluated in the vacuum, with F
ı̄
= −eK/2Kjı̄DjW . On the r.h.s. of equation (3.2) there

are three contributions to µ with different origins. The first term is exactly the gravitino

mass, up to a prefactor Z/
√YuYd which is generically of order one. The second, “Giudice-

Masiero”-type term [5] is likewise expected to be of the correct order of magnitude since

it is essentially given by F -terms. The µ̂ term, on the other hand, is a priori not related to

SUSY breaking and can give a large contribution of the order of the fundamental scale.3

Assume now that the Higgs bilinear Hu Hd is a singlet under all symmetries dictating

the structure of W .

The superpotential is then of the form

W =
∑

a

ca Ma(Φi) + Hu Hd

∑

a

c′a Ma(Φi) + . . . , (3.3)

i.e. W0 and µ̂ are given by

W0 =
∑

a

ca Ma(Φi) , (3.4a)

µ̂ =
∑

a

c′a Ma(Φi) . (3.4b)

Here the Ma(Φi) are normalized monomials in the Φi. They are singlets under all selection

rules except R-symmetry. The ca and c′a are numerical coefficients.

There are now two possibilities to explain why µ̂ has the correct size:

1. The couplings ca and c′a may coincide up to a common factor λ of order one, so

µ̂ = λW0 [15]. If, furthermore, W0 is of the order of a TeV in the vacuum (for

instance, because of an approximate R-symmetry), then the same is true for µ. Such

models appear naturally in heterotic orbifold constructions; they will be discussed in

section 4.

2. The couplings ca and c′a may be completely uncorrelated, but the superpotential may

be subject to an approximate R-symmetry. As we have shown, in that case 〈W 〉
is naturally suppressed. In what follows, we will show that, for generic ca, this is

3K and W are defined only up to Kähler-Weyl transformations, with physical quantities depending only

on the invariant G-function G = K + ln |W |2. This is why it is always possible to absorb the bµ term into

the Kähler potential, working with the quantities eK = K + f + f̄ and fW = W e−f , where f = bµ Hu Hd/W0.

This, of course, does not solve the µ problem but merely obscures it: in expanding the transformed Kähler

potential eK as in equation (3.1), Z will now pick up a contribution ∼ bµ/W0. Therefore, if W0 is small, Z

grows large and the µ parameter resulting from equation (3.2) remains of the order of the fundamental scale.
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due to each Ma individually being small in the vacuum (rather than due to large

cancellations between different terms in equation (3.4a)). Therefore also µ will be

naturally suppressed and of the correct order of magnitude.

3.2 Models with generic superpotential coefficients

Consider a superpotential as in equation (3.3). Suppose W is “generic” in the following

sense: there is a set of continuous or discrete symmetries under which the fields transform,

and only the terms allowed by these symmetries appear in W , with no fine-tuned coeffi-

cients. We stress that if the superpotential coefficients are correlated in some manner, or

if some of them accidentally vanish, then the arguments to follow must be modified. This

can naturally happen if the model is subject to certain continuous or discrete non-Abelian

symmetries, in which case one is to apply the subsequent analysis to invariants of such

symmetries rather than the elementary fields.

If there is an exact (for now) U(1)R acting on the Φi, with Hu and Hd uncharged, then

〈W 〉 = 0 as shown before. At this stage it appears to be possible that this is achieved by

a cancellation of various non-zero terms in equation (3.4a). Then µ̂, by equation (3.4b),

would give an effective contribution to µ of the order MP (or slightly smaller if the Φi

expectation values are slightly smaller) since the c′a are arbitrary by assumption.

We will now show that there is in fact no such cancellation for generic superpotentials.

Generic U(1)R-symmetric superpotentials vanish term by term, i.e. monomial by monomial,

in their supersymmetric vacua. The proof proceeds as follows (see also [16]): write W as

a sum of monomials Ma,

W =
∑

a

c0
aMa (3.5)

for some generic set of coefficients c0 = (c0
a). Suppose that there is a solution to the F -term

equations at Φ0 = (Φ0
i ):

∂W

∂Φi
(Φ0

1, . . . ,Φ
0
N ) = 0 ∀ i . (3.6)

Now for each c in some open neighbourhood U of c0 in the space of coefficients, we can

construct a corresponding superpotential W =
∑

caMa. By genericity of c0 we can choose

U such that there exists a collection of solutions
(
Φ0

1(c), . . . ,Φ
0
N (c)

)
to the respective F -

term equations which smoothly depends on c. Since each W vanishes in its supersymmetric

vacua, W vanishes identically on U when regarded as a function of c via

W (c) = W
(
Φ0

1(c), . . . ,Φ
0
N (c); c

)
. (3.7)

Hence

0 =
dW

dca
=

[
Ma +

∑

i

∂W

∂Φi

∂Φi

∂ca

]

(Φ0
1(c),...,Φ

0
N

(c))

= Ma

(
Φ0

1(c), . . . ,Φ
0
N (c)

)
, (3.8)

which proves the assertion.

To return to the µ problem, we have shown that, as long as the superpotential is generic

and U(1)R-symmetric, all Ma in equation (3.3) vanish in a supersymmetric vacuum. This
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implies that the potentially dangerous contribution µ̂ to the µ parameter in equation (3.2)

also vanishes. Introducing a higher-order R-breaking term, which induces a superpotential

expectation value 〈W 〉 ∼ m3/2, will also induce a µ̂ term of the same order of magnitude,

and thus give a µ parameter of the correct size.

4 The µ term in string-derived models

Recently explicit string-derived models with approximate R-symmetries have been obtained

in which the combination Hu Hd is a singlet w.r.t. all symmetries [17]. By the arguments of

the previous section, µ would then be of the order of the gravitino mass if the superpotential

couplings were generic and uncorrelated.

On the other hand, it is not really clear if arguments based on ‘genericity’ can be

applied to string models, where coupling strengths are calculable and satisfy highly non-

trivial consistency criteria. Yet the µ problem is solved in certain settings because the

superpotential exhibits a non-trivial structure, which relates the coupling coefficients.

The question of µ terms in string-derived models has been analyzed in the past in the

context of orbifold compactifications of the heterotic string, and it has been found that,

indeed, scenarios incorporating a solution to the µ problem exist (although concrete models

have not been presented). According to our classification in section 3.1, these scenarios fall

into two classes:

1. µ from the superpotential [15];

2. µ from the Kähler potential [18, 19].

In what follows we will show that both scenarios are related, at least in certain explicit

string-derived models.

Both 1 and 2 require that the pair Hu Hd be vector-like (not only w.r.t. the standard

model gauge group GSM = SU(3)C×SU(2)L×U(1)Y , but also w.r.t. all other symmetries).

Further, for the second scenario (2) to work, the Higgs pair has to come from the untwisted

sector, specifically from an orbifold plane with Z2 symmetry. In what follows we will briefly

review both scenarios and show that both emerge automatically and simultaneously from

a subset of the MSSM models of the heterotic Mini-Landscape [17, 20].

Scenario 1 requires the superpotential to be of the form mentioned in point (i) of

section 3.1 [15]

W = W0 + λW0 Hu Hd , (4.1)

where W0 denotes the superpotential of the hidden sector, which is responsible for su-

persymmetry breakdown. It is clear that, once W0 acquires a VEV, an effective µ term

µ̂ = λ 〈W0〉 is induced. Since in vacua with vanishing cosmological constant 〈W0〉 ∼ m3/2,

it is automatically of the right size.

Scenario 2 relies on the special form of the Kähler potential for untwisted matter

fields [18, 19, 21, 22],

K = − ln
[(

T + T
) (

Z + Z
)
−
(
Hu + Hd

) (
Hd + Hu

)]
. (4.2)
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Here, T denotes the Kähler modulus of an orbifold plane with a Z2 symmetry and Z the

corresponding complex structure modulus. Expanding K in the Hu and Hd fields leads to

a coupling (essentially T Hu Hd + c.c.) as is required for the Giudice-Masiero mechanism

to work. Assuming a (dominant) VEV of the F -component of T leads to an effective µ

term just like in the Giudice-Masiero mechanism. It is of the correct size provided µ̂ in

equation (3.2) is absent, or at most of the order of m3/2.

Before we consider specific models, we note that any Higgs pair coming from the un-

twisted sector in an orbifold plane with Z2 symmetry, the superpotential has automatically

the structure of equation (4.1). More specifically, we will show that then the Higgs pair

Hu and Hd is neutral w.r.t. the selection rules, i.e. whenever a monomial

M =
∏

i

Φi (4.3)

denotes a superpotential term, i.e. is allowed by the selection rules [23], also the term

M Hu Hd = Hu Hd

∏

i

Φi (4.4)

is allowed. This has been noted to be the case for the Higgs field of a heterotic benchmark

model of [17]. The argument turns out to be generally valid. Because of the Z2 projection,

the pair is vector-like w.r.t. all gauge factors. Further, the ZR
2 -charges are (0, 0,−1) for

both, and the corresponding discrete R-symmetry says that R charges should add to −1

mod 2 in the third component. Hence the pair Hu Hd has R-charges which are equivalent

to (0, 0, 0), i.e. Hu Hd is neutral w.r.t. the R charges. Moreover, these fields come from the

untwisted sector and correspond therefore to the space group element (1, 0), i.e. they are

neutral under the discrete symmetries representing the space group rule. Altogether we

have found that the pair Hu Hd is always neutral w.r.t. all selection rules, not only in theZ6-II orbifold. For instance, the Z2 ×Z2 model presented in [24] exhibits this structure as

well. However, this argument does not tell us that the coefficients of the terms coincide.

That is, at Hu Hd = 0 the superpotential is as in equation (3.4a),

W =
∑

ca Ma , (4.5)

where the Ma are monomials of type (4.3), while the terms multiplying Hu Hd are as in

equation (3.4b), ∑
c′a Ma . (4.6)

Now, if 〈W 〉 is small due to the cancellation between various 〈Ma〉, the effective µ term

µ̂ =
∑

c′a 〈Ma〉 is not necessarily small, unless the ca and c′a are proportional to each other.

There is a simple way to see that they are indeed proportional. Our starting point is

the Kähler potential (4.2). Let us expand it,

K = − ln
[(

T + T
) (

Z + Z
)
−
(
Hu + Hd

) (
Hd + Hu

)]

≃ − ln
[(

T + T
) (

Z + Z
)]

+
1(

T + T
) (

Z + Z
)
[
|Hu|2 + |Hd|2 + (HuHd + c.c.)

]

= − ln
[(

T + T
) (

Z + Z
)]

+
[
|Ĥu|2 + |Ĥd|2 + (ĤuĤd + c.c.)

]
. (4.7)
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In the last step we switched to canonically normalized fields Ĥu,d. We see that the constants

Yu, Yd and Z in (3.1) all coincide. We further make the assumption that T and Z are

already stabilized (see [25] for a recent discussion; alternative ideas for moduli stabilization

are sketched in section 5.2).

The structure of the Kähler potential (4.2) is enforced by gauge invariance in higher

dimensions. The main point is that Hu and Hd can be viewed as extra components of gauge

fields in a 6D orbifold GUT limit of the setting (see [26] for a recent discussion), which by the

Z2 symmetry of the orbifold plane further admits a Burdman-Nomura type [27] 5D limit.

The Higgs dependence in (4.2) then follows from higher-dimensional gauge invariance [28,

29]. Gauge transformations along the generators which correspond to Hu and Hd mix Hu

with Hd; therefore the Kähler potential can, at the gauge symmetric level, only depend on

the absolute square of Hu +Hd. By the same argument, the superpotential cannot depend

on Hu Hd × (SU(2)L × U(1)Y singlets). Higher-dimensional gauge invariance is broken by

the boundary conditions of the orbifold compactification. Therefore, there are the usual

logarithmic corrections to Yu, Yd and Z below the compactification scale. Moreover, there

are further logarithmic corrections coming from the fact that at the massless level states

sitting at the fixed points do not furnish complete SU(6) representations.

Higher-dimensional gauge invariance has further important implications. Because of

the above arguments, the gauge-invariant superpotential is

W = independent of the monomial ĤuĤd . (4.8)

Then this setting is, in leading order in ĤuĤd, equivalent to a setting with

K̃ = − ln
[(

T + T
) (

Z + Z
)]

+
[
|Ĥu|2 + |Ĥd|2

]
, (4.9a)

W̃ = exp(Ĥu Ĥd)W , (4.9b)

where the proportionality discussed around equations (4.5) and (4.6) is obvious. This

statement can easily be verified by looking at the Kähler function G (compare the discussion

in section 3.1). In leading order in Ĥu Ĥd we have

exp
(
K + ln |W |2

)
= exp

(
K̃ + ln |W̃ |2

)
. (4.10)

Let us also remark that the factorized structure (4.9b) can also be obtained by a naive

field-theoretic calculation of the coupling constants. As Hu and Hd come from the untwisted

sector or, in other words, are extra components of the gauge fields in ten dimensions, they

are bulk fields in the ten-dimensional theory. Since the product Hu Hd is completely neutral

under all symmetries, the profile of Hu Hd is flat; this remains true if one includes effects

that distort the profiles of charged fields, such as localized Fayet-Iliopoulos terms (cf. the

discussion in [30]). In the naive field-theoretic approach calculating the couplings amounts

to computing the overlap (for canonically normalized Hu and Hd)

∫
d6y [Hu(y)Hd(y)]n Ma

(
Φi(y)

)
(4.11)
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in the internal six dimensions parametrized by yM . Due to the flatness of the profile of

Hu Hd, the integrals (4.11) coincide for all n ≥ 0 (up to a constant) with
∫
d6y Ma

(
Φi(y)

)
,

which yields the coefficient ca of the monomial Ma. Including combinatorial factors again

leads to the exponential structure in equation (4.9b).

Altogether we see that the holomorphic coupling Hu Hd W comes, in the above su-

pergravity formulation [18], from the Kähler potential. For small Hu Hd, we can write it

into the superpotential.4 In the supergravity formulation it is easy to show that µ ∝ 〈W 〉,
which requires additional assumptions in the “µ from W ” approach [15].

We also comment that, if T and/or Z attain non-trivial F -term VEVs, there is, as

discussed below equation (4.2), an additional, non-holomorphic contribution to µ [18, 19,

22]. That is, in the string-derived MSSM models both the Kim-Nilles [4] and the Giudice-

Masiero [5] mechanisms can be at work, where the former is always there and the second

might or might not contribute. In particular, no F -term expectation value of the ‘radion’

T is required in order to generate the µ term.

In conclusion, although in string theory couplings are not ‘generic’ but highly con-

strained by consistency and, in particular, calculable, there exist simple settings in which

the µ problem is solved [18] in the sense that µ ∼ m3/2. These settings are incorporated

in very promising orbifold models [6, 17, 20, 24, 31], which also exhibit the appropriate

approximate R-symmetries allowing us to understand why 〈W 〉 is small in the first place.

These approximate symmetries are a consequence of high power discrete R-symmetries,

reflecting the discrete rotational symmetries of compact space. In what follows, we will

illustrate the suppression of 〈W 〉 due to approximate R-symmetries in various examples.

5 Examples

5.1 A simple example

A very simple example to illustrate the mechanism is given by a model with only two

superfields X and Y , where X carries R-charge 2 and Y has zero R-charge. At the U(1)R-

symmetric level, the most general superpotential is

W = X f(Y ) , (5.1)

where f is an arbitrary function. Suppose that W can be written as

W = X

(
λY 2 +

1

M
Y 3 + . . .

)
(5.2)

with higher-order terms omitted. The F -term equations have a non-trivial solution at

〈X〉 = 0 , 〈Y 〉 = −λM . (5.3)

4This is not in contradiction with the stringy calculation of allowed superpotential couplings, which are

the basis of the statements around equations (4.3) and (4.4). This analysis, which is also extensively used

in heterotic model building (as for instance in [17]), shows only if a holomorphic correlator between certain

fields exists (or not).
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We will make the assumption that 〈Y 〉 is somewhat smaller than the fundamental

scale. (5.3) is clearly a local minimum. Expanding around 〈Y 〉, i.e. replacing Y by 〈Y 〉+δY ,

leads to

W = m X δY + . . . (5.4)

with m = −2λ2 M . The important point is that m is related to the fundamental scale and

does not know of supersymmetry breakdown.

Now add a U(1)R violating term Y N , i.e.

W = X

(
λY 2 +

1

M
Y + . . .

)
+ κY N . (5.5)

Then the above minimum undergoes a small shift, but remains a minimum if κ is sufficiently

small and/or N is sufficiently large. The expectation value of the superpotential is of the

order κ(λM)N . This eventually sets the scale for the gravitino mass,

m3/2 ∼ 〈W 〉 ∼ κ (λM)N . (5.6)

The masses of the fluctuations around the slightly shifted minimum are still of order m,

i.e. can be much larger than m3/2. The gravitino mass can be arbitrarily small if 〈Y 〉 is

slightly suppressed and N is sufficiently large.

5.2 A “string-inspired” example

Consider now a supersymmetric field theory with matter fields X, Y and Z where X and

Y have R-charge 2 while Z has R-charge 0. Our superpotential is now

W = X
(
λ1(T )Z2 +

a1

M
Z3 + . . .

)
+ Y

(
λ2(T )Z2 +

a2

M
Z3 + . . .

)
. (5.7)

Again, the higher order terms “. . . ” will be ignored. Here we have taken into account

a possible dependence of the couplings on the moduli, represented by T . That is, the

true field content of our setting is {X,Y,Z, T}. Consider now the analogue of the vacuum

configuration in example 5.1. We seek solutions to the F equations at X = Y = 0 with

non-trivial Z. While the F -term equations for Z and T are trivially satisfied, the other

two equations yield

FX : λ1(T )Z2 +
a1

M
Z3 = 0 , (5.8a)

FY : λ2(T )Z2 +
a2

M
Z3 = 0 . (5.8b)

This constitutes two equations for the fields Z and T . T will be fixed by

λ1(〈T 〉)
λ2(〈T 〉) =

a1

a2
. (5.9)

(For instance, if λi(T ) = e−bi T , T will be fixed at 〈T 〉 = ln(a1/a2)/(b2 − b1).) Plugging

this back allows us to solve for Z, 〈Z〉 = −λ1(〈T 〉)M/a1. Again, all fields are fixed.

As long as the λi(〈T 〉) are not too small, the masses of the fields are not too far below
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the fundamental scale. The important lesson here is that moduli, governing the couplings

between “matter fields”, can be fixed if the F -term equations for the matter fields alone are

“overconstraining”. Of course, we have to make the assumption that the λi and ai are such

that they admit solutions of equation (5.9) with λi(〈T 〉) somewhat below 1. We will yet

have to see if this mechanism allows us to stabilize the T -moduli in honest string-derived

models. As before, adding higher-order U(1)R-breaking terms will result in a suppressed

expectation value of W .

In this and the previous examples, there is no symmetry principle enforcing the struc-

ture of the U(1)R-symmetric superpotential (5.2), nor the specific structure (5.5) of the

R-breaking term. Arguing on the purely field-theoretic level, there is no reason why there

should not be linear terms in X, Y or Z, or why the leading R-breaking term should be

of some high order N . (Once such features are imposed, they are however robust under

radiative corrections because of the non-renormalization theorem.) In what follows, we will

present a class of generic, albeit more complicated models, in which the absence of these

terms is enforced by symmetries.

5.3 A generic example in field theory

Consider three fields X, Y , Z which are charged under a Z9 × Z4 symmetry with charges:

field X Y Z

Z9-charge 1 5 8

Z4-charge 0 3 3

The corresponding superpotential reads at order 9

W = λ5 X Y 2 Z2 + λ8 X4 Y 3 Z + λ′

8 X4 Z4 + λ9 X9 . (5.10)

If truncated at order 8, W exhibits an accidental U(1)R symmetry with charges qi
R =(

0, 1
2 , 1

2

)
; the identification of such symmetries is described in appendix A. U(1)R is explic-

itly broken at order nine. One solution to the global F equations is

〈X〉 = − (−2)2/9λ
1/3
5

31/3λ
2/9
8 λ

′1/9
8

, (5.11a)

〈Y 〉 = − (−2)11/18λ
5/12
5

35/12λ
11/18
8 λ

′1/18
8

λ
1/4
9 , (5.11b)

〈Z〉 =
(−2)5/18λ

5/12
5

35/12λ
5/18
8 λ

′7/18
8

λ
1/4
9 , (5.11c)

resulting in

〈W 〉 = − 4λ3
5

27λ2
8λ

′

8

λ9 . (5.12)

If the VEVs are somewhat small, the VEV of the superpotential will be suppressed. All

masses turn out to be non-vanishing.
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In the U(1)R-symmetric limit λ9 → 0, 〈X〉 remains finite while 〈Y 〉 and 〈Z〉 go to

zero. Therefore 〈W 〉 vanishes term by term in this limit, as it should by the arguments

of section 3.2. It turns out that Y and Z in fact become massless as λ9 → 0, with their

expectation values determined by higher-power terms in the scalar potential.

5.4 Another generic example in field theory

We now show that it is possible to construct a generic model satisfying the following

requirements: for the U(1)R-symmetric truncation there is a supersymmetric vacuum at

sub-Planckian expectation values. This vacuum breaks U(1)R spontaneously. Therefore the

Nelson-Seiberg argument must be circumvented, and the vacuum in the U(1)R symmetric

truncation will possess at least one flat direction. It turns out that, in models where this flat

direction includes the R-symmetric point where U(1)R is not spontaneously broken, higher-

order R-breaking terms tend to stabilize the flat direction at this point. But if the VEVs

of all R-charged fields vanish, higher-order terms will not induce a non-vanishing 〈W 〉.
Therefore we focus on settings with a flat direction along which U(1)R is spontaneously

broken everywhere.

The following class of examples satisfies these criteria. It comprises three chiral super-

fields X, Y and Z with the following R-charges:

field X Y Z

R-charge 2 3 −3

The most general superpotential is

W = X f
(
Y Z,X3 Z2

)
. (5.13)

There are supersymmetric vacua in configurations with X = 0 and Y Z = α, where α is

determined by the condition f(α, 0) = 0.

The superpotential up to order 10 in the fields can be written as

W = X P (Y Z) + X4Z2 Q(Y Z) + . . . , (5.14)

where terms of order 11 and higher have been omitted, P is a quartic polynomial, and Q

is a quadratic polynomial. Supersymmetric vacua appear at X = 0 and at the zeros of P .

Assume that P has an isolated zero at Y Z = α with α . 1 real. We will eventually show

that it is self-consistent to neglect the higher-order terms, provided that α is somewhat

small (and that their coefficients are not too large).

We now add higher-order R-breaking terms. To justify their absence at lower orders,

we take the R-symmetry not to be U(1) but to be given by a discrete subgroup. Let us

consider Z16 for illustration, demanding R ≡ 2 mod 16 for each superpotential term. This

allows for several more terms in W ,

∆W = λ1 Y 6 + λ2 Y 7Z + λ3 Y 8Z2 + λ4 Z10

+ β1 X9 + β2 X6 Y 2 + β3 X6 Y 3 Z + β4 X3 Y 4 + β5 X3 Y 5Z + β6 X2 Z6 + β7 X2 Y Z7

+ . . . . (5.15)
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The terms in the first line stabilize the flat direction (by contrast, the terms in the second

line do not contribute to the F -terms when evaluated at X = 0). We find that there is a

supersymmetric vacuum at

〈X〉 ≈ −2 (3λ1)
5/8 (5λ4)

3/8

P ′(α)
α11/4 , (5.16a)

〈Y 〉 ≈
(

5λ4

3λ1

)1/16

α5/8 , (5.16b)

〈Z〉 ≈
(

3λ1

5λ4

)1/16

α3/8 . (5.16c)

The expressions for Y and Z are obtained from the equations of motion of the U(1)R-

symmetric theory, up to the VEV along the flat direction. This VEV is then calculated by

taking into account the higher U(1)R-breaking terms. The expression for X results from

re-substituting the Y and Z VEVs into the F -term equations of Y and Z and solving them

to leading order. For small α this is a self-consistent procedure, leading to exact values

asymptotically as α approaches zero.

The vacuum expectation value of W behaves like α15/4, with the dominant contri-

butions coming from the λ1 and λ4 terms in ∆W . Clearly no excessive fine-tuning of

coefficients is required to obtain smallish expectation values and suppressed 〈W 〉 (a mildly

suppressed α, as we have assumed, is sufficient). At small expectation values, it is in

particular safe to neglect higher-order terms in W .

The superpotential VEV is not suppressed by a very large power here, but it is straight-

forward to extend this model to higher suppression of 〈W 〉, by imposing a ZN R-symmetry

with N sufficiently large. However, then W becomes rather cumbersome to write down

explicitly. Following the procedure described above, one can determine the α-dependence

of Y and Z to leading order in an asymptotic expansion, to infer the behaviour of 〈W 〉 at

small α. The result for some select choices of N is:

N 10 13 14 16 17 19 20 22 25 28

〈W 〉 ∼ α12/5 α40/13 α20/7 α15/4 α60/17 α84/19 α21/5 α56/11 α144/25 α45/7

The determination of the exponents of α works as follows: the U(1)R-symmetric potential

has a flat direction along the hyperbola Y Z = α. To stabilize it one needs two R-breaking

terms in the superpotential, of the form ∆W ⊃ Y p + Zq. A Y p term prevents a runaway

towards Z = 0 and Y → ∞; likewise, a Zq term prevents a runaway towards Y = 0 and

Z → ∞. Therefore, the lowest powers p and q allowed by the discrete R-symmetry will

essentially determine the leading α-dependence of Y and Z, and also of W . In other words,

given N , one just has to determine p and q in order to figure out the exponents of α in the

table. We have also checked this behaviour numerically for several of the above N , using

generic superpotentials with random real coefficients of order one.

Other variations of this model can be found by choosing different R-charge assignments

for Y and Z. For instance, with a Z16 R-symmetry and the R-charges

field X Y Z

R-charge 2 3/4 −3/4
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the operators most relevant for stabilizing the R-flat direction are Y 24 and Z40, leading to

a superpotential expectation value which scales as 〈W 〉 ∼ α15. For a mildly suppressed α

(or equivalently mildly suppressed Y and Z VEVs), a huge hierarchy is generated.

So far the discussion has been on the globally supersymmetric level, in the sense that

we are identifying vacua as points where all derivatives of the superpotential vanish. Using

ordinary derivatives rather than Kähler-covariant derivatives may seem not well justified,

since some of the Kähler derivative terms, which we have neglected, are of lower order in

the fields than some of the superpotential terms which we are relying upon. However, as

already mentioned in section 2.4, the supergravity corrections to the F -terms are indeed

negligible because W is suppressed. We have also checked this numerically.

5.5 An example from a heterotic orbifold model

The aim of this section is to show that the ideas discussed above can also be applied to

string-theoretic models. In the following we focus on the models of the ‘heterotic Mini-

Landscape’ [17, 20]. These models exhibit the standard model gauge group and the chiral

matter content of the MSSM. They are based on the Z6-II orbifold with three factorizable

tori (see [6, 32] for details). The discrete symmetry of the geometry leads to a large

number of discrete symmetries governing the couplings of the effective field theory [23, 33]

(cf. also [6, 32, 34]). Apart from various bosonic discrete symmetries, one has a

[Z6 × Z3 × Z2]R (5.17)

symmetry; other orbifolds have similar discrete symmetries. Further, in almost all of the

Mini-Landscape models there is, at one-loop, a Fayet-Iliopoulos (FI) D-term ξ,

VD ⊃ g2

(
∑

i

qi |Φi|2 + ξ

)2

, (5.18)

where the qi denote the charges under the so-called ‘anomalous U(1)’. It turns out that,

in all models with non-vanishing FI term, ξ is of order 0.1 (see [6] for an explicit example).

The first step of our analysis is to identify a set of standard model singlets Φi with the

following properties:

• giving VEVs to the Φi allows to cancel the FI term;

• there is no other field that is singlet under the gauge symmetries left unbroken by

the Φi VEVs.

These properties ensure that the Φi can be consistent with a vanishing D-term potential

and that the F -terms of all other massless modes vanish, implying that it is sufficient to

derive the superpotential terms involving only the Φi fields.

Given non-trivial solutions to the F -term equations,

Φi
∂W

∂Φi
= 0 , with Φi 6= 0 , (5.19)
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one can use complexified gauge transformations to ensure vanishing D-terms as well [35].

Although D-term constraints do not fix the scale of the 〈Φi〉 in general, the requirement to

cancel the FI term introduces the scale
√

ξ ∼ 0.3 into the problem. In the following we will

search for solutions of VD = VF = 0 in the regime |Φi| < 1. We will explicitly verify that for

such solutions the superpotential is hierarchically small, 〈W 〉 ∼ 〈Φ〉N where 〈Φ〉 denotes

the typical size of a VEV. A very important property of many of these configurations is

that all fields acquire (supersymmetric) masses. Hereby typically only one field — the

would be R-axion — has a mass of the order 〈W 〉 while the others are much heavier.

Turning to particular models within the Mini-Landscape we find that the corresponding

superpotentials exhibit accidental U(1)R symmetries that get only broken at rather high

orders N . Consequently the analysis becomes very involved, especially when many fields

have to be considered. This is the case for the phenomenologically very interesting model 1

of [17], where 24 fields have to be switched on. In this model U(1)R gets broken at order 9,

and the superpotential consists of 1816 terms at this order. To avoid this very complicated

setup let us consider another model from the Mini-Landscape which is easier to handle but

nevertheless exhibits the desired features.

The model we will consider in the following is defined by the gauge shift V and the

two Wilson lines W1,2,

V =

(
1
3 −1

2 −1
2 0 0 0 0 0

1
2 −1

6 −1
2 −1

2 −1
2 −1

2 −1
2

1
2

)
,

W2 =

(
1
4 −1

4 −1
4 −1

4 −1
4

1
4

1
4

1
4

1 −1 −1 −1 −1 −1
2 −1

2 2

)
,

W3 =

(
−1

2 −1
2

1
6

1
6

1
6

1
6

1
6

1
6

1
3 0 0 2

3
5
3 −2 2 2

)
.

The gauge group after compactification is (up to U(1) factors)

[SU(3) × SU(2)] × [SU(3) × SU(2) × SU(2) × SU(2) × SU(2)] ,

where the two brackets refer to the first and second E8 factor respectively.

We consider the following set of singlet fields with non-vanishing VEVs (in the notation

of [17]):

{Φi} = {s1, s6, s7, s10, s13, s14, s17, s22, s24, s33} .

The monomial to cancel the FI term is simply given by {s33}. The resulting superpotential

exhibits an accidental continuous R-symmetry up to order 10 which is explicitly broken

at order 11. At this order the superpotential consists of 56 terms with 28 independent
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coefficients,

W = 1
288λ1s1s

3
22s

4
33

(
s2
10 + s2

17

)
+ 1

96λ2s1s
2
22s24s

4
33

(
s2
10 + s2

17

)

+ 1
96λ3s1s22s

2
24s

4
33

(
s2
10 + s2

17

)
+ 1

288λ4s1s
3
24s

4
33

(
s2
10 + s2

17

)

+ 1
2λ5s1s22s

2
33(s10s6 + s13s17) + 1

2λ6s1s24s
2
33(s10s6 + s13s17)

+ 1
144λ7s

3
22s

4
33(s10s7 + s14s17) + 1

48λ8s
2
22s24s

4
33(s10s7 + s14s17)

+ 1
48λ9s22s

2
24s

4
33(s10s7 + s14s17) + 1

144λ10s
3
24s

4
33(s10s7 + s14s17)

+ 1
96λ11s10s14s17s22s

4
33s7(s10s7 + s14s17) + 1

96λ12s10s14s17s24s
4
33s7(s10s7 + s14s17)

+ 1
288λ13s14s22s

4
33s7

(
s3
13s7 + s14s

3
6

)
+ 1

288λ14s14s24s
4
33s7

(
s3
13s7 + s14s

3
6

)

+ 1
288λ15s14s22s

4
33s7

(
s3
10s14 + s3

17s7

)
+ 1

288λ16s14s24s
4
33s7

(
s3
10s14 + s3

17s7

)

+ 1
2λ17s22s

2
33(s13s14 + s6s7) + 1

2λ18s24s
2
33(s13s14 + s6s7)

+ 1
96λ19s13s14s22s

4
33s6s7(s13s14 + s6s7) + 1

96λ20s13s14s24s
4
33s6s7(s13s14 + s6s7)

+ 1
864λ21s22s

4
33

(
s3
10s

3
7 + s3

14s
3
17

)
+ 1

864λ22s24s
4
33

(
s3
10s

3
7 + s3

14s
3
17

)

+ 1
288λ23s13s22s

4
33s6

(
s13s

3
7 + s3

14s6

)
+ 1

288λ24s13s24s
4
33s6

(
s13s

3
7 + s3

14s6

)

+ 1
288λ25s10s17s22s

4
33

(
s10s

3
14 + s17s

3
7

)
+ 1

288λ26s10s17s24s
4
33

(
s10s

3
14 + s17s

3
7

)

+ 1
864λ27s22s

4
33

(
s3
13s

3
14 + s3

6s
3
7

)
+ 1

864λ28s24s
4
33

(
s3
13s

3
14 + s3

6s
3
7

)
. (5.20)

If all these fields acquire VEVs, two U(1) factors get broken, one of them corresponding to

the anomalous U(1). The charges of the ten singlets with respect to the two broken U(1)

factors are

qi
anom = (6, 11, 17, 11, 11, 17, 11, 28, 28,−28) ,

qi
U(1) = (−2, 1,−1, 1, 1,−1, 1, 0, 0, 0) . (5.21)

The full quantum numbers of the si are (in the conventions of [17])

field k n3 n2 n′
2 qγ R1 R2 R3 irrep qY q2 q3 q4 q5 q6 q7

s1 0 ∗ ∗ ∗ 0 −1 0 0 (1,1;1,1,1,1,1) 0 −1 −1 0 0 0 0

s6 1 0 0 0 0 − 1
6

2
3

− 1
2

(1,1;1,1,1,1,1) 0 1
3

1
2

1
2

0 1
3

0

s7 1 0 0 0 0 5
6

− 1
3

− 1
2

(1,1;1,1,1,1,1) 0 − 2
3

− 1
2

1
2

0 1
3

0

s10 1 0 0 0 0 11
6

− 1
3

− 1
2

(1,1;1,1,1,1,1) 0 1
3

1
2

1
2

0 1
3

0

s13 1 0 0 1 0 − 1
6

2
3

− 1
2

(1,1;1,1,1,1,1) 0 1
3

1
2

1
2

0 1
3

0

s14 1 0 0 1 0 5
6

− 1
3

− 1
2

(1,1;1,1,1,1,1) 0 − 2
3

− 1
2

1
2

0 1
3

0

s17 1 0 0 1 0 11
6

− 1
3

− 1
2

(1,1;1,1,1,1,1) 0 1
3

1
2

1
2

0 1
3

0

s22 2 0 ∗ ∗ 0 − 1
3

− 2
3

0 (1,1;1,1,1,1,1) 0 − 1
3

0 1 0 2
3

0

s24 2 0 ∗ ∗ 1 − 1
3

− 2
3

0 (1,1;1,1,1,1,1) 0 − 1
3

0 1 0 2
3

0

s33 4 0 ∗ ∗ 1
2

− 2
3

− 1
3

0 (1,1;1,1,1,1,1) 0 1
3

0 −1 0 − 2
3

0

The structure of the superpotential (5.20) is governed by a D4 symmetry,5 under which 6

fields combine to 3 doublets,

d1 =

(
s6

s13

)
, d2 =

(
s7

s14

)
and d3 =

(
s10

s17

)
.

5D4 ⊂ O(2) is the dihedral group of order 8, the symmetry group of a square.
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It further turns out that any allowed term (at order less or equal to 11) involves at least

two such doublets. Another observation is that s33 appears only with even powers.

The solutions of the global F -term equations depend on the precise values of the λi

coefficients. As we do not yet know how to compute these coefficients, we can only argue

that point-like solutions to the F - and D-term equations exist. A consistency check for this

assertion is as follows: rather than solving for the fields we solve the F -term equations for

the 28 coefficients λi, setting the fields to ‘desirable’ values consistently with D-flatness.

An example for a, thus obtained, ‘vacuum configuration’ is given by

〈s1〉 = − 1

10
〈s6〉 =

1

10
〈s7〉 =

1

10
〈s10〉 =

1

10
〈s13〉 =

1

10

〈s14〉 =
1

10
〈s17〉 =

1

10
〈s22〉 =

1

10
〈s24〉 =

1

10
〈s33〉 = −

√
1401

20
√

70

with all λi = 0.01 except for

λ1 ∼ 0.482 λ5 ∼ −0.01 λ13 ∼ −0.29 λ14 ∼ −0.22

λ17 ∼ −0.001 λ8 ∼ 0.001 λ9 ∼ 0.001 λ18 ∼ 0.001 .

The coefficients (λ8, λ9, λ18) are conveniently chosen and (λ1, λ5, λ13, λ14, λ17) are fixed in

terms of the remaining coefficients. The resulting vacuum expectation value for W in units

of MP is given by

〈W 〉 ∼ 1.1 · 10−12

while the mass eigenvalues resulting from the superpotential read

(mi) =
(
1 · 10−5, 1 · 10−5, 1.4 · 10−9, 5.1 · 10−10, 2.7 · 10−10,

2.2 · 10−10, 1 · 10−10, 3 · 10−11, 0, 0
)

. (5.22)

The two massless fields obtain masses from the D-term potentials corresponding to the

two broken U(1) factors and the absorption of the Goldstone modes, respectively. We see

that the lightest mass eigenstate is of order 〈Φ〉N−2 ∼ 102〈W 〉 as expected.

Altogether we have argued that in the model under consideration one may obtain iso-

lated supersymmetric field configurations with |Φi| < 1 where the VEV of the perturbative

superpotential 〈W 〉 is hierarchically small. It appears highly desirable to rigorously prove

that such configurations exist in explicit string-derived models. This, however, requires

knowledge of the coefficients λi, which is not yet available.

6 Conclusions

We have investigated the mechanism of generating a hierarchically small superpotential

expectation value 〈W 〉 by an approximate R-symmetry. We have recapitulated that, in the

presence of such a symmetry, 〈W 〉 can be highly suppressed if the typical scalar expectation

values are only somewhat below the fundamental scale [3]. In the limiting case of an exact

R-symmetry, we showed that there exist examples of generic models where R-symmetry

is broken spontaneously in a supersymmetric vacuum. By adding higher-order polynomial
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terms to the superpotential which break R-symmetry explicitly, one may then construct

vacua with 〈W 〉 given by high powers of small field expectation values. If they can be

uplifted to Minkowski minima of the scalar potential, one obtains potentially realistic

vacua with naturally small gravitino mass.

The main point of this analysis is the observation that an (approximate) R-symmetry

not only allows us to control 〈W 〉, but also the MSSM µ term, if the Higgs fields Hu and

Hd are singlets with respect to all symmetries and in particular have trivial R-charges. For

models with generic superpotential coefficients, we proved that µ ∼ 〈W 〉 in Planck units,

i.e. µ ∼ m3/2.

We have also commented on the situation in string-derived models. We analyzed

scenarios in which an R-symmetry and gauge invariance in higher dimensions relate the µ

term to 〈W 〉. We have identified explicit string-derived models with the chiral spectrum of

the MSSM in which this analysis can be applied. These models indeed exhibit approximate

U(1)R symmetries, deriving from high-power discrete symmetries, which can explain a

highly suppressed 〈W 〉. We further discussed explicit examples in which such suppressed

〈W 〉 emerge, while all fields are stabilized. To rigorously prove that such configurations

exist in string-derived models, and to study their phenomenology, however, will require a

detailed understanding of the coupling strengths.

The main focus of this analysis was the role of approximate R-symmetries in generating

a suppressed 〈W 〉 and a µ term of a similar size. However, in our examples the origin of

supersymmetry breakdown remains obscure. To be able to relate µ to the MSSM soft

masses properly, a better understanding of the mechanism of supersymmetry breakdown

(or the so-called “uplifting”) is required.
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A Identifying accidental R-symmetries

Consider the superpotential of some fields Φi. Truncate it at a certain order, such that it

is a sum of monomials of degree ≤ D,

W =

M∑

m=1

Φ
ν
(m)
1

1 · · ·Φν
(m)
N

N , (A.1)
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where ν
(m)
i ∈ N0. The exponent vectors ν(m) = (ν

(m)
1 , . . . ν

(m)
N ) can be used for the task of

identifying accidental R-symmetries. Define a matrix

A =




ν
(1)
1 . . . ν

(1)
N

...
...

ν
(M)
1 . . . ν

(M)
N


 , (A.2)

with M denoting the number of monomials appearing in (A.1). An (accidental) U(1)

symmetry exists only if the equation

A · x = 0 (A.3)

possesses a non-trivial solution. The entries of such a solution are the charges w.r.t. the

(accidental) U(1).

In order to identify (accidental) R-symmetries, one has to solve the equation

A · xR =




2
...

2


 . (A.4)

The entries of xR denote the R-charges. It is clear that, given a solution xR, one can

always add a ‘bosonic’ solution of (A.3) to obtain ‘another’ R-symmetry. However, as the

superpotential is a gauge invariant quantity, this does not change any of the conclusions

presented in the main text.
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