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Approximate Realization with Time Delay

Jan van Helvoirt, Okko Bosgra, Bram de Jager, and Maarten Steinbuch

Abstract— This paper describes the application of an approx-
imate realization algorithm to dynamical systems with a time
delay. First, a well-known algorithm is presented to obtain an
approximate realization from an impulse response sequence.
Then the limitation that a time delay imposes on the accuracy
of this algorithm is discussed, and it is pointed out that time
delays should be explicitly taken into account. Therefore, a time
delay estimation method is proposed that utilizes the presented
approximate realization algorithm. Simulation results show that
the method is likely to provide an accurate estimate for the time
delay in a dynamical system.

I. INTRODUCTION

In general, the realization problem refers to finding an
equivalent internal description of a dynamical system from an
external one. An external description can be any set of input-
output data like an impulse response matrix or a frequency
response function. An internal description on the other hand,
comprises the mapping from inputs to internal state variables
of the dynamical system and the mapping from these states
to the outputs. So more specifically, the realization problem
refers to finding a state-space representation for a given
input-output mapping.

The formulation of the realization problem originates
from work on describing linear time-invariant dynamical
systems [1], [2]. The algorithm in [3] provides one of
the first solution to the minimal realization problem for a
linear, finite-dimensional dynamical system. An overview of
various results, related to the minimal state space realization
problem, is given in [4].

Next to addressing a fundamental issue in system theory,
the minimal realization problem also forms a basis for the
more practical problem of system identification. Loosely
speaking, system identification can be seen as a realization
problem that is complicated by noise, nonlinear effects,
modeling errors, and so on. In this context we mention
the method given in [5] that, by applying a singular value
decomposition (SVD), results in a low-order approximate
realization for a measured impulse response.

The advantages of the mentioned approximate realization
method is its straightforward numerical implementation, the
manifest relation with the original data throughout the algo-
rithm, and its computational simplicity. However, a problem
not covered by the method explicitly is the presence of a
time delay in the system input-output map.

Numerous strategies have been proposed to identify the
time delay (dead time) in a dynamical system. In [6] a
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maximum likelihood estimator is proposed to estimate the
transfer function of a linear continuous time system with
time delay. A drawback of this method is the fact that
a good initial estimate is required in order to guarantee
convergence of the cost function to its global minimum.
The method presented in [7] uses least squares estimation to
determine model parameters from a time-domain residual.
This approach requires an inverse Laplace transformation
and knowledge of the model structure in advance. Adaptive
identification schemes for systems with time delay are sug-
gested in [8], [9]. These adaptive methods perform well but
requirements like measurable states and/or oscillating inputs
limit their practical value.

This paper presents the application of the approximate
realization method to dynamical systems with a time delay.
First we give a brief introduction on the approximate real-
ization problem and we present an algorithm for obtaining
an approximate realization from impulse response data. Then
we will discuss the limitations that time delays impose on
this realization algorithm. The main contribution of this
paper is a method to determine the time delay in a linear
time-invariant (LTI) dynamical system from an input-output
map. In our pragmatic approach we calculate approximate
realizations from input-output maps with different delay
values. A time delay estimate is then obtained by determining
the minimal error between the time-domain response of the
resulting realizations and the original data. Simulation results
for a test system are presented to show that the proposed
method is suitable for estimating the time delay in a LTI
system.

II. APPROXIMATE REALIZATIONS

In this section we recall the different steps of an algorithm
known from the literature that calculates an approximate
realization from impulse response data. We will demonstrate
the use of this algorithm in a simulation example.

A. Approximate realization algorithms

We recall that the Markov parameters Gk of a discrete-
time LTI system are defined by

G0 = D and Gk = CAk−1B for k = 1, 2, . . . (1)

where (A, B, C, D) represent the system matrices of a state
space model. This model is said to be a realization of the
sequence {Gk}

∞
k=0 when (1) holds. It can be shown that

the infinite sequence of Markov parameters corresponds to
the impulse response of the discrete-time LTI system. An
algorithm to obtain a minimal realization from the impulse
response of a system was presented in [3].

Proceedings of the
2005 IEEE Conference on Control Applications
Toronto, Canada, August 28-31, 2005

WB6.3

0-7803-9354-6/05/$20.00 ©2005 IEEE 1534



In practice the exact Markov parameters are never
available due to the presence of noise. Moreover, the
number of available Markov parameters is finite in reality.
A straightforward way to obtain an approximate realization
for a discrete-time LTI system, is via the construction of a
Hankel matrix from a finite sequence of measured Markov
parameters. An approximate realization of appropriate order
ρ, is then calculated from the singular value decomposition
(SVD) of this Hankel matrix [5]. The algorithm reads1

1) Construct the Hankel matrix T according to

Ti,j =

{
Gi+j−1 for i + j ≤ n + 1
0 for i + j > n + 1

from the impulse response sequence {Gk}
n

k=0

2) Compute the SVD He = UΣV T of the
matrix He = T (1 :r, 1:r) with r = �n/2�

3) Construct the matrices Uρ = U(:, 1:ρ),
Vρ = V (:, 1:ρ), and Σρ = Σ(1:ρ, 1:ρ)

4) Construct the matrices
Ha = T (2 :ρ+1, 1:ρ), Hb = T (1 :ρ, 1),
Hc = T (1, 1:ρ), and Hd = G0

5) Construct the system matrices of the realization

A = Σ
− 1

2

ρ UT
ρ HaV T

ρ Σ
− 1

2

ρ

B = Σ
− 1

2

ρ UT
ρ Hb

C = HcV
T
ρ Σ

− 1

2

ρ

D = Hd

The presented algorithm only requires the selection of a
value for the order ρ of the realization. The choice for this
value ρ determines the singular values that are considered to
be contributing to the order of the approximate realization.
Note that when ρ is taken too large, the noise present in the
Markov parameters is modelled as a part of the realization.

So far we have presented an approximate realization
algorithm that can be used to obtain a state space model for
a single input and single output (SISO), LTI system from
impulse response data. The case of multi input and multi
output (MIMO) systems will not be considered here. In order
to evaluate the algorithm, simulations were carried out with
a fourth order discrete-time LTI system of the form

H(s) =
987s + 3.896 · 104

s4 + 25.13s3 + 1145s2 + 6945s + 3.896e4
(2)

This continuous-time transfer function is transformed into a
discrete time equivalent by using a zero-order hold (ZOH),
yielding the transfer function given in (3). Note that the
ZOH-discretization resulted in two additional zeros, see [10].
Furthermore, we point out that one of the zeros of (3) is

1The used Matlab-like notation (:) is a shorthand for an entire row or
column of a matrix. Similarly, (a : b) indicates consecutive rows or columns.
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Fig. 1. Simulation results for the fourth order test system; left figure:
first 40 singular values of the finite block Hankel matrix HE ; right
figure: samples from the input-output map (•) and impulse response of the
approximate realization (-).
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Fig. 2. Bode diagram of test system (•) and the approximate realization
obtained from its impulse response (-).

located at −3.79. The effect of this large non-minimum phase
(NMP) zero is briefly discussed later on. For all simulations
we have used the following settings unless stated otherwise:
sample frequency fs = 200 Hz, sequence length n = 1000,
and model order ρ = 4.

The impulse response of this system was calculated and we
supplied this sequence to the realization algorithm. Finally,
the response of the resulting realization was compared with
the original data.

The singular values σ of the Hankel matrix HE are shown
in Fig. 1 indicating that the appropriate order ρ is indeed
equal to four. How to select the right value for ρ when
the model order is unknown and the difference between the
singular values is less profound, lies beyond the scope of
this paper.

The time domain and frequency domain responses of
the realization are depicted in Fig. 1 (right figure) and
Fig. 2, showing that the algorithm results in a realization
that accurately describes the original input-output data and
the underlying dynamics.

Up till now we have considered delay free situations. We
will now discuss the situation where the input-output data
are shifted due to the presence of a time delay.

III. TIME DELAY ESTIMATION

This section deals with the problem of time delays in dy-
namical systems. We briefly discuss the notion of time delays
and we will show the limitation that time delays impose

1535



H(z) =
2.089 · 10−5z3 + 6.775 · 10−5z2 − 4.804 · 10−5z − 1.777 · 10−5

z4 − 3.855z3 + 5.592z2 − 3.619z + 0.8819
(3)

k

y(k)

Fig. 3. Output of a system with a time delay of 20 samples.

on the presented approximate realization algorithm. Then
we will propose a time delay estimation method based on
approximate realizations. The method is evaluated through
simulations. The results from these simulations illustrate the
advantages and shortcomings of the presented method.

A. Time delay

We consider the discrete time LTI systems with zero initial
state and a time delay of d samples at the input

x1(k + 1) = Ax1(k) + Bu(k − d) (4)

y(k) = Cx1(k) + Du(k − d) (5)

or a time delay of d samples at the output respectively

x2(k + 1) = Ax2(k) + Bu(k) (6)

y(k + d) = Cx2(k) + Du(k) (7)

Note that the transfer function H(z) = C(zI −A)−1B + D
is equal for both models, but the models have different state
trajectories since x1(k) and x2(k) are related by

x2(k) = x1(k − d) (8)

The time delay enters the transfer function H(z) as z−d in
both cases and hence it results in a pole at z = 0 with
multiplicity d. In the time domain a delay of d samples
results in, for example, a step response y(k) where the first d
samples are equal to zero, see also Fig. 3. Note that the case
of a fractional delay (delay that is not equal to an integer
number of samples) is not considered in this paper.

The effect of a time delay on the approximate realiza-
tion for a system containing such a delay is illustrated in
Fig. 4. From the depicted Bode diagrams we see that the
approximate realization fails to describe the system dynamics
properly when the system contains a time delay. This effect
of a time delay on the accuracy of the approximate realization
indicates that time delays should be taken into account
explicitly.

B. Time delay estimation

With the observations from the previous section in mind, a
natural way to obtain an approximate realization for an input-
output data set with a delay of d samples, is to increase the
order of the realization from ρ to ρ+d. In the remainder we
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Fig. 4. Bode diagrams of test system (•) with a 5 samples time delay
(z−5) added, and that of the resulting approximate realization (-) from the
impulse response sequence for this system.

will call this approach Method I. Note that this method results
in a different model class than given in (4–(5) and (6)–(7),
since the parameter d is replaced by additional states.

Another possibility is to remove the first d samples from
the input-output data and supply the remaining samples to
one of the algorithms to obtain an approximate realization
without any time delay. Afterwards, the time delay is in-
cluded in the obtained realization by adding a term z−d to
its transfer function. We will denote this approach by Method
II. Note that for both approaches we assume that the length
of the actual time delay d is known.

This assumption imposes a limitation on both methods
because in many cases only an estimate d̂ of the time delay
is available. Therefore, we defined the delay estimation error
ed = d̂ − d and investigated the accuracy of the resulting
realizations via simulations for cases where ed �= 0.

The accuracy of the approximate realizations was quan-
tified by calculating the integrated absolute error (IAE)
between the original input-output data and the corresponding
response of the approximate realization. Next to this time
domain error measure, we also calculated the L2-norm of
the difference Hd(e

jω) = Hρ(e
jω)−H(ejω). Here, Hρ(e

jω)
and H(ejω) denote the frequency response functions (FRF)
of the approximate realization and that of the actual system,
respectively. Note that we introduce this second error mea-
sure as an additional check but that the FRF of the actual
system is usually unknown in practice.

Simulations were performed for ed = [−5, 5], using the
test system and simulation settings as mentioned in the
previous section. In order to incorporate a 20 samples delay
in the test system, we added the term z−20 to the numerator
of the transfer function in (3). The resulting errors for both
methods are shown in Fig. 5 and 6.
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Fig. 5. Integrated absolute error between impulse responses of the ideal
system and the approximate realizations as function of ed: Method I (left
figure) and Method II (right figure).
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Fig. 6. L2-norm of difference between FRF of the ideal system and
the approximate realizations as function of ed: Method I (left figure) and
Method II (right figure).

From these results we see that Method I yields much
smaller values for both the IAE and ||Hd(e

jω)||2 in com-
parison with Method II. Close examination of the results
showed that only for ed = 0 the errors obtained with both
methods were in the same order of magnitude. However,
as can be seen from Fig. 7, the poles of the approximation
obtained with Method I are not located exactly at z = 0.
This explains the small errors resulting from Method I, since
numerical inaccuracies and imperfections in the input-output
data (e.g. a time delay) are compensated for by shifting the
pole locations of the realization.
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Fig. 7. Poles (x) and zeros (o) of realization from Method I, d̂ = d.
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Fig. 8. First 40 singular values of the finite block Hankel matrix HE from
the delayed impulse response used in Method I.

Furthermore, we point out that Fig. 8 only reveals 23
significant singular values instead of the expected 4 + 20 =
24. This apparent order reduction is caused by the presence
of the large NMP zero, introduced by the discretization
of (2). Namely, a large NMP zero results in a large gap
between σ̄(HE) and σ(HE) according to [11]. This large
gap implies that there exists a subspace of signals that is
poorly observable in the output data, resulting in a reduction
of the number of significant singular values.

Nevertheless, the fact that the poles and zeros, associated
with the time delay, are not located at z = 0 makes it difficult
to distinguish them from the poles and zeros associated
with the system dynamics. Furthermore, the shapes of the
resulting error plots from Method II reveal a discernible
difference between the correct and erroneous delay time
estimates, which is not the case for Method I.

Based on these observations we propose the following time
delay estimation method that is based on the previously intro-
duced Method II. Suppose that an impulse response sequence
{Gk}

N

k=0 of length N is available and that an appropriate
order ρ for the corresponding dynamical system (without
the time delay) is known. Supply the sequence

{
G

k+d̂

}n

k=0

with n+ d̂max < N to the approximate realization algorithm
and determine for which value of d̂ the IAE between the
original data and the response of the resulting realization,
including the added time delay z−d̂, is minimal. Note that
a reasonable value for the upper bound d̂max is helpful to
minimize computational efforts. In the remainder we will
denote this time delay estimation method by Method III.

We will now show the results of simulations that were
performed to evaluate the proposed estimation method. For
this purpose we have used the above-mentioned test system
and simulation settings. In order to make the simulation more
realistic, zero-mean white noise with variance of 4·10−6 was
added to the impulse response sequence and the proposed
time delay estimation method was applied to the resulting
data set. The results are shown in Fig. 9 and 10. For
comparison we have included the results for the noisy data
sequence, obtained with Method I.

From these results we conclude that Method III is capable
to provide an estimate of the actual time delay. On the other
hand, the results from Method I are not suitable to determine
the time delay from noisy data.
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Fig. 9. Integrated absolute error between impulse responses of the system
with measurement noise (σ2

v = 4 · 10−6) and the approximate realizations
as function of ed: Method I (left figure) and Method III (right figure).
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Fig. 10. L2-norm of difference between frequency response functions of
the system with measurement noise (σ2

v = 4 · 10−6) and the approximate
realizations as function of ed: Method I (left figure) and Method III (right
figure).

Although the minimal values in the IAE and ||Hd(e
jω)||2

plots from Method III indicate the correct time delay value,
the FRF of the resulting approximate realizations show large
magnitude deviations at high frequencies from that of the
actual system. See Fig. 11. Note that the phase is still
accurate for the realization obtained with Method III.

This result indicates that the approximate realization al-
gorithm is sensitive to noise in the input-output data set.
Although this implies that the finally obtained approximate
realization is not very accurate, especially at higher frequen-
cies, additional simulations showed that the resulting time
delay estimates are reliable for the test system under study,
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Fig. 11. Bode diagram of test system (•) and approximate realizations
from noisy data and ed = 0: Method I (- -) and Method III (-).
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Fig. 12. Histogram of estimation errors ed with Method III for 25
additional simulations.

despite these amplitude mismatches at high frequencies. See
also Fig. 12. Similar results were obtained for a modified
test system that was obtained by manually removing the
discrete zeros from (3). Successful application of the method
to estimate the time delay in a process control valve is
discussed in [12].

IV. CONCLUSIONS

In this paper we have discussed the application of an
approximate realization algorithm to dynamical systems with
a time delay. After introducing the algorithm to obtain an
approximate realization from input-output data, we have
illustrated the limiting effect of time delays on the accuracy
of this algorithm. Based on this discussion, we proposed a
time delay estimation method that utilizes an approximate
realization algorithm.

The time delay estimation method was then evaluated
by performing simulations with a test system. The results
of these simulations showed that the method is capable to
provide an accurate time delay estimate from noisy impulse
response sequences for this test system. This in contrast to
the approximate realization algorithm itself, which appeared
to be sensitive to measurement noise. Given these encour-
aging results, it seems worthwhile to investigate whether
the proposed method is also suitable for other LTI dynamic
systems with time delays.

Furthermore, additional research is needed to make the
approximate realization algorithm more robust to measure-
ment noise and to evaluate the statistical properties of the
time delay estimator. This in order to increase the practical
value of the method as an identification tool. Moreover, the
calculation time of the time delay estimation method could be
improved by implementing an optimization step to determine
the delay value that minimizes the integrated absolute error
between realization response and original data. Finally, the
effect of NMP zeros and the extension of the method to
unstable systems are interesting topics for future work.
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