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Abstract— The reduction of dynamical systems has a rich
history, with many important applications related to stability,
control and verification. Reduction is typically performed in an
“exact” manner—as is the case with mechanical systems with
symmetry—which, unfortunately, limits the type of systems to
which it can be applied. The goal of this paper is to consider a
more general form of reduction, termed approximate reduction,
in order to extend the class of systems that can be reduced.
Using notions related to incremental stability, we give conditions
on when a dynamical system can be projected to a lower
dimensional space while providing hard bounds on the induced
errors, i.e., when it is behaviorally similar to a dynamical system
on a lower dimensional space. These concepts are illustrated
on a series of examples.

I. INTRODUCTION

Modeling is an essential part of many engineering dis-
ciplines and often a key ingredient for successful designs.
Although it is widely recognized that models are only
approximate descriptions of reality, their value lies precisely
on the ability to describe, within certain bounds, the modeled
phenomena. In this paper we consider modeling of closed
loop control systems, i.e., differential equations, with the
purpose of simplifying the analysis of these systems. The
goal of this paper is to reduce the dimension of the differen-
tial equations being analyzed while providing hard bounds
on the introduced errors. One promising application of these
techniques is to the verification of hybrid systems, which is
currently constrained by the complexity of high dimensional
differential equations.

Reducing differential equations—and in particular me-
chanical systems—is a subject with a long and rich history.
The first form of reduction was discovered by Routh in
the 1890’s; over the years, geometric reduction has become
an academic field in it self. One begins with a differential
equation with certain symmetries, i.e., it is invariant under
the action of a Lie group on the phase space. Using these
symmetries, one can reduce the dimensionality of the phase
space (by “dividing” out by the symmetry group) and define
a corresponding differential equation on this reduced phase
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space. The main result of geometric reduction is that one can
understand the behavior of the full-order system in terms of
the behavior of the reduced system and vice versa [MW74],
[vdS81], [BKMM96]. While this form of “exact” reduction
is very elegant, the class of systems for which this procedure
can be applied is actually quite small. This indicates the need
for a form of reduction that is applicable to a wider class of
systems and, while not being exact, is “close enough.”

In systems theory, reduced order modeling has also
been extensively studied under the name of model reduc-
tion [BDG96], [ASG00]. Contrary to model reduction where
approximation is measured using L2 norms we are interested
in L∞ norms. The guarantees provided by L∞ norms are
more natural when applications to safety verification are of
interest.

We develop our results in the framework of incremental
stability and our main result is in the spirit of existing
stability results for cascade systems that proliferate the Input-
to-State Stability (ISS) literature.

II. PRELIMINARIES

A continuous function γ : R
+
0 → R

+
0 , is said to belong to

class K∞ if it is strictly increasing, γ(0) = 0 and γ(r) → ∞
as r → ∞. A continuous function β : R

+
0 × R

+
0 → R

+
0 is

said to belong to class KL if, for each fixed s, the map
β(r, s) belongs to class K∞ with respect to r and, for each
fixed r, the map β(r, s) is decreasing with respect to s and
β(r, s) → 0 as s → ∞.

For a smooth function ϕ : R
n → R

m we denote by Tϕ
the tangent map to ϕ and by Txϕ the tangent map to ϕ at
x ∈ R

n. We will say that ϕ is a submersion at x ∈ R
n

if Txϕ is surjective and that Tϕ is a submersion if it is a
submersion at every x ∈ R

n. When ϕ is a submersion we
will also use the notation ker(Tϕ) to denote the distribution:

ker(Tϕ) = {X : R
n → R

n | Txϕ · X(x) = 0}.
Given a point x ∈ R

n, |x| will denote the usual Euclidean
norm while ||f || will denote ess supt∈[0,τ ] |f(t)| for any
given function f : [0, τ ] → R

n, τ > 0.

A. Dynamical and control systems

In this paper we shall restrict our attention to dynamical
and control systems defined on Euclidean spaces.

Definition 1: A vector field is a pair (Rn, X) where X
is a smooth map X : R

n → R
n. A smooth curve x( · , x) :

I → R
n, defined on an open subset I of R including the

origin, is said to be a trajectory of (Rn, X) if the following
two conditions hold:

1) x(0, x) = x;
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2) d
dtx(t, x) = X(x(t, x)) for all t ∈ I .

A control system can be seen as an under-determined
vector field.

Definition 2: A control system is a triple (Rn, Rm, F )
where F is a smooth map F : R

n × R
m → R

n. A smooth
curve xu(·, x) : I → R

n, defined on an open subset I of R

including the origin, is said to be a trajectory of (Rn, Rm, F )
if there exists a smooth curve u : I → R

m such that the
following two conditions hold:

1) xu(0, x) = x;
2) d

dtxu(t, x) = F (xu(t, x),u(t)) for almost all t ∈ I .

III. EXACT REDUCTION

For some dynamical systems described by a vector field
X on R

n it is possible to replace X by a vector field Y de-
scribing the dynamics of the system on a lower dimensional
space, R

m, while retaining much of the information in X .
When this is the case we say that X can be reduced to Y .
This idea of (exact) reduction is captured by the notion of
ϕ-related vector fields.

Definition 3: Let ϕ : R
n → R

m be a smooth map. The
vector field (Rn, X) is said to be ϕ-related to the vector field
(Rm, Y ) if:

Tϕ · X = Y ◦ ϕ. (1)
The following proposition, proved in [AMR88], character-

izes ϕ-related vector fields in terms of their trajectories.
Proposition 1: The vector field (Rn, X) is ϕ-related

to the vector field (Rm, Y ), for some smooth map
ϕ : R

n → R
m, iff:

ϕ ◦ x(t, x) = y(t, ϕ(x)), (2)

where x(t, x) and y(t, y) are the trajectories of vector fields
X and Y , respectively.

For ϕ-related vector fields, we can replace the study of
trajectories x(·, x) with the study of trajectories y(·, ϕ(x))
living on the lower dimension space R

m. In particular, formal
verification of X can be performed on Y whenever the
relevant sets describing the verification problem can also be
reduced to R

m.
If a vector field and a submersion ϕ are given we can use

the following result, proved in [MSVS85], to determine the
existence of ϕ-related vector fields.

Proposition 2: Let (Rn, X) be a vector field and ϕ :
R

n → R
m a smooth submersion. There exists a vector field

(Rm, Y ) that is ϕ-related to (Rn, X) iff:

[ker(Tϕ), X] ⊆ ker(Tϕ).
In an attempt to enlarge the class of vector fields that can

be reduced we introduce, in the next section, an approximate
notion of reduction.

IV. APPROXIMATE REDUCTION

The generalization of Definition 3 proposed in this section
requires a decomposition of R

n of the form R
n = R

m × R
k.

Associated with this decomposition are the canonical pro-
jections πm : R

n → R
m and πk : R

n → R
k taking

R
n � x = (y, z) ∈ R

m × R
k to πm(x) = y and πk(x) = z,

respectively.

Definition 4: The vector field (Rn, X) is said to be ap-
proximately πm-related to the vector field (Rm, Y ) if there
exists a class K∞ function γ such that the following estimate
holds:

|πm ◦ x(t, x) − y(t, πm(x))| ≤ γ(|πk(x)|). (3)
Note that when X and Y are πm-related we have:

|πm ◦ x(t, x) − y(t, πm(x))| = 0,

which implies (3). Definition 4 can thus be seen as a
generalization of exact reduction captured by Definition 3.

Although the bound on the gap between the projection
of the original trajectory x and the trajectory y of the
approximate reduced system is a function of x, in concrete
applications the initial conditions are typically restricted to a
bounded set of interest. The following result has interesting
implications in these situations.

Proposition 3: If (Rn, X) is approximately πm-related to
(Rm, Y ) then for any compact set C ⊆ R

n there exists a
δ > 0 such that for all x ∈ C the following estimate holds:

|πm ◦ x(t, x) − y(t, πm(x))| ≤ δ. (4)
Proof: Let δ = maxx∈C γ(|πk(x)|). The scalar δ is

well defined since γ(|πk( · )|) is a continuous map and C is
compact.

From a practical point of view, approximate reduction is
only a useful concept if it admits characterizations that are
simple to check. In order to derive such characterizations we
need to review several notions of incremental stability.

A. Incremental stability

In this subsection we review two notions of incremental
stability which will be fundamental in proving the main
contribution of this paper. We follow [BM00] and [Ang02].

Definition 5: A control system (Rn, Rm, F ) is said to be
incrementally uniformly bounded-input-bounded-state stable
(IUBIBSS) if there exist two class K∞ functions γ1 and γ2

such that for each x1, x2 ∈ R
n and for each pair of smooth

curves u1,u2 : I → R
m the following estimate holds:

|xu1(t, x1) − xu2(t, x2)| ≤ γ1(|x1 − x2|) + γ2(‖u1 − u2‖)
(5)

for all t ∈ I .
In general it is difficult to establish IUBIBSS directly. A

sufficient condition is given by the existence of an IUBIBSS
Lyapunov function. Note however that IUBIBSS only implies
the existence of a IUBIBSS Lyapunov function with very
weak regularity conditions [BM00].

Definition 6: A C1 function V : R
n × R

n → R
+
0 is

said to be an IUBIBSS Lyapunov function for control system
(Rn, Rm, F ) if there exist a ξ > 0 and class K∞ functions
α, α, and μ such that:

1) For |x1 − x2| ≥ ξ,

α(|x1 − x2|) ≤ V (x1, x2) ≤ α(|x1 − x2|);
2) μ(r) ≥ r + ξ for r ∈ R

+
0 ;

3) |x1 − x2| ≥ μ(|u1 − u2|) =⇒ V̇ ≤ 0.
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A stronger notion than IUBIBSS is incremental input-to-
state stability.

Definition 7: A control system (Rn, Rm, F ) is said to
be incrementally input-to-state stable (IISS) if there exist a
class KL function β and a class K∞ function γ such that
for each x1, x2 ∈ R

n and for each pair of smooth curves
u1,u2 : I → R

m the following estimate holds:

|xu1(t, x1) − xu2(t, x2)| ≤ β(|x1 − x2|, t) + γ(‖u1 − u2‖)
(6)

Since β is a decreasing function of t we immediately see
that (6) implies (5) with γ1(r) = β(r, 0) and γ2(r) = γ(r),
r ∈ R

+
0 . Once again, IISS is implied by the existence of an

IISS Lyapunov function. See [Ang02] for a converse result
when the inputs take values in a compact set.

Definition 8: A C1 function V : R
n × R

n → R
+
0 is

said to be an IISS Lyapunov function for the control system
(Rn, Rm, F ) if there exist class K∞ functions α, α, α, and
μ such that:

1) α(|x1 − x2|) ≤ V (x1, x2) ≤ α(|x1 − x2|);
2) |x1 −x2| ≥ μ(|u1 −u2|) =⇒ V̇ ≤ −α(|x1 −x2|).

B. Fiberwise stability

In addition to incremental stability we will also need a
notion of partial stability.

Definition 9: A vector field (Rn, X) is said to be fiber-
wise stable with respect to R

k if there exists a class K∞
function γ such that the following estimate holds:

‖πk(x(·, x))‖ ≤ γ(|πk(x)|).
Fiberwise stability can be checked with the help of the

following result.
Lemma 1: A vector field (Rn, X) is fiberwise stable with

respect to R
k if there exist two K∞ functions, α and α, and

a function V : R
n → R such that:

1) α(|πk(x)|) ≤ V (x) ≤ α(|πk(x)|),
2) V̇ ≤ 0.

C. Existence of approximate reductions

In this subsection we prove the main result providing suffi-
cient conditions for the existence of approximate reductions.

Theorem 1: Let (Rn, X) be a fiberwise stable vector field
with respect to R

k and let F = Tπm ·X : R
m ×R

k → R
m,

viewed as a control system with state space R
m, be IUBIBSS.

Then, the vector field (Rm, Y ) defined by:

Y (y) = T(y,z)πm · X(y, 0) = F (y, 0)

is approximately πm-related to (Rn, X).
Proof: By assumption Y (y) = T(y,z)πm · X(y, 0) is

IUBIBSS with respect to R
k so that we have:

|yv1(t, y1) − yv2(t, y2)| ≤ γ1(|y1 − y2|) + γ2(‖v1 − v2‖).
In particular we can take

y1 = y2 = πm(x), v1 = πk ◦ x(·, x), v2 = 0,

to get:

|πm ◦ x(t, x) − y(t, πm(x))|
= |yπk◦x(t,x)(t, πm(x)) − y0(t, πm(x))|
= |yv1(t, πm(x)) − y0(t, πm(x))|
≤ γ2(‖v1‖) = γ2(‖πk ◦ x(·, x)‖).

But it follows from fiber stability of X with respect to R
k

that
‖πk ◦ x(·, x)‖ ≤ γ(|πk(x)|).

We thus have:

|πm ◦ x(t, x) − y(t, πm(x))| ≤ γ2 ◦ γ(|πk(x)|),
which concludes the proof since γ2◦γ is a class K∞ function.

Theorem 1 shows that sufficient conditions for approxi-
mate reduction can be given in terms of ISS-like Lyapunov
functions and how reduced system can be constructed. Before
illustrating Theorem 1 with several examples in the next
section we present an important corollary.

Corollary 1: Let (Rn, X) and (Rm, Y ) be vector fields
satisfying the assumptions of Theorem 1. Then, for any
compact set C ⊆ R

n there exists a δ > 0 such that for
any x ∈ C and y ∈ πm(C) the following estimate holds:

|πm ◦ x(t, x) − y(t, y)| ≤ δ
Proof: Using the same proof as for Theorem 1, except

picking y1 = πm(x) and y2 = y, it follows that:

|πm ◦ x(t, x) − y(t, y)| ≤ γ1(|πm(x) − y|) + γ(|πk(x)|).
The bound δ is now given by:

δ = max
(x,y)∈C×πm(C)

(γ1(|πm(x) − y|) + γ(|πk(x)|))

which is well defined since C × πm(C) is compact.
This result has important consequences for verification.

Given a set of initial conditions S ⊂ R
m, the set of points

reachable under trajectories of Y from initial conditions in
S can be over-approximated by enclosing a single trajectory
of Y , starting at any point in S, by a tube of radius δ.

V. EXAMPLES

In this section, we consider examples that illustrate the
usefulness of approximate reduction.

Example 1: As a first example we consider the ball
in a rotating hoop with friction, as described in Chapter
2 of [MR99]. For this example, there are the following
parameters:

m = mass of the ball,
R = Radius of the hoop,

g = acceleration due to gravity,

μ = friction constant for the ball.

The equations of motion are given by:

ω̇ = − μ

m
ω + ξ2 sin θ cos θ − g

R
sin θ

θ̇ = ω (7)
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Fig. 1. A trajectory of the full order system (red) vs. a trajectory for
the reduced system (blue) for R = 5, 10, 20, 40 (from top to bottom,
respectively).

where θ is the angular position of the ball and ω is its angular
velocity.

If πω : R
2 → R is the projection πω(ω, θ) = ω, then

according to Proposition 2 there exists no vector field Y on
R which is πω-related to X (as defined by (7)). However,
we will show that Y (ω) = T(ω,θ)πω ·X(ω, 0) is approximate
πω-related to X .

First, we use:

V =
1
2
mR2ω2 + mgR(1 − cos θ) − 1

2
mR2ξ2 sin2 θ

as a Lyapunov function to show that (7) is stable. Note that
V (ω, θ) = 0 for (ω, θ) = (0, 0) and V (ω, θ) > 0 for (ω, θ) 
=
(0, 0) provided that Rξ2 < g. Computing the time derivative
of V we obtain:

V̇ = −μR2ω2 ≤ 0,

thus showing stability of (7). We now consider a compact set
C invariant under the dynamics and restrict our analysis to
initial conditions in this set. Such a set can be constructed,
for example, by taking {x ∈ R

2 | V (x) ≤ c} for some
positive constant c. Note that stability of (7) implies fiberwise
stability on C since πm(C) is compact.

To apply Theorem 1 we only need to show that:

T(ω,θ)πω · X(ω, θ) = − μ

m
ω + ξ2 sin θ cos θ − g

R
sin θ

is IUBIBSS on C with θ seen as an input. We will conclude
IUBIBSS by proving the stronger property of IISS. Consider
the function:

U =
1
2
(ω1 − ω2)2.

Its time derivative is given by:

U̇ = (ω1 − ω2)
[
− μ

m
(ω1 − ω2) + ξ2 sin θ1 cos θ1

− g

R
sin θ1 − ξ2 sin θ2 cos θ2 +

g

R
sin θ2

]

≤ − μ

m
(ω1 − ω2)2 + |ω1 − ω2|

∣∣∣ξ2 sin θ1 cos θ1

− g

R
sin θ1 − ξ2 sin θ2 cos θ2 +

g

R
sin θ2

∣∣∣
≤ − μ

m
(ω1 − ω2)2 + |ω1 − ω2|L|θ1 − θ2|

= − μ

2m
(ω1 − ω2)2 (8)

+
(
− μ

2m
(ω1 − ω2)2 + |ω1 − ω2|L|θ1 − θ2|

)
,

where the second inequality follows from the fact that
ξ2 sin θ cos θ − g

R sin θ is a smooth function defined on the
convex compact set πθ(C) and is thus globally Lipschitz on
πθ(C) (since its derivative is continuous and thus bounded
on πθ(C)) with Lipschitz constant L. We now note that the
condition:

|ω1 − ω2| >
2mL

μ
|θ1 − θ2|

makes the second term in (8) negative from which we
conclude the following implication:

|ω1 −ω2| >
2mL

μ
|θ1 − θ2| =⇒ U̇ ≤ − μ

2m
(ω1 −ω2)2
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Fig. 2. A graphical representation of the pendulum on a cart mounted to
a spring.

showing that U is an IISS Lyapunov function. We can thus
reduce (7) to:

ω̇ = − μ

m
ω.

Projected trajectories of the full-order system as compared
with trajectories of the reduced system can be seen in Figure
1; here μ = m = 1 and ξ = 0.1. Note that as R → ∞, the
reduced system converges to the full-order system (or the
full-order system effectively becomes decoupled).

Example 2: We now consider a pendulum attached to a
cart with is mounted to a spring (see Figure 2). For this
example, there are the following parameters:

M = mass of the cart,
m = mass of the pendulum,

R = length of the rod,

k = spring stiffness,
g = acceleration due to gravity,

d = friction constant for the cart,
b = friction constant for the pendulum.

The equations of motion are given by:

ẋ = v

θ̇ = ω

v̇ =
1

M + m sin2 θ

(
mRω2 sin θ + mg sin θ cos θ

−kx − dv +
b

R
cos θ

)

ω̇ =
1

R(M + m sin2 θ)

(
− mRω2 sin θ cos θ

−(m + M)g sin θ + kx cos θ + dv cos θ

−(1 +
M

m
)

b

R
ω
)

(9)

where x is the position of the cart, v its velocity, θ is the
angular position of the pendulum and ω its angular velocity.

If π(x,v) : R
4 → R

2 is the projection π(x,v)(x, θ, v, ω) =
(x, v) and X is the vector field as defined in (9), the goal is

to reduce X to R
2 by eliminating the θ and ω variables and

thus obtaining Y defined by:(
ẋ
v̇

)
= Y (x, v)

= T(x,θ,v,ω)π(x,v) · X(x, 0, v, 0)

=
(

v
− 1

M (dv + kx)

)
.

The objective is now to show that X and Y are approx-
imately π(x,v)-related. In particular, note that the reduced
system, Y , is linear while the full-order system, X , is very
nonlinear. This will be discussed in more detail after proving
that they are in fact approximately related.

Stability of X , and in particular fiberwise stability, can
be proven as in the previous example by noting that X is
Hamiltonian for d = b = 0 and using the Hamiltonian as a
Lyapunov function V . Consider now the control system:

F ((x, v), (θ, ω)) = Tπ(x,v) · X(x, θ, v, ω) (10)

=
1

M + m sin2 θ

(
mRω2 sin θ − kx

+mg sin θ cos θ − dv +
b

R
cos θ

)

with θ and ω regarded as inputs. To show that F is IUBIBSS
we first rewrite (10) in the form:

F ((x, v), (θ, ω)) =
1

M + m

(
mRω2 sin θ − kx − dv − mRω̇ cos θ

)

and consider the following IISS candidate Lyapunov func-
tion:

U =
1

2(m + M)
(x1 − x2)2 +

1
2
(v1 − v2)2.

Its time derivative is given by:

U̇ = − d

m + M
(v1 − v2)2 +

mR

m + M

(
ω2

1 sin θ1

−ω̇1 cos θ1 − ω2
2 sin θ2 + ω̇2 cos θ2

)
(v1 − v2).

Using an argument similar to the one used for the previous
example, we conclude that:

|v1 − v2| ≥ 2mRL

d
|(θ1, ω1, ω̇1) − (θ2, ω2, ω̇2)|,

with L the Lipschitz constant of the function ω2 sin θ −
ω̇ cos θ, implying:

U̇ ≤ − d

2(m + M)
(v1 − v2)2,

thus showing that X is IISS and in particular also IUBIBSS.
That is, we have established that X and Y are approximately
π(x,v)-related.

In order to illustrate some of the interesting implications of
approximate reduction, we will compare the reduced system,
Y , and the full-order system, X , in the case when R = m =
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Fig. 3. A projected trajectory of the full-order system (red) and a trajectory for the reduced system (blue) for d = 0.001, 0.01, 0.1, 1 (from left to right
and top to bottom, respectively).

k = b = 1 and M = 2. It follows that the equations of
motion for the reduced system are given by the linear system:(

ẋ
v̇

)
=

(
0 1
− 1

2 d

) (
x
v

)
,

so we can completely characterize the dynamics of the
reduced system: every solution spirals into the origin. This
is in stark contrast to the dynamics of X (see (9)) which are
very complex. The fact that X and Y are approximately
related, and more specifically Theorem 1, allows us to
understand the dynamics of X through the simple dynamics
of Y . To be more specific, because the distance between
the projected trajectories of X and the trajectories of Y
is bounded, we know that the projected trajectories of X
will “essentially” be spirals. Moreover, the friction constant
d will directly affect the rate of convergence of these spirals.
Examples of this can be seen in Figure 3 where d is varied
to affect the convergence of the reduced system, and hence
the full order system.
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