Annals of Operations Research 31 (1991) 425-444 425

APPROXIMATE SCENARIO SOLUTIONS IN THE PROGRESSIVE
HEDGING ALGORITHM
A numerical study with an application to fisheries management

Thorkell HELGASON
University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland

Stein W. WALLACE
Haugesund Maritime College, Skdregaten 103, N-5500 Haugesund, Norway

This paper describes how the scenario aggregation principle can be combined with
approximate solutions of the individual scenario problems, resulting in a computationally
efficient algorithm where two individual Lagrangian-based procedures are merged into one.
Computational results are given for an example from fisheries management. Numerical
experiments indicate that only crude scenario solutions are needed.

Keywords: Stochastic programming, discrete optimal control, scenario aggregation, dynamic
. —optimization, multistage decision making, decomposition, approximation, fisheries models.

1. Introduction

The purpose of this paper is to discuss implementational and algorithmic
questions concerning scenario aggregation as defined by Rockafellar and Wets
(10]. Our main contribution is to present an efficient way of combining the
scenario aggregation method with an approximate solution procedure for the
individual scenario problems. Our method is based on the Hamiltonians for each
scenario problem, thereby achieving an approach where the inner (local) and
outer (global) iterations melt together into one overall procedure.

The method under investigation is applied to a standard problem from
fisheries management. Stochasticity is attached to the growth and recruitment of
the stock. The understanding of what affects the recruitment in a fish stock is one
of the major unsolved questions in fisheries management and therefore it 1s, in
our view, important to use stochastic models so as to capture at least some of the
effects of the uncertainty. Stochastic models are not yet standard in this subject
area, so this paper is also an attempt to show how results from standard models
change as stochasticity is introduced.

Until very recently almost all computational work in stochastic programming
was based on the L-shaped decomposition method, as described in Van Slyke and
Wets [12]. The most widely spread implementation based on these ideas was

© J.C. Baltzer A.G. Scientific Publishing Company

426 T. Helgason, S.W. Wallace / Approximate scenario solutions

presented by Birge [1] and followed up by Gassmann [2]. Olsen [7] and Louveaux
[4,5] have made major contributions to the multi-stage case. For general over-
views we refer to Wets [14-17].

Using decomposition techniques based on Van Slyke and Wets [12] is algorith-
mically very involved unless the randomness is very limited, most likely presented
in terms of scenarios. It is therefore natural to turn to scenario aggregation. Not
much computational work has been done with this approach, however, but some
interesting results can be found in Mulvey and Vladimirou [6]. We hope that our
approach will open up a new path for computational studies.

2. Scenarios and control processes

This paper focuses on a time-discrete controllable process in time szages
t=0,...,T. The state of the process at time ¢ is denoted by the variable x,. The
transition from the state at time ¢ to that at time ¢ + 1 is governed by-a control
variable u, but is also dependent on an auxiliary variable, the scenario.

A scenario is a vector

S=1(80s.0esSre0esS7).

The set of all scenarios, S, is assumed to be finite. Let s’ be the equivalence
class of all scenarios having the first ¢ coordinates, s, ..., s,_;, in common. Note
that each s7*! contains only one scenario.

The scenarios can be illustrated with a tree structure, the scenario tree, where
the nodes correspond to the scenario classes and dependence to the inclusion
s'*1 c 5", The root of the tree corresponds to S.

The transition from state to state will be allowed to depend upon the past
history of the scenario but will not be affected by its future. Thus we can describe
the transition as follows:

X1 = G(x,, u,, 5). (2.1)
The initial state x, is given. Furthermore the controls may be bounded,
A, <u,<B,. (2.2)

The following algorithms will cope with a more general set-up, i.e. where the
transition depends on the entire previous history, not only of the scenario, but
also of the states and controls. However, for the sake of simplicity, we will not
introduce this here. (See Mulvey and Vladimirou [6] for a more general, but
somewhat different, problem.)

Probabilities (subjective or objective) are attached to the scenarios. Thus
scenarios will be viewed in terms of a stochastic vector s with stochastic

components s, ..., S,,...,S7. We denote the probability of a particular realization
of a scenario with

p(s) = prob(s =s).

T. Helgason, S.W. Wallace / Approximate scenario solutions 427

These probabilities are non-negative numbers and sum to 1. Furthermore, we
need probabilities of scenarios conditional upon belonging to a certain equiv-
alence class s’ at time ¢
p(s)
s|s')=rprob(s=s|ses')=—-+, (2.3
P(|) () o S'))
where p(s’) is the probability mass of all scenarios belonging to the class s°.
In the ensuing application the scenario components are independently distrib-
uted. In this case the conditional probability of s=(sg,...,s,,..., 5) is easily
computed as

p(s|s') =prob(s,=s,)...prob(s;=s;).
A policy is a function assigning to each scenario s a sequence of controls

u(s) = (uo(s), uy(s),..., u,(s),..., ur(s)). We write x,(s) for the corresponding
state variables.
A policy is implementable if for all t=0,...,T the tth control is common to

all scenarios in the same class s‘, i.e. if u,(s)=1u,(s’) whenever s’ =s"". This
means that the decision made at time ¢ can only be dependent on the history of
the process known at that time and not on its future. :

A policy is admissible if it (always) satisfies constraints (2.2).

For any policy u and scenario class s* define a decision u, by computing the
expected value

u(s)=Y p(s"Is")u(s’).

s'es’
Then define a new policy u by setting
u,(s')=u,(s") forall s'es’.

This new policy u is implementable and admissible (see (2.2)). Note that
equivalence of u and u obviously amounts to implementability:

PROPOSITION
A policy u is implementable if and only if
u(s)= Y p(s'|s')u(s’) forall sand t=0,..., T. (2.4)
s'es!

Now suppose there is some immediate cost associated with each period
depending on the state, the decision taken and the current scenario. But as with
the transition function we will assume that the cost at stage ¢ is not dependent on
the future. Thus we can denote the cost function as F(x,, u,, s'). Furthermore
there may be some terminal cost Q(x;,;). In addition we assume that these costs
are discounted with the discount factor a, where 0 < a < 1.

428 T. Helgason, S.W. Wallace ;/ Approximate scenario solutions

We wish to control the process with an implementable policy to minimize the
expected present value of the total cost. This expected value of the immediate
costs equals

Yo ¥ p(s)E(x(s). u(s), s'),
t=0

seS

which according to (2.3) can be written as

T
S« p(s) T p(s'1s)E(x(s), u(s)), 57). (25)
t=0 s s'es’

The second sum in (2.5) is over all possible scenario classes at stage ¢.

The goal is to determine the minimum of (2.5) (plus expected terminal cost)
given (2.1) and (2.2), using an implementable policy, i.e. a policy which satisfies
(2.4).

This can be summed up as follows:

min{ 3 &'} p(s’) X p(s"1s) E(x,(s7), u,(s"). s")
=0

s s'es’

+at! E?p(S)Q(xm(S)) (2.6)
subject to
X, 01(8) = G(x,(s5). u,(s), s"), (2.7
A,<u,(s)<B, (2.8)
and
W)= T p(s'15)u(x) 29)

for all s, and t=0,...,T. Here x,(s) is given (and is independent of s).

3. The progressive hedging algorithm

Rockafellar and Wets [10] have developed the so-called Progressive Hedging
Algorithm (PHA) which can be specialized to solve a stochastic optimal control
problem like (2.6)—(2.9). Its fundamental idea is to add the only constraints that
tie together the different scenarios to the objective function via Lagrangian
multipliers. Denote these multipliers with W,(s) (but discount them to make the
notation more coherent). Thus the Lagrangian term to be added to (2.6) is

an’zp(»v’) X (s IsIW () u(s) = X p(s”1s")u,(s")].

s! s'€s' A‘”G\‘”

(3.1)

T. Helgason, S.W. Wallace / Approximate scenario solutions 429

If the multipliers can be chosen such that

Y p(s’|s)W(s")=0 (3.2)
s'es’

for all 7 and s and using the fact that s’' = s’ expression (3.1) simplifies to
T
YaXp(s') X psIs)Wls)u(s"). (3.3)
=0 s'es’

The objective function (2.6) together with this Lagrangian term becomes

T
T Tp(s) X p(s 18 E(x(s) u(s), s) + Wils”)u, ()]
=0 s'es’
+at Y p(s)Q(x740(s).
s€S
Fortunately this Lagrangian function as well as the remaining constraints are
separable with respect to the scenarios, so the optimization of this Lagrangian
function decomposes. But Rockafellar and Wets go a step further in the direction
of augmented Lagrangians (see Hestenes [3] and Powell [9]) by adding penalties
for deviating from implementability. These penalty terms can be seen in PHA1
below.
The progressive hedging algorithm, adapted to our formulation, runs as fol-
lows:

PHAQ. Initialize: Set W,(s)=0 for all stages ¢ and scenarios s, choose an
implementable policy u(s) (e.g. by solving (2.6)-(2.9) using average
values of the stochastic variables), choose p > 0.

PHAL. For each s € S solve the optimization problem in the u’s:

T
min{ y a’[(F,(X,, ey s+ W(s)u, + o llu,—u,(s) | 2)]
t=0

+0‘THQ(XT+1)}

subject to
X1 =G/(x,, u,, s'), X, given,
and
A, <u <B,.
Let u(s) = (uq(s),..., ur(s)) denote the vector of optimal controls, and
x(s) = (xo(s),-.., xr(s)) the corresponding (optimal) states.
PHA2. For t=0,..., T and all scenarios s calculate new average controls

us)=2 p(s"Is')u(s").

s'es!

430 T. Helgason, S.W. Wallace / Approximate scenario solutions

and then update the implementability multipliers,
W,(s) < W,(s) +p[u(s) —u(s)].
Return to PHA1 or terminate.

Rockafellar and Wets [10] measured the error of the algorithm after k& steps
with an expected value (with respect to the distribution of the scenarios):

T
: R k-npt 1 (k) k-1 |2
4O E[3 () (51 + o) - w1)|
t=0

Here k refers to the iteration number. Rockafellar and Wets prove that d*) is a
monotonically decreasing sequence, given certain regularity conditions and as-
suming that step PHAL1 is solved sufficiently accurately. Hence their termination
criterion is

d¥ <e. (3.4)

We refer to d'¥) as the error sequence.

According to the theory of augmented Lagrangians the updating step PHA2 is
a Newtonian step in an (augmented) dual method for problem (2.6)—(2.9) (see e.g.
Pierre and Lowe [8]). All this is explicitly proved by Rockafellar and Wets [10].
They furthermore prove that the algorithm converges even if step PHA1 is not
solved exactly.

It is easily seen that the multipliers W,(s) satisfy eq. (3.2). This is essential for
short-cutting the objective function in step PHA1 as indicated by (3.3).

4. Solving the subproblems with a Lagrangian step

PHAL is a standard time-discrete optimal control problem which can again be
solved with a Lagrangian method, thus decomposing the problem according to
the stages. Let us express the Lagrangian multipliers of the transition constraints
at stage ¢ as a product a'*'u,, whereby p, has the meaning of a shadow price. For
a fixed scenario s the Lagrangian function for the problem in step PHA1
becomes

T

Y o [F(x, u, sy + W(s)u+ipllu—u(s)|?
1=0

+al"'l(GI(x1’ ut’ S') _xt+1)] +aT+1Q(xT+1)'

The Kuhn-Tucker optimality conditions for the state variables yield recursion
formulas for the shadow prices. First,

0
P‘T=§)'C7+—I—Q(XT+1) (4.1)

T. Helgason, S.W. Wallace / Approximate scenario solutions 431
and then for r=1T,...,1
d
I‘Lt—1=§;;E(xn U, s’)+a“t_a—x—tGl(xt’ u, st)- (42)

Then optimization of the Lagrangian with respect to the control variables
decomposes into Hamiltonian subproblems, one for each time stage. Thus for all ¢
we have to solve the problem

min[£ (x,, u,, 5) + W,(s)u, + 3pllu, = u,(s)I* + an,G,(x,, u,, s')] (4.3)

in u, subject to 4, < u, < B,. Here the objective has been simplified by leaving out
the common factor a' and omitting the term —ap,x,,; which is independent of
the optimizing variable.

Now let us look at conditions (4.1)—(4.3) in connection with step PHA1 of the
progressive hedging algorithm. Obviously a first step in solving these scenario
subproblems can be obtained by going once through the following two steps.

L1. Compute the shadow prices:

r () = g Q(xrin(5))
and then for t=7,...,1
Pooq(s)= —a—i—tl‘",(x,(s), u,(s), s') +ap.,(s)%t-G,(x,(s), u(s), s").
L2. Solve the Hamiltonian optimization problems in u, for t=0,..., T, i.e.
min[£, (x,(s), ,, s) + W(s)u,+ ol u,—u,(s) |
+ap,(s)G,(x,(s), 4, s’)],

subject to 4, < u, < B,.

Call the solution u,(s). Before increasing ¢ update the states x, i.e.
X,+1(S) = Gl(xt(s)’ u,(s), S'), XO(S) = Xp-

Iterating between these two steps amounts to a kind of a dual method for
solving the scenario subproblems (see e.g. Pierre and Lowe [8]). Such pure dual
methods are generally unstable. Augmenting the Lagrangian with penalties for
violating the constraints improves the convergence (and helps finding the dual
variables, which is no problem here). This amounts to augmenting each Hamilto-
nian with a new penalty term. Thus the objective in step L2 becomes

min| £ (x,(s), . s') + W,(s)u, + bo 14, u,(s) ||

+%11”x,+1(s) - Gt(xt(s)’ U, s’)||2+ap.,(s)G,(x,(s), u,, S')]. (4.4)

Gy

432

T. Helgason, S.W. Wallace / Approximate scenario solutions

The progressive hedging algorithm with only one iteration of the above type in
the optimization of the subproblem will be called the Lagrangian Progressive
Hedging Algorithm (LPHA) and runs as follows:

LPHAO.

LPHAL

LPHA2.

LPHA3.

Initialize: Set W,(s) =0 for all stages ¢ and scenarios s. Choose an
implementable policy u(s) for all s. This may be chosen independently
of s, e.g. by solving (2.6)-(2.9) using average values of the stochastic
variables. Calculate initial values for the average states as

-Z.CH—](S) = G,()_c,(s), g,(s), Sl)’ 50(5) =Xq-

Choose p > 0.
Compute the shadow prices for all scenarios s:

d
NT(S) = 0X7+1 Q(&CTH(S))
and fort=T,...,1

bia(5) = g E (), w(s). o)

+ g () Gl 205, w,(5), 7).

For t=0,..., T and all scenarios s:
Solve the Hamiltonian optimization problems in u,

min| F(x,(s), u,, s') + W,(s)u,+ s llu, — u,(s)|?

+a‘u,(vs)G,(x,(S), U st)]’

subject to 4, < u, < B,.
Call the solution u,(s). Before increasing ¢ update x:

xt+1(s) =G,(X,(S), u,(s), st)’ xO(S) = Xg-

For t=0,..., T and all scenarios s calculate new average controls
u(s)= 2 p(s'Is")u,(s")
s'es’

and then update the implementability multipliers,
W,(s) « W(s) +p[u,(s) = u(s)].

Calculate new average states (as in LPHAO), and return to LPHA1 or
terminate.

For details on the implementation see Wallace and Helgason [13]. Note that in
each iteration the algorithm goes through the scenario tree only twice; once
upward and once downward.

T. Helgason, S.W. Wallace / Approximate scenario solutions 433

According to the convergence theorems of Rockafellar and Wets, step PHAI in
the progressive hedging algorithm needs only to be solved approximately. They
have a criterion for how precise the solution must be to guarantee convergence
and, among other things, the monotonicity of the error sequence.

As said before, a more precise solution of the subproblems (step PHA1) calls
for several inner (or local) iterations between steps LPHA1 and LPHA2. Then, of
course, two amendments must be made. First, the shadow prices in step LPHA1
must be recomputed from the policy and corresponding states in step LPHA2.
Notationally this means that the underlining should be left out in step LPHA1
(apart from the first time it is applied in any global iteration). Secondly, the latter
penalty term (with coefficient 1) in (4.4) should be added again into the
Hamiltonian in step LPHA2. However, the above mentioned criterion of Rocka-
fellar and Wets has not yet been implemented in the LPHA algorithm so as to
control the number of these inner iterations.

We will come back to these questions in the numerical tests in section 6, where
provisions are actually made for the use of inner looping between steps LPHA1
and LPHA2.

5. A simple example from fisheries management

Suppose we are harvesting annually some portion u, of a biomass x, and that
the stock is regenerated according to a version of the Schaefer model (Schaefer
[1p:

X=X, +sx,(1-x,/K)—u,x,.

Here s 1s called the growth ratio. Parameter K is often called the carrying
capacity since the stock increases — in the absence of harvesting — until it reaches
the level K. For any constant harvesting ratio # with 0 < u < s this equation has
a steady state solution

x=K(1—u/s).
The maximal steady state harvesting or maximum sustainable yield (MSY) is
obtained when u = s/2 in which case x = K/2.

Now let us assume that the growth ratio in any year ¢ is a stochastic variable,
s,, independently distributed from year to year, taking on finitely many values in
the range [0,2]. Let s denote the expected value of the growth ratio.

Suppose that our objective is to maximize the expected present value of the
yield over a period of T years with a given value of the stock at the end of the
planning period, denoted by Q(x).

Thus we wish to solve

T

max E Z alutxt + aT+lQ(xT+l) ’
t=0

434 T. Helgason, S.W. Wallace / Approximate scenario solutions

subject to
X1 =x,+5x,(1—-x,/K)-ux,, given x5, and0<u, <1.

Here E refers to expected value and « is a discount factor.

We use a naive expression for Q(x) by taking the present value of the infinite
sustainable (or steady state) yield from the (fixed) stock x under the assumption
of average growth ratio, i.e.

sx(1—-x/K
o(x) = SUTHE)
This is a proxy for the expected yield from a fixed stock size. Here s is, as said
before, the average growth ratio.

This model greatly idealizes the real situation in the fisheries. Among other
things it does not take into account the age structure of the fish population which,
at least for long-lived species like cod, is of major importance. Computationally,
though, this problem is complicated enough. Note that it is nonlinear (actually
quadratic) both in the objective function and the constraints.

This problem can hardly be solved with methods other than the aggregation
principle presented here. Straight-forward dynamic programming would most
likely be unusable due to the “curse of dimensionality”. On the other hand, it is
certainly possible to design a dynamic programming scheme (e.g. by interpolating
between discrete state values) which would work. Nevertheless, conceptually at
least, the progressive hedging algorithm seems to be more tractable for high-di-
mensional problems. This holds in particular if considering relatively few or short
scenarios suffices in order to get at least a near optimal solution with the
algorithm. We come back to this in the conclusion.

Decompositions based on the L-shaped method would probably fail due to the
size of the problem. An extremely large nonlinear nested decomposition proce-
dure would be needed. One would have to keep track of, and solve repeatedly,
one nonlinear optimization problem for each node in the scenario tree.

6. Numerical experiments

The fisheries model of section 5 was used for numerical experimentation with

the LPHA algorithm. The following fixed data were used:
K=10, a=09.

In the first part of this section we experiment with a rather modest number of
scenarios by setting T = 5 and letting the stochastic growth ratio take on only two
values. In this case the number of scenarios is 2° = 64. The stochastic variable s
can take on the two values 0 and 2 with probabilities 0.8 and 0.2, respectively.
These values and probabilities are rather extreme and would hardly occur in real

systems. We can consider three examples A, B and C where x,=2.5, 5 and 7.5
. respectively.

T. Helgason, S.W. Wallace / Approximate scenario solutions 435

As said earlier, the LPHA algorithm becomes identical to the (original) PHA
algorithm if the subproblems expressed by steps LPHA1 and LPHA2 are solved
exactly. Furthermore, we should get closer to the solution of the subproblems by
adding an inner looping between steps LPHA1 and LPHA2. We have experi-
mented with hybrid algorithms with two or more iterations of this inner loop. We
refer in this context to the number of local or inner iterations and the number of
global iterations, respectively. :

6.1. OPTIMAL SOLUTION

The following three diagrams (figs. 1-3) show the top four stages (correspond-
ing to t =0, 1, 2, 3) and part of the last stage (stage T = 5) of the scenario tree for
the fisheries problem. The solutions are obtained using the LPHA algorithm with
optimal values of the penalty parameter p (see subsection 6.4) and with required
precision € = 1077 (see (3.4)). We believe these results to be very close to the true
optimum.

The path to the far left in the trees corresponds to the growth ratio s
constantly taking its lower value. The box at the bottom left indicates this
extreme at stage 5. The opposite holds for the far right of the tree. The upper
number in each box is the value of the biomass or the state variable x and the

x=2.5 x=2.5

u=0.02 u=0.00

x=2.44 x=6.19 x=3.25

u=0.00 u=0.51 u=0.16

x=2.44 x=6.12 x=3.08 x=6.78 x=3.60

=0.00 u=048 u=0.17 u=0.61 u=0.25

x=244 | | x=6.12] |x=3.2 x=7.94] | x=2.56] |x=6.82 | [x=3.08] [x=6.51 x=3.63

u=0.00 =0.46] {u=0.16] | u=0.58 u=_0.04 u=0.54 | {u=0.16] {u=0.52 u=0.26
x=242 x=g. 15 X= 3..61
u=0.00 u=0.57 u=0.25

Fig. 1. Scenario tree for example A with optimal solutions for the stochastic case on the left and the
deterministic case on the right.

436 T. Helgason, S.W. Wallace / Approximate scenario solutions

x=5.00 x=5.00

u=0.49 u=0.47

x=2.55 x=7.55 x=3.65

u=0.01 u=0.64 u=0.27

x=2.53 x=6.33 x=2.73 x=6.43 x=3.58

u=0.00 u=0.59 u=0.06 u=0.60 u=0.25

x=2.53 | [x=8.05] [x=2.59] |x=7.24] [x=2.56] [x=6.52 | |x=2.60] [x=7.19 x=3.60
u=0.00{ fu=0441] |u=0.00} | u=0.59| u=0.00} ju=0.55 | |u=0.00} |u=0.59 u=0.25
=249 =659 | [x=362
u=0.00 u=0.59 u=0.26

Fig. 2. Scenario tree for example B with optimal solutions for the stochastic case on the left and the
deterministic case on the right.

lower number is the corresponding optimal (implementable) control u, i.e. the
harvesting ratio. The vertical paths to the right in the diagrams show the solution
of the optimal control problem when the stochastic variables s, are replaced with
their expected value s = 0.4.

In these examples the difference between the first decisions (which for practical
management are the only decisions that matter) in the stochastic and the
deterministic models is marginal. However, we tested different values of the
discount factor a. For a value of « equal to 0.95 the difference was greater and
actually in the opposite direction. For an initial biomass equal to 5 units (cf.
example B) the stochastic solution calls for a lower catch in the first year than
does the deterministic one. This may give us food for thought about fisheries
management in that it is generally based on deterministic models. Evidently
stochasticity does matter but it depends upon the circumstances whether a
decision based on a deterministic model leads to under- or overfishing.

6.2. RATE OF CONVERGENCE

Figure 4 shows the rate of convergence as measured by the error term d and by
the actual error in the objective value compared to the optimal one for example B
and two different values of the global penalty parameter p.

T. Helgason, S.W. Wallace / Approximate scenario solutions 437

x=7.5 x=7.5
u=0.60 u=0.61
x=2.99 x=6.74 x=3.64
u=0.16 u=0.58 u=0.27
x=2.50 x=6.69 x=2.86 x=7.26 x=3.57
u=0.02 u=0.58 u=0.4 u=0.58 u=0.25
x=2.46 | [x=8.05] [x=2.82] {x=7.25| |x=2.46]| |x=6.54 x=3.03} |x=7.01 x=3.61
u=0.00| |u=0.44| [u=0.09| |u=0.56 =0.00| {u=0.53 | |u=0.14] Ju=0.57 u=0.25
=246 =649 [=3.62
u=0.00 u=0.58 u=0.26

Fig. 3. Scenario tree for example C with optimal solutions for the stochastic case on the left and the
deterministic case on the right.

2 - - 0
-3 4
-1 o~
S 47 5
=) =
y— _5 - 63
- .2 8
-6
'7 T T ¥ 1 1) ‘3

0 10 20 30 40 50 60
No. of global iterations

Fig. 4. Convergence properties of example B. The error term d and the objective error are shown as
functions of the number of global iterations for two values of the penalty parameter p. By
“objective error” is meant the difference between the achieved and the true optimum.

438 T. Helgason, S.W. Wallace / Approximate scenario solutions

These sequences are monotonically decreasing although the scenario subprob-
lems are only solved with one inner iteration, thus supporting the assumption
(made later) that one iteration is enough. ’

The program was written in Pascal and run on a SUN 3/50. For these
examples the CPU time per global iteration is 1.2 seconds.

After about 10 iterations the error term d is of the order 10~* and an
(implementable) objective value is obtained which is less than 0.5% under the true
optimum. On the other hand, the error in the first decision, u,, is substantially
larger or some 30% off the optimal value. This discrepancy is due to a very flat
objective function. For the practical decision maker this means that he can
choose from a large selection of solutions as regards the initial decision. These
solutions are all nearly optimal. Unfortunately, managers tend to interpret such
results to allow them to overfish in the current year as this can always be
compensated for with lower catches in the succeeding years. However, managers
tend to postpone corrective measures indefinitely.

6.3. CHOICE OF THE PENALTY PARAMETER

The choice of the global penalty parameter p seems to be of vital importance.
This is demonstrated in table 1, which shows the number of (global) iterations
needed to achieve a certain precision as measured by d and the corresponding
deviation of the (implementable) objective value from the optimum one for
different values of the penalty parameter. The smallest value shown is p = 25. For
smaller values such as p =15 the algorithm did not converge. In example C, even
p =25 is too low.

We observe from table 1 that for a given level of the error term d, the actual
error in the objective value varies considerably. This is due to the fact that p
affects d directly. Therefore it can be misleading to judge the convergence
properties just by looking at this measure. This is even more serious if the
scenario subproblems are solved only approximately, as is the case in table 1. On
the other hand, in an actual setting where the optimal objective value is not
known, d is the only available measure of convergence. It is furthermore useful in
the sense that lack of monotonicity in d is an indication of no convergence. In
that case p should be increased.

Figure 5 shows the progress of the objective value in example B for three
different values of the penalty. Here one of the penalty values, p = 15, does not
ensure convergence.

The only conclusion to be drawn from table 1 and fig. 5 is that the penalty
should be as small as possible, provided it is large enough to guarantee conver-
gence. This is in agreement with the findings of Mulvey and Vladimirou [6] and

consistent with the general theory of augmented Lagrangian methods (see Pierre
and Lowe [8]).

T. Helgason, S.W. Wallace / Approximate scenario solutions 439

Table 1

Number of global iterations needed to reach a certain precision d for different penalty parameters
p. “Obj. err.” shows the difference between the achieved and the true optimum objective values

Example A
d =0.001 d = 0.0001 d = 0.00001 d = 0.000001
p=25 Itr. 5 14 23 28
Obj.err. 0.40 0.022 0.0063 0.00044
p=1350 Itr 3 13 - 31 52
Obj.err. 11 0.20 0.015 0.0040
p =100 Itr. 2 10 39 83
Obj.err. 1.5 0.76 0.063 0.0072
Example B
d =0.001 d =0.0001 d = 0.00001 d = 0.000001
p=25 Itr. 6 14 29 52
Obj.err. 0.14 0.029 0.0078 0.0024
p =150 Itr. 3 10 33 66
Obj.err. 0.62 0.16 0.24 0.0068
p=100 Itr. 3 7 34 92
Obj.err. 0.87 0.54 0.075 0.013
Example C
d =0.001 d =0.0001 d = 0.00001 d = 0.000001
p=125 Itr. No convergence
Ob;.err.
p=50 Itr. 5 14 28 54
Obj.err. 0.40 0.10 0.025 0.0063
p=100 Itr. 4 15 39 70
Obj.err. 0.87 0.27 0.066 0.019

Experiments show that increasing the discount factor calls for an increase in

the penalty parameter. If the algorithm is to be applicable to general problems,
some automatic way of choosing and adjusting the penalty parameter must be
implemented. Experience with the current examples — also supported by the
theory — indicates that a sufficiently large penalty coincides with monotone
decrease in the error term d. Thus an increase in 4 should immediately lead to
some increment in the penalty parameter.

6.4. SOLVING THE SCENARIO SUBPROBLEMS EXACTLY

The basic theory of Rockafellar and Wets assumes that the individual scenario
subproblems are solved exactly. This is not done in our LPHA algorithm. As we
mention in section 4 the subproblems can be solved with any desired precision by
looping between steps LPHA1 and LPHA2 after addition of an inner penalty

term with an appropriate parameter 7 (see (4.4)) which in our case turned out to
be for n = 1.

440 T. Helgason, S.W. Wallace / Approximate scenario solutions

10 -1
p=25
p=50
(5]
2
8
0
=
=
>
8 Y T v T T T T T T T Y T
0 10 20 30 40 50 60

No. of global iterations

Fig. 5. Convergence of the objective value for different choices of p in example B.

Experiments with the three versions of the fisheries problem for a moderate
number of stages (T < 7) showed that there is nothing to be gained by solving the
subproblems with more precision than that already obtained with one inner
iteration. Solving the subproblems more precisely reduces the number of global
iterations only marginally but the CPU time depends heavily on the number of
inner iterations. The CPU time is entirely based on the number of local and
global iterations. For a SUN 3/50 we have estimated this formula to be as
follows:

CPU = (0.37 +0.851,) I.

Here CPU time is measured in seconds and I; is the number of local iterations
and I; the number of global iterations. (For a SUN 3 /60 these numbers can be
multiplied by 0.63.) Thus the total CPU time actually increases if any effort is
spent on solving the subproblems more precisely than already done with one local
iteration.

Furthermore, if the subproblems are solved exactly, the global penalty parame-
ter has to be increased to ensure global convergence. As said in the previous
subsection convergence is secured for p > 25 with the basic LPHA algorithm for
these examples, but if the subproblems are solved exactly a much larger penalty is
needed (p > 200).

What happens is that although the total objective increases monotonically from
iteration to iteration in the progressive hedging algorithm this need not be the

T. Helgason, S.W. Wallace / Approximate scenario solutions 441

case if the objective function is broken down into individual scenarios. Solving
the subproblems exactly amplifies these oscillations of the individual scenarios,
which then again have to be damped with a larger penalty. But increasing the
penalty, on the other hand, slows down the speed of the algorithm, as we already
see from table 1.

These results strongly justify our suggestion of solving the subproblems of the
progressive hedging algorithm (step PHA1) only in a very approximate way.
Whether this also holds for larger more realistic problems with more stages needs
to be tested. Also other methods for solving the scenario subproblems more
accurately than the one used here might be faster and thus change the picture,
although we doubt they will.

6.5. LARGE SCENARIO TREES

The examples cited so far are of modest size with only 64 scenarios. In this
subsection we report about tests with thousands of scenarios. The example is still
based on the fisheries management model of section 5 with K =10, and x,=7.5
but now with a = 0.95. The main difference is that we have increased the number
of time stages and /or the number of children in the scenario trees.

In the first of these examples the number of possible outcomes for the growth
ratio s, has been increased from two to three, namely to the values 0, 1, and 2

0.51 ~ 30
Objective
- 29
0.4
5]
-3 3]
g] First decision 2
s 28 3
E E
i)
0.34
- 27
0.2 v T v T
0 10 20 26

No. of global iterations

Fig. 6. anvergence of the objective value and the first decision for an example with 3% = 6591
scenarios (see further description in subsection 6.5). There is one inner iteration and p =100.

442 T. Helgason, S.W. Wallace / Approximate scenario solutions

0.6 - 30
Objective L 28
0.5
=
2 First decision -26 @
2 5
£ 041 L2
& -24 O
m b
0.3 1 [
- 22
0.2 —— 20
0 20 40 60 80

No. of global iterations

Fig. 7. Convergence of the objective value and the first decision for an example with 2'% = 32768
scenarios (see further description in main text). There is one inner iteration and p =100.

with probabilities 0.55, 0.30, and 0.15, respectively. The expected value is now
0.6; therefore in the deterministic case the maximum sustainable yield is achieved
with a harvesting ratio # of 0.3. There are 8 periods (7T = 7), so the number of
scenarios is 3% = 6591. We used only one inner iteration. Again tests showed that
nothing is gained by solving the subproblems with higher precision.

Figure 6 shows results from this run with penalty p = 100. The first decision
and the objective value are shown as functions of the number of global iterations.

The CPU time per iteration on a SUN 3/50 for this example is about 6.9
minutes. It is interesting that most of this time, or 4.6 minutes, is needed for the
calculation of averages, i.e. calculating implementable decisions (step LPHA3).
The addition of one more time stage (7 = 8) did not change the above solution or
its behaviour. Now the number of scenarios is three times larger or 3° = 19683.
The CPU increased almost proportionally or up to 23.2 minutes per iteration.

A still larger example was tested. This time the growth ratio s, again has only
two values, 0 with probability 0.7 and 2 with probability 0.3. The expected value
is still 0.6. On the other hand T = 14, which means that the number of scenarios
is 2'° = 32768. Now the convergence is rather slow. Even after 70 iterations, it is
difficult to see whether the optimum has been reached or not (see fig. 7).

The penalty was chosen as 100, which was probably too low. Now the iteration
time was 63 minutes, which means that the 70 iterations took more than 3 CPU
days!

T. Helgason, S.W. Wallace / Approximate scenario solutions 443
6.6. ALTERNATIVE STARTING VALUES

We have earlier discussed the optimal number of local iterations in LPHA, that
is, the optimal number of iterations between LPHAl and LPHA2 before we
continue to LPHA3. We found the optimal number to be 1 for our examples.
However, we might increase the benefit of this one iteration with a different
starting value; step LPHA1 need not be initialized with an implementable
control, as we are doing; any admissible control will do. As an alternative to
using the latest implementable controls u,(s), we have tested the effect of using
the scenario solutions u,(s) from the previous global iteration. Let us refer to
these approaches as the “original” and “modified” method, respectively.

A reason for testing the modified method is that one may expect u,(s) to be
closer to the optimal scenario solution than u,(s). On the other hand, the u,(s)
are implementable, while that is not the case for u,(s) (until convergence has
been achieved). It is difficult to say which of these two approaches is best. Our
computational test does not answer the question in a satisfactory way. To ensure
convergence the penalty parameter p had to be larger in the modified method
than in the original one. This in turn slows down the rate of convergence.

It is difficult to draw any conclusions from the experiments reported in this
subsection, but since it may inspire those who try to implement the scenario
aggregation algorithm it is included in the paper.

7. Conclusions and further research

We have shown how it is possible to implement the scenario aggregation
procedure of Rockafellar and Wets in a simplified version by solving the
individual scenario problems only in an approximate way, using an integrated
application of a Lagrangian approach. Our computational results show that there
are substantial savings in using approximate scenario solutions. In no cases have
we observed that increasing the number of the inner iterations — needed to solve
the subproblems more accurately — has a desirable effect on CPU time. We
therefore believe that the approach tested here on a rather simple, but nonlinear,
problem can be used in most contexts, i.e. exact solutions of the scenario
problems are rarely needed.

Many aspects of the procedures need further investigations. In particular, we
need a method for adjusting the penalties to ensure fast convergence. For any
realistic problem the number of scenarios will be formidable. In order to make
the progressive hedging algorithm universally applicable some scenario-saving
improvement is called for. Obviously the scenarios do not all contribute equally
to the only interesting solution, namely the optimal first decision. Hence it is
tempting to develop a version of the algorithm whereby scenarios are generated
gradually, the most “important” first, and then use the solution to generate the
next scenario(s) and so on. This will be the subject of our next paper in this area.

444 T. Helgason, S.W. Wallace / Approximate scenario solutions

Acknowledgements

We are indebted to the two referees who suggested many useful changes in the
paper, in particular regarding the terminology. We would like to thank Kurt M.
Alonso for his assistance with coding and running the program and for generating
the graphics. Finally, we are grateful for partial support from the Science
Institute of the University of Iceland.

References

(1] J.R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs,
Oper. Res. 33 (1985) 989-1007.

[2] H. Gassmann, Multi-period stochastic programming, Ph.D. Thesis, University of British
Columbia, Vancouver, Canada (1987).

{31 M.R. Hestenes, Multiplier and gradient methods, J. Opt. Theory Appl. 4 (1969) 303-320.

[4] F. Louveaux, A solution method for muiti-stage stochastic programs with recourse with
applications to an energy investment problem, Oper. Res. 28 (1980) 889-902.

[5] F. Louveaux, Multistage stochastic programs with block-separable recourse, Math. Progr.
Study 28 (1986) 48-62.

[6] J. Mulvey and H. Vladimirou, Solving multistage stochastic networks: An application of
scenario analysis, Report SOR-88-1, Dept. of Civil Engineering and Operations Research.
Princeton University (1988).

[7] P. Olsen, Multistage stochastic program with recourse: The equivalent deterministic problem,
SIAM J. Control Optim. 14 (1976) 518-527.

[8] D.A. Pierre and M.J. Lowe, Mathematical Programming Via Augmented Lagrangians: An
Introduction with Computer Programs. Applied Mathematics and Computation 9 (Addison-Wes-
ley, Reading, 1975).

[9] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in: Optimiza-
tion, ed. R. Fletcher (Academic Press, New York, 1969) pp. 283-298.

[10] R.T. Rockafellar and R.J.-B. Wets, The principle of scenario aggregation in optimization under
uncertainty, Working paper WP-87-119, 1IASA, Austria (1987), to appear in Math. Oper. Res.

[11] M.B. Schaefer, Some aspects of the dynamics of populations important to to the management
of the commercial marine fisheries, Inter-Am. Trop. Tuna Comm. Bull. 1 (1954) 27-56.

{12] R. Van Slyke and R.J.-B. Wets, L-shaped linear programs with applications to optimal control
and stochastic programming, SIAM J. Appl. Math. 17 (1969) 638-663.

[13] S.W. Wallace and T. Helgason, Structural properties of the progressive hedging algorithm, this
volume.

[14] R.J.-B. Wets, Stochastic programming: Solution techniques and approximation schemes. in:
Mathematical Programming. The State of the Art, eds. A. Bachem, M. Grétschel and B. Korte
(Springer-Verlag, Berlin, 1983) pp. 566-603.

[15] R.J.-B. Wets, Large scale linear programming techniques, in: Numerical Techniques in Stochas-
tic Optimization, eds. Y. Ermoliev and R.J.-B. Wets (Springer, Berlin, 1988) pp. 65-94.

[16] R.J.-B. Wets, The aggregation in scenario analysis and stochastic optimization, in: Algorithms
and Model Formulations in Mathematical Programming, ed. S.W. Wallace (Springer, Berlin,
1989) pp. 91-113.

[17] R.J.-B. Wets, Stochastic programming, in: Handbooks in Operations Research and Management
Science, vol. 1: Optimization, eds. G.L. Nemhauser, A H.G. Rinnooy Kan and M.J. Todd
(North-Holland, Amsterdam, 1989) pp. 573-629.

