
APPROXIMATE RANGE MODE AND RANGE MEDIAN QUERIES

Prosenjit Bose∗ Evangelos Kranakis∗ Pat Morin∗ Yihui Tang†

School of Computer Science, Carleton University

5302 Herzberg Building
1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

{jit,kranakis,morin,y tang}@scs.carleton.ca

ABSTRACT. Mode and median are two of the most important statistics we use when we analyze data.

In this paper, we consider data structures and algorithms for preprocessing a labelled list of length n so
that, for any given i and j we can answer queries of the form: What is the mode or median label in the

sequence of labels between indices i and j. Our results are on an approximate version of this problem.

Using O(n/(1 − α)) space, our data structure can find in O(log log 1
α

n) time an element whose number

of occurrences is at least α times of that of the mode, for some user-specified parameter 0 < α < 1. Data
structures are proposed to achieve constant query time for α = 1/2, 1/3 and 1/4, using storage space of

n log n, n log log n and n, respectively. We also show that if the elements are comparable, an O(n/(1−α))
space, O(1) query time data structure can answer range median queries with a guaranteed accuracy of
α × b|j − i + 1|/2c.

1 Introduction

Let A = a1, . . . , an be a list of elements of some data type. We wish to construct data structures on A,

such that we can quickly answer range queries. These queries take two indices i, j with 1 ≤ i ≤ j ≤ n
and require computing F (ai, . . . , aj) = ai ◦ ai+1 ◦ . . . aj−1 ◦ aj . If the inverse of the operation “◦” exists,

then range queries have a trivial solution of linear space and constant query time. The operation “◦”
being arithmetic addition (subtraction being its inverse) as an example, we precompute all the partial

sums bi = a1 + . . . + ai, i = 1, . . . , n, and the range query F (ai, . . . , aj) = ai + . . . + aj can be answered

in constant time by computing bj − bi−1. Yao [7] (see also Alon and Schieber [1]) showed that if “◦” is a
constant time semigroup operator for which no inverse operation is allowed, and a ◦ b can be computed

in constant time then it is possible to answer range queries in O(λ(k, n)) time using a data structure

of size O(kn), for any integer k ≥ 1. Here λ(k, ·) is a slowly growing function at the bk/2c-th level of
the primitive recursive hierarchy, as a few of examples, λ(2, n) = O(log n), λ(3, n) = O(log log n) and

λ(4, n) = O(log∗ n).

Krizanc et al [5] studied the storage space query time tradeoffs for range mode and range median

queries. These occur when F is the function that returns the mode or median of its input. Given a set

of n elements, a mode is an element that occurs at least as frequently as any other element of the set.
If the elements are comparable (for example real numbers), the median is defined to be the element in

position dn/2e in the sorted sequence of the input. Note the trivial solution does not work for range
mode or range median queries as no inverse exists for either the mode or the median. Yao’s approach

does not apply either because neither range mode nor range median is associative and therefore not a

∗Supported in part by NSERC (Natural Sciences and Engineering Research Council of Canada) and MITACS (Mathematics of
Information Technology and Complex Systems) grants.

†Supported in part by Ontario Graduate Scholarship.

1

semigroup query. Also, given two sets S1 and S2 and their modes (medians), the mode (median) of the

union S1

⋃

S2 cannot be computed in constant time. New data structures are needed for range mode
and range median queries. Krizanc et al [5] gave a data structure of size O(n2−ε) that can answer range

mode queries in O(nε log n) time, where 0 < ε ≤ 1/2 is a constant representing space-time tradeoff.

For range median queries, it is shown in [5] that a data structure of size O(n) can answer range median
queries in O(nε) time and a faster O(log n) query time can be achieved using O(n log2 n/ log log n) space.

In this paper we consider the approximate version of range mode and range median queries.
We show that if a small error is tolerable, range mode and range median queries can be answered much

more efficiently in terms of storage space and query time. Given a sequence S = ai, ai+1, . . . , aj , an

element is said to be an approximate mode of S if its number of occurrences is at least α times that of the
actual mode of S, where 0 < α < 1 is a user-specified approximate factor. An approximate median of S is

an element whose rank is between α × b|j − i + 1|/2c and (2− α) × b|j − i + 1|/2c. Clearly, there could
be several approximate medians.

Table 1 summarizes the main results of this paper. We show that with an error of at most 1− α,

range mode queries can be answered in O(log log 1
α

n) time using a data structure of size O(n). We also

show that constant query time can be achieved for α = 1/2, 1/3 and 1/4 using o(n2) space. We introduce

a constant query time data structure for answering approximate range median queries.

Approximate Range Mode Queries

Preprocessing Time Storage Space Query Time α

O(n log 1
α

n) O(n
1−α) O(log log 1

α
n) 0 < α < 1

O(n log n) O(n log n) O(1) 1/2
O(n log n) O(n log log n) O(1) 1/3
O(n log n) O(n) O(1) 1/4

Approximate Range Median Queries

Preprocessing Time Storage Space Query Time α

O(n log n
1−α) O(n

1−α) O(1) 0 < α < 1

Table 1: Summary of results in this paper

2 Approximate range mode queries

Given a list of elements a1, . . . , an and an approximate factor 0 < α < 1, the approximate range mode

queries can be specified formally as follows.
INPUT: Two indices i, j with 1 ≤ i ≤ j ≤ n.

OUTPUT: An element x in ai, . . . , aj such that Fx(ai, . . . , aj) ≥ α × F (ai, . . . , aj), where Fx(ai, . . . , aj)
is the frequency1 of x in ai, . . . , aj and F (ai, . . . , aj) = maxx Fx(ai, . . . , aj) is the number of occurrences

of the mode of ai, . . . , aj .

Our data structure is based on the observation that given a fix left end i of a query range, as the
right end j of the range increases, the number of times the query answer has to change as j varies from

i to n is O(log 1
α
(n − i)). This is because we can output the same element as the approximate mode as

long as no other element’s frequency exceeds 1/α times of that of the current approximate mode. When

1We use frequency and the number of occurrences interchangeably throughout the paper.

2

the actual mode’s frequency has exceeded 1/α times of that of the approximate mode, the approximate

mode has to be replaced and the new approximate mode is the actual mode.

For example, given the list of 20 elements shown in Figure 1 and approximate factor α = 1/2,

b is an approximate mode of a1, . . . , a9 because b occurs 2 times in the query range, while the actual
mode, a, occurs 4 times in the same query range. But this is no longer true for query a1, . . . , a10, as the

number of b’s occurrences is still 2 while the actual mode, a occurs 5 times (Fa(a1, . . . , a10) = 5). In this

case, either a or c (Fc(a1, . . . , a10) = 3) is a valid approximate mode.

A

 B 1,b 10,a 19,c

b a b a c c a c a a c c c c b c c c c b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 1: α = 1/2. A lookup table of size 3 is used for answering queries a1, . . . , aj , j = 1, . . . , 20. For

example, a is an approximate mode of a1, . . . , a15 because a occurs at least 5 times in the query range

(Fa(a1, . . . , a15) = 5) while no other element occurs more than 10 times until j = 19 (Fc(a1, . . . , a19) =
11).

Suppose a is chosen to be the new approximate mode, it remains an approximate mode as the

right end of the query range (i.e., j) increases till j = 19 at which point the actual mode, c occurs 11

times (Fc(a1, . . . , a19) = 11). Since no other element (a or b) occurs more than or equal to half of the
actual mode (Fa(a1, . . . , a19) = 5, Fb(a1, . . . , a19) = 3), c is now the only approximate mode. Since an

approximate mode remains so till another element occurs more than 1/α times the current approximate
mode, the number of approximate modes that have to be stored is much less than the number of elements

of the original list. As an example shown in Figure 1, instead of storing the complete original array of

20 elements, a table of 3 approximate modes is used to answer all approximate range mode queries
a1, . . . , aj , 1 ≤ j ≤ 20.

Given an approximate factor α, all approximate range mode queries with a1 being the left end:
a1, . . . , aj (1 ≤ j ≤ n) can be answered using O(log 1

α
n) storage space. The data structure is a lookup

table B = ac1 , . . . , acL
(1 ≤ c1 < c2 < . . . < cL ≤ n) in which we store L approximate modes. The

first entry is always a1 (c1 = 1). The second entry ac2 is the first element in A that occurs d1/αe times,

i.e., Fac2
(a1, . . . , ac2) = d1/αe and Fac2

(a1, . . . , ac2) > Fai
(a1, . . . , ac2) for ∀i 6= c2. In general, the kth

entry in the table is the first element in A that occurs d1/αk−1e times as the right end of the query
range increases. Note that ack

is an approximate mode of a1, . . . , aj for any ck ≤ j < ck+1 since ack

occurs at least d1/αk−1e times in a1, . . . , aj (Fack
(a1, . . . , aj) ≥ Fack

(a1, . . . , ack
) = d1/αk−1e) while no

other element occurs more than 1/αk times in the same range (Fx(a1, . . . , aj) < Fck+1
(a1, . . . , ack+1

) =
d1/αke).

The last approximate mode in the table, acL
, occurs at least d1/αL−1e times in a1, . . . , an. It

follows immediately that the number of approximate modes stored in the lookup table, L is at most
log 1

α
n + 1.

To answer approximate range mode query a1, . . . , aj , binary search is used to find in O(log log 1
α

n)

time the largest ck in B that is less than or equal to j and output ack
as the answer.

Lemma 1. There is a data structure of size O(log 1
α

n) that can answer approximate range mode queries

3

a1, . . . , aj (1 ≤ j ≤ n) in O(log log 1
α

n) time.

An immediate application of Lemma 1 is a data structure for answering approximate range mode
queries with arbitrary end points. The data structure is a collection of n lookup tables (Ti, i = 1, . . . , n),
one table for each left end point. An array of n pointers is used for locating a table in O(1) time.
A query ai, . . . , aj can be answered by first locating table Ti in O(1) time, and then searching in Ti

to find the approximate mode of ai, . . . , aj , which takes O(log log 1
α

n) time since Ti contains at most

O(log 1
α
(n − i)) = O(log 1

α
n) approximate modes.

Corollary 1. There is a data structure of size O(n log 1
α

n) that can answer approximate range queries in

O(log log 1
α

n) time.

2.1 An Improvement Based on Persistent Search Trees

We have seen that by maintaining a lookup table Ti of size O(log 1
α

n) for each left end point i (1 ≤ i ≤ n)

and using a total storage space of O(n log 1
α

n), any approximate range mode query ai, . . . , aj can be

answered in O(log log 1
α

n) time. Given a fixed left end point i, storing an answer for each right end

point j is not necessary due to the fact the answer to the query changes less frequently as j varies. The

approximate modes of two query ranges with adjacent right end points are unlikely to be different. In

this section, we pursue this idea and show that storage of a complete lookup table for each left end point
is not necessary because of the similarity between two tables with adjacent left end points.

To see how the approximate range mode changes gradually as the end points of query range
moves, we need to keep track of the range within which the current approximate mode remains a valid

approximation of the actual mode and its number of occurrences in that range. As the query range

changes, the frequency of the current approximate mode may also change. Once it drops below a pre-
determined threshold value (flow, the calculation of which will be discussed next), a new approximate

mode is chosen and the query range updated.

As shown in Table 2, each entry in the lookup table is a 5-tuple (flowr
, fhighr

, qr, ansr, fansr
).

Given an approximate factor α, [flowr
, fhighr

] are precomputed for r = 1, 2, . . . , 2dlog 1
α

ne and remain

the same for all tables.

Frequency Range Query Range Answer

...

[flowr
, fhighr

] qr (ansr, fansr
)

[flowr+1
, fhighr+1

] qr+1 (ansr+1, fansr+1
)

...

Table 2: flow1 = 1, fhigh1
= 1, flowr+1 = fhighr

+ 1, fhighr+1
= flowr

/α + 1, F (ai, . . . , aqr
) = fhighr

,
fansr

= Fansr
(ai, . . . , aqr

), flowr
≤ fansr

≤ fhighr
.

The ith table, Ti corresponds to all the range queries with the same left end i. A counter is

set for each element to keep track of its frequency as the right end j varies. Given the fixed left end i,
as the right end j proceeds, ansr is the first element whose frequency in ai, . . . , aj reaches fhighr

, and
qr+1 is the rightmost point up to which ansr remains a valid approximate mode, i.e., no other element

has a frequency higher than fhighr
/α. Given a query ai, . . . , aj with qr ≤ j < qr+1, ansr is a valid

4

approximate mode since its frequency is at least fhighr
while no other element has a frequency higher

than fhighr+1 − 1 = flowr
/α. To see how the subsequent tables are built based on Ti with minimum

number of changes, the right end of the query range is fixed, as the left end of the query range proceeds,

ansr’s frequency may decrease, but it remains a valid approximate mode as long as fansr
≥ flowr

and

it is copied to the next table along with a possibly modified fansr
(Note that fansr

is needed only for
bookkeeping purpose). The only time that ansr must change for a table is when its frequency drops

below flowr
. At this point we update ansr and the new approximate mode is the first element whose

frequency reaches fhighr
with respect to the current left end point of query range. The query range qr is

also updated to reflect the change on the approximate mode (Fansr
(ai, . . . , aqr

) = fhgihr
).

Ti T1 T2 T3 T4 T5

ai b a b a c

[1, 1] 1, (b, 1) 2, (a, 1) 3, (b, 1) 4, (a, 1) 5, (c, 1)
[2, 3] 7, (a, 3) 7, (a, 3) 7, (a, 2) 7, (a, 2) 8, (c, 3)
[4, 5] 10, (a, 5) 10, (a, 5) 10, (a, 4) 10, (a, 4) 12, (c, 5)
[6, 9] 17, (c, 9) 17, (c, 9) 17, (c, 9) 17, (c, 9) 17, (c, 9)

[10, 13] 20, (c, 11) 20, (c, 11) 20, (c, 11) 20, (c, 11) 20, (c, 11)

Ti T6 T7 T8 T9 T10

ai c a c a a

[1, 1] 6, (c, 1) 7, (a, 1) 8, (c, 1) 9, (a, 1) 10, (a, 1)
[2, 3] 8, (c, 2) 10, (a, 3) 10, (a, 2) 10, (a, 2) 13, (c, 3)
[4, 5] 12, (c, 4) 14, (c, 5) 14, (c, 5) 14, (c, 4) 14, (c, 4)
[6, 9] 17, (c, 8) 17, (c, 7) 17, (c, 7) 17, (c, 6) 17, (c, 6)

[10, 13] 20, (c, 10) — — — —

Ti T11 T12 T13 T14 T15

ai c c c c b

[1, 1] 11, (c, 1) 12, (c, 1) 13, (c, 1) 14, (c, 1) 15, (b, 1)
[2, 3] 13, (c, 3) 13, (c, 2) 16, (c, 3) 16, (c, 2) 18, (c, 3)
[4, 5] 14, (c, 4) 17, (c, 5) 17, (c, 4) 19, (c, 5) 19, (c, 4)
[6, 9] 17, (c, 6) 19, (c, 7) 19, (c, 6) — —

[10, 13] — — — — —

Ti T16 T17 T18 T19 T20

ai c c c c b

[1, 1] 16, (c, 1) 17, (c, 1) 18, (c, 1) 19, (c, 1) 20, (b, 1)
[2, 3] 18, (c, 3) 18, (c, 2) 19, (c, 2) — —
[4, 5] 19, (c, 4) — — — —

[6, 9] — — — — —
[10, 13] — — — — —

Table 3: An example showing the data structure for answering 1
2 -approximate range mode queries on a

list of 20 elements. Updates are in bold.

Table 3 shows the data structure for answering approximate range mode queries on the same list
as in Figure 1. As an example, to look up the approximate mode of a4, . . . , a12, we search in T4 and find

the entry with the largest qr that is smaller than 12: {[4, 5], 10, (a, 4)}. This tells us that, in the sequence
a4, . . . , a12, a occurs at least 4 times (Fa(a4, . . . , a12) ≥ Fa(a4, . . . , a10) = 4) and no element occurs more

than 8 times (Fx(a2, . . . , a12) ≤ F (a2, . . . , a17) − 1 = 8).

5

After T1 is built, Ti (i ≥ 2) is built based on Ti−1 with updates that are necessary to satisfy

conditions listed in Table 2. The number of the updates made is given by the following lemma.

Lemma 2. If the rth row of the table is updated in Ti, then it does not need to be updated in Tk for any

i < k < i + 1/αbr/2c.

Proof. When the rth row is updated in Ti we set ansr to be the first element such that Fansr
(ai, . . . , aqr

) =
fhighr

. Its frequency fansr
is initially fhighr

in Ti. Although fansr
may decrease as i increases, ansr does

not need to be updated again until fansr
drops below flowr

, which takes at least fhighr
− (flowr

− 1) =
fhighr

− fhighr−1 = 1/αbr/2c steps.

Note that there are no more than 2dlog 1
α

ne rows in a table and every time we build a new table,

the first row needs to be updated. Lemma 2 shows that the rth (r ≥ 2) row changes no more than

αbr/2cn times during the construction of all n tables. The total number of updates we have to make is
given by the following theorem.

Theorem 1. The total number of updates we have to make is O(n/(1 − α)).

Proof.

Total number of updates ≤ n +

2dlog 1
α

ne
∑

r=2

αbr/2cn

= O(
n

1 − α
)

Theorem 1 says that, the majority of the table entries can be reconstructed by referring to other
tables. In other words, although n lookup tables are needed to answer approximate range mode queries,

many of them share common entries. A persistent search tree [4, 6] is used to store the tables space
efficiently. It has the properties that the query time is O(log m) where m is the number of entries in

each table, and the storage space is O(1) per update. In the case of approximate range mode queries,

although each table can have as many as 2dlog 1
α

ne entries, many tables share the same entries and the

number of (different) nodes in the persistent tree is O(n/(1 − α)), one for each update, and the query
time of each node is O(log log 1

α
n).

To keep track of the frequency of each element, we first build a balanced binary search tree of

distinct elements in the list. This can be done by walking through the list and for each element in the

list, check whether it is already in the search tree. If not, we insert a node into the tree and add a pointer
from the element in the list to the newly added node in the search tree. If the element is already in

the search tree, a pointer to that node is added. Each element can be processed in O(log n) time, and

walking through the whole list can be done in O(n log n) time.

The idea presented in [3] leads to an algorithm that maintains a counter for each element in

the search tree: The counters are stored in a doubly linked list of groups, each group is a collection of
elements with equal counter value. Groups are ordered according to their counter values. Note that

it takes O(1) time to increment or decrement an element’s counter: The element is deleted from the

current group and inserted to the adjacent group if the difference in the value between the two groups’
counters is one, otherwise a new group is created and the element is added to that group. The tables are

built one row at a time:

6

For r = 1 to 2dlog 1
α

ne:

1. i = j = 1.

2. Initialize the counters to zero by placing them in a common group with value zero.

3. For j = 1 to n:

(a) Increment aj ’s counter.

(b) If aj ’s counter, Faj
(ai, . . . , aj) equals fhighr

,

i. Store aj in Ti.

ii. Increment i.

iii. Decrement ai’s counter.

Because i can be incremented at most n − 1 times, Step 3 can be executed at most n times. In
Step 3(a) it takes O(1) time to locate and increment aj ’s counter. Each part of Step 3(b) also takes O(1)
time. Therefore the total preprocessing time is O(n log 1

α
n).

Theorem 2. There exists a data structure of size O(n/(1 − α)) that can answer approximate range mode

queries in O(log log 1
α

n) time, and can be constructed in O(n log 1
α

n) time.

2.2 Lower bounds

Next we show there is no faster worst case algorithm to compute the approximate mode for any fixed

approximate factor α. To see this, let A be a list of n/d 1
αe elements and B = A . . . A = b1, . . . , bn is a list

obtained by repeating A d 1
αe times. The problem of testing whether there exist two identical elements

in A (also called element uniqueness) can be reduced to asking if the mode of B occurs more than d1/αe
times. In the case of approximate range mode query, the answer to query b1, . . . , bn is an element whose

frequency is greater than 1 if and only if the actual mode of B occurs more than d 1
αe times.

In the algebraic decision tree model of computation, the problem of determining whether all

the elements of A are unique is known to have an Ω(n log n) lower bound. However, this problem can
also be solved by doing a single approximate range mode query b1, . . . , bn after preprocessing B, which

implies the same lower bound holds for approximate range mode queries.

Theorem 3. Let P (n) and Q(n) be the preprocessing and query times, respectively, of a data structure for

answering approximate mode queries, we have P (n) + Q(n) = Ω(n log n).

On the other hand, Ω(n) storage space is required by any data structure that supports approxi-
mate range mode queries since the original list can be reconstructed by doing queries (a1, a1), (a2, a2), . . . ,
(an, an), regardless of what value α is.

2.3 Constant Query Time

Yao[7] (see also Alon et al.[1]) showed that if a query ai, . . . , aj can be answered by combining answers

of queries ai, . . . , ax and ax+1, . . . , aj in constant time, then Θ(nλ(k, n)) time and space is both necessary

and sufficient to answer range queries in at most k steps. We adapt the same approach to develop

7

constant query time data structures for some special cases of approximate range mode queries. Namely,

the approximate factor α = 1/k where k is some positive integer.

The following lemma says that, if we can partition the range ai, . . . , aj into k intervals and we

know the mode of each interval, then one of these is an approximate mode, for α = 1/k.

Lemma 3. If {B1, . . . , Bk} is a partition of ai, . . . , aj then maxpF (Bp) ≥ F (ai, . . . , aj)/k.

Proof. By contradiction. Otherwise for any element x we have Fx(ai, . . . , aj) =
∑k

p=1 Fx(Bp) ≤ k ×
maxpF (Bp) < F (ai, . . . , aj).

Yao[7] and Alon et al.[1] gave an optimal scheme of using a minimum set of intervals such that
any range ai, . . . , aj can be covered by at most k such intervals.

Lemma 4. (Yao[7], Alon et al.[1]) There exists a set of O(nλ(k, n)) intervals such that any query range

ai, . . . , aj can be partitioned into at most k of these intervals. Furthermore, given i and j, these at most k
intervals can be found in O(k) time.

Given Lemma 3 and Lemma 4, we immediately obtain a constant query time solution for an-
swering approximate range mode queries with approximate factor 1/k. By precomputing the mode of

each interval, a query can be answered by first fetching the partition of the query range, which is a set

of at most k intervals, and then outputting the one with the highest frequency among k modes of these
intervals.

Theorem 4. There exists a data structure of size O(nλ(k, n)) that can answer approximate range mode in

O(k) time, for α = 1/k.

The results in Theorem 4 can be further improved using a table lookup trick for k ≥ 4. We
partition the list into n/ log n blocks of size log n, Bi = a(i−1) log n+1, . . . , ai log n, i = 1, . . . , n/ logn. By

Lemma 4, there exists a set of O((n/ log n)λ(2, n/ logn)) = O(n) intervals such that any range with both

ends at the boundaries of the blocks can be covered with at most 2 of these intervals. The exact modes
of these intervals are precomputed. Inside a block, exact modes of 2 intervals are precomputed for

each element, one interval is between the element and the beginning of the block and the other interval
between the element and the end of the block. There are 2n such intervals and computing the mode of

each interval costs O(log n) time. Any query range that spans more than one block can be partitioned

into at most 4 intervals. The first one is the (possibly partial) block in which the range starts; the last
one is the the (possibly partial) block in which the range ends and the other (at most) two intervals in

between cover all the remaining blocks (if any). Of these intervals the modes are all precomputed, and

the one with the highest frequency is a 1/4-approximation of the actual mode.

It remains to show that a query within a block can also be answered in O(1) time. This is done

by recursively partitioning the log n block into log n/ log log n blocks of size log log n. The same method
above is used to preprocess these blocks, and the result is a data structure of O(n) size that can answer

any query that spans more than one log log n-block in O(1) time.

To answer queries within a log log n-block, a different approach is used. Note that we can nor-

malize each block by replacing each element with the index of its first occurrence within the block.

Because such index is a non-negative integer that is at most log log n and each block consists of log log n
such values, there are at most (log log n)log log n different blocks. Among all n/ log log n blocks of size

log log n, many are of the same type. Thus, preprocessing of each block is unnecessary, and storage

space can be reduced by preprocessing a block once and reusing the results for all blocks of the same

8

type. The data structure used is a log log n × log log n matrix that can answer range mode query in con-

stant time. All the queries in blocks of the same type are done in the same matrix. There are at most
(log log n)log log n possible matrices which require O((log log n)log log n(log log n)2) = o(n) storage space.

Theorem 5. There exists a data structure of size O(n) that can answer approximate range mode queries in

O(1) time, for α = 1/4.

3 Approximate Range Median Queries

In this section, we consider approximate range median queries on a list of comparable elements A =
a1, . . . , an. Given an approximate factor 0 < α < 1, our task is to preprocess A so that, for any indices

1 ≤ i ≤ j ≤ n, we can quickly return an element of ai, . . . , aj whose rank is between α × b (j−i+1)
2 c and

(2 − α) × b (j−i+1)
2 c.

The idea behind our algorithm is that, if a query ai, . . . , aj spans many blocks, then the contri-

bution of the first and last block is minimal and can be ignored. Instead, we could simply answer the
(precomputed) median of the union of the internal blocks. On the other hand, since we are using many

different block size, we can choose a block size so that ai, . . . , aj spans just enough blocks the strategy

above needs to give a valid approximation. This ensures that we do not have to precompute too many
medians.

3.1 O(nlogn
1−α) Preprocessing Time

To simplify the presentation we assume n = 2k for some integer k ≥ 1. We preprocess A and build k
lookup tables T1, . . . , Tk as follows. To build Ti (1 ≤ i ≤ k), we partition A into 2i blocks each of size

n/2i:

Bij
= a(j−1)× n

2i +1, . . . , aj× n

2i
, j = 1, . . . , 2i

Ti has 2i entries (Tij
, j = 1, 2, . . . , 2i), each corresponds to a block Bij

and contains a pointer to a list of

d 2(1+α)
1−α e elements of A.

Tij
(p) = Median(Bij

. . . Bij+p−1), p = 1, . . . , d 2(1+α)
1−α e,

where Median(Bij
. . . Bij+p−1) is the median of Bij

. . . Bij+p−1 , which can be computed in O(pn
2i) time [2].

There are k = log n tables to be computed. It follows that:

The total preprocessing time =

log n
∑

i=1

2i

∑

j=1

d
2(1+α)
1−α

e
∑

k=1

O

(

kn

2i

)

= O

(

n log n

1 − α

)

In the following subsections, we give the preprocessing time, storage space and query time of

our data structure for answering approximate range median queries.

9

3.2 O(n
1−α) Storage Space

As shown in Section 3.1, the data structure for answering approximate range median queries is a set of

lookup tables. Each table Ti (1 ≤ i ≤ log n) is of size O(2i(1+α)
1−α) and the total space needed to store all

log n tables is
∑log n

i=1 O(2i(1+α)
1−α) = O(n(1+α)

1−α) = O(n
1−α).

3.3 O(1) Query Time

Next we show how to compute an approximate range median of ai, . . . , aj .

1. Compute the length of the query L = j − i + 1, and then locate table Tp in which to continue the

search: p = dlog (1+α)n
(1−α)Le.

2. Compute bi = d i
n/2p e and bj = b j

n/2p c, since p = dlog (1+α)n
(1−α)Le ≤ log (1+α)n

(1−α)L + 1 = log 2(1+α)
(1−α)L , i.e.,

2p ≤ 2(1+α)n
(1−α)L , we have

bj − bi = b j
n/2p c − d i

n/2p e ≤
j−i
n/2p ≤ j−i

(1−α)L

2(1+α)

< 2(1+α)
1−α

i.e., Median(Bpbi
. . . Bpbj

) is stored in the list to which a pointer is stored in Tpj
.

3. Output Tpbi
(bj − bi) = Median(Bpbi

. . . Bpbj
) as the answer.

Because each of the three steps above takes O(1) time, the time required for answering the approximate

range median query is O(1).

Theorem 6. There exists a data structure of size O(n/(1−α)) that can answer approximate range median

queries in O(1) time, and can be built in O(n log n/(1 − α)) time.

4 Conclusion

Range query problems demand reporting an answer very quickly. Efficient algorithms have been pro-
posed for various types of range queries [1, 7]. In this paper we study the approximate version of the

two types of range queries first investigated by Krizanc et al [5]. We propose data structures that can be

used to answer approximate range mode queries and approximate range median queries both space and
time efficiently. The approximation guarantees are explicit, and apply without regard to the distribution

of the input. The preprocessing time needed for constructing the data structures are also shown to be

very economical.

References

[1] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Technical

Report 71/87, Tel-Aviv University, 1987.

[2] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. Journal of

Computer and System Sciences, 7(4):448–461, 1973.

10

[3] E. D. Demaine, A. Lópex-Ortiz, and J. I. Munro. Frequency estimation of internet packet streams

with limited space. In Proceedings of the 10th Annual European Symposium on Algorithms, pages
348–360, 2002.

[4] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent. Journal

of Computer and System Sciences, 38(1):86–124, 1989.

[5] D. Krizanc, P. Morin, and M. Smid. Range mode and range median queries on lists and trees.

In Proceedings of the 14th Annual International Symposium on Algorithms and Computation (ISAAC

2003), 2003.

[6] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communications of

the ACM, 29(7):669–679, 1986.

[7] A. C. Yao. Space-time tradeoff for answering range queries. In Proceedings of the 14th annual ACM

Symposium on the Theory of Computing, pages 128–136, 1982.

11

