Journal of Automata, Languages and Combinatari¢g) w, x—y
(© Otto-von-Guericke-Universitat Magdeburg

APPROXIMATE SEEDS OF STRINGS

MANOLIS CHRISTODOULAKIS

Department of Computer Science,
King's College London
Strand, London WC2R 2LS, UK
e-mail: manol i s@lcs. kcl . ac. uk

COSTASS. ILIOPOULOS

Department of Computer Science,
King's College London
Strand, London WC2R 2LS, UK
e-mail: csi @ics. kcl . ac. uk

KUNSOOPARK?

School of Computer Science and Engineering,
Seoul National University
Korea
e-mail: kpar k@ heory. snu. ac. kr

and

JEONG SEOPSIM

School of Computer Science and Engineering,
Inha University,
Korea
e-mail:j ssi m@ nha. ac. kr

ABSTRACT

In this paper we study approximate seeds of strings, thatitsstrings of a given string that cover
(by concatenations or overlaps) a superstring: afinder a variety oflistancerules (the Hamming
distance, the edit distance, and the weighted edit disfai¢e solve thesmallest distance approxi-
mate seegbroblem and theestricted smallest approximate segeblem in polynomial time and we
prove that the generamallest approximate segaoblem is NP-complete.

Keywords: regularities, approximate seeds, Hamming distance, etéritte, weighted edit distance

Iwork supported by IMT 2000 Project ABO2, MOST grant M1-038-0003, and Royal Society grant.

2 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

1. Introduction

Finding regularitiesin strings is useful in a wide area of applications which imecstring
manipulations. Molecular biology, data compression andmater-assisted music analysis
are classic examples. By regularities we mean repeatetjstdaf an approximate nature.
Examples of regularities include repetitions, periodsgrs and seeds. Regularities in strings
have been studied widely the last 20 years.

There are severd(nlogn)-time algorithms [11, 6, 27] for findingepetitions that is,
equal adjacent substrings, in a stringvheren is the length ofc. Apostolico and Breslauer
[2] gave an optimaD(log log n)-time parallel algorithm (i.e., total work i©(n logn)) for
finding all the repetitions.

The preprocessing of the Knuth-Morris-Pratt algorithm] [22ds all periods ofc in linear
time— in fact, all periods of every prefix of. Apostolico, Breslauer and Galil [3] derived an
optimal O(log log n)-time parallel algorithm for finding all periods.

The fact that in practise it was often desirable to relax teamning of “repetition”, has led
more recently to the study of a collection of related patetficovers” and “seeds”. Covers
are similar to periods, but now overlaps, as well as conegims, are allowed. The notion
of covers was introduced by Apostolico, Farach and lliopsuh [5], where a linear-time
algorithm to test superprimitivity, was given (see also9818]). Moore and Smyth [29]
and recently Li and Smyth [25] gave linear time-time alduris for finding all covers of a
stringz. In parallel computation, lliopoulos and Park [19] obtaire optimalO(log logn)
time algorithm for finding all covers af. Apostolico and Ehrenfeucht [4] and lliopoulos and
Mouchard [17] considered the problem of finding maximal guersodic substrings af. A
two-dimensional variant of the covering problem was stddie[12, 15], and a minimum
covering by substrings of a given length in [20].

An extension of the notion of covers, is thatsafedsthat is, covers of a superstring of
The notion of seeds was introduced by lliopoulos, Moore aautk PL6] and arO(n logn)-
time algorithm was given for computing all seedswofA parallel algorithm for finding all
seeds was presented by Berkman, lliopoulos and Park [#]relqairesO(logn) time and
O(nlogn) work.

In applications such as molecular biology and computeistessmusic analysis, finding
exact repetitions is not always sufficient. A more apprdprietion is that ofipproximate
repetitions ([10, 13]); that is, finding strings that areMigar” to a given pattern, by allowing
errors. In this paper, we consider three different kindssiinflarity” (approximation): the
Hamming distancethe edit disctancdl, 35] and a generalization of the edit distance, the
weighted edit distangevhere different costs are assigned to each substitutisertion and
deletion for each pair of symbols.

Approximate repetitions have been studied by Landau andnfsitH24], who derived
an O(knlog k logn)-time algorithm for finding approximate squares whose ediadce is
at mostk in a text of lengthn. Schmidt also gave a®(n? logn) algorithm for finding
approximate tandem or nontandem repeats in [31] which usagbdétrary score for similarity
of repeated strings. More recently, Sim, lliopoulos, Pard &myth provided polynomial
time algorithms for finding approximate periods [33] ananSPark, Kim and Lee solved the
approximate covers problem in [34].

In this paper, we introduce the notion of approximate seadsapproximate version of

Approximate Seeds Of Strings 3

seeds. We solve ttemallest distance approximate sgawblem and theestricted smallest
approximate seegroblem and we prove that the more genamahllest approximate seed
problem is NP-complete.

The paper is organized as follows. In section 2, we presenedoasic definitions. In
section 3, we describe the notion of approximate seeds andefiee the three problems
studied in this paper. In section 4, we present the algosttirat solve the first two problems
and the proof that the third problem is NP-complete. Sedioontains our conclusion.

2. Preliminaries

A string is a sequence of zero or more symbols from an alphabethe set of all strings
overX is denoted by*. The length of a string is denoted byz|. Theempty stringthe
string of length zero, is denoted by Thei-th symbol of a string: is denoted byt[].

A string w is a substringof z if + = wwv, whereu,v € ¥*. We denote byz[i..j]
the substring of: that starts at position and ends at positioj. Conversely;r is called a
superstringof w. A stringw is aprefixof z if z = wy, fory € X*. Similarly, w is asuffix
of z if z = yw, forw € ¥*. We call a stringw a subsequencglso called a subword [14])
of x (or z is asupersequencef w) if w is obtained by deleting zero or more symbols at any
positions frome. For examplegce is a subsequence afibcde f. For a given sef of strings,

a stringw is called acommon supersequeneggs if s is a supersequence of every string in
S.

The stringzy is aconcatenatiorof the stringse andy. The concatenation df copies of
x is denoted by:*. For two stringse = z[1..n] andy = y[1..m] such thate[n — i + 1..n] =
y[1..i] for somei > 1 (that is, such that has a suffix equal to a prefix af), the string
z[1..nJy[i + 1..m] is said to be @uperpositiorof = andy. Alternatively, we may say that
overlapswith y.

A substringy of z is called arepetitionin z, if = uy*v, whereu, y, v are substrings of
z andk > 2, ly| # 0. For example, ifc = aababab, thena (appearing in positions 1 and 2)
andab (appearing in positions 2, 4 and 6) are repetitions;im particulara? = aa is called
asquare and(ab)® = ababab is called acube

A substringw is called aperiod of a stringz, if = can be written ag = w*w’ where
k > 1 andw’ is a prefix ofw. The shortest period afis calledthe periodof =. For example,
if © = abcabcab, thenabe, abcabe and the stringe itself are periods of, while abc is the
period ofx (i.e. the shortest period).

A substringw of z is called acoverof z, if can be constructed by concatenating or
overlapping copies of). We also say that coversz. For example, ifc = ababaaba, then
aba andx are covers of. If 2 has a covew # z, z is said to bejuasiperiodi¢ otherwisex
is superprimitive

A substringw of z is called aseedof z, if w covers one superstring of (this can be
any superstring of, including z itself). For exampleaba and ababa are some seeds of
r = ababaab.

We call thedistanced(z, y) between two strings andy, the minimum cost to transform
one stringe to the other string. There are several well known distance functions, desdribe
in the next paragraph. The special symhols used to represent the absence of a character.

4 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

Figure 1: Alignment example

2.1. Distance functions

Theedit distancebetween two strings is the minimum numberedfit operationghat trans-
form one string into another. The edit operations areitkertionof an extraneous symbol
(e.g.,A — a), thedeletionof a symbol (e.g.¢ — A) and thesubstitutionof a symbol by
another symbol (e.ga, — b). Note that in the edit distance model we only countrthenber
of edit operations, considering the cost of each operatialieo 1.

TheHamming distancbetween two strings is the minimum numbesabstitutionge.g.,
a — b) that transform one string to the other. Note that the Hangrdistance can be defined
only when the two strings have the same length, because & woieallow insertions and
deletions.

We also consider a generalized version of the edit distara#emtheweighted edit dis-
tance where the edit operations no longer have the same costsaki¢sruse of genalty
matrix, a matrix that specifies the cost of each substitution foh geir of symbols, and the
insertion and deletion cost for each character. A penaltyiria a metric when it satisfies
the following conditions for al,, b,c € ¥ U {A}:

e §(a,b) >0,

e §(a,b) = (b, a),

e)(a,a) =0,and

e i(a,c) < 6(a,b) + 4(b, c) (triangle inequality).

The similarity between two strings can be seen by usingligmment that is, any pairing
of symbols subject to the restriction that if lines were dnadvetween paired symbols, as in
Figure 1, the lines would not cross. The equality of the laagtn be obtained by inserting or
deleting zero or more symbols. In our example, the stringéah is transformed to “abdeg”
by deleting, substituting and inserting a character attjprs 3, 4 and 6, respectively. Note
that this is not the only possible alignment between the twogs.

We say that a distance functionz, y) is arelative distance functioif the lengths of
stringsz andy are considered in the value 6fz, y); otherwise it is arabsolute distance
function The Hamming distance and the edit distance are examplelssofude distance
functions. There are two ways to define a relative distantedenz andy:

e First, we can fix one of the two strings and define a relativéadise function with
respect to the fixed string. Therror ratio with respect tar is defined to bel/|x|,
whered is an absolute distance betweeandy.

e Second, we can define a relative distance function symra#yid hesymmetric error
ratio is defined to bei/l, whered is an absolute distance betweemndy, andl =

Approximate Seeds Of Strings 5

ABABACCBABRB

5 %2 53

Figure 2: Approximate Seed example.

(l=] + |y|)/2 [32]. Note that we may take= |z| + |y|, in which case everything is the
same except that the ratio is multiplied by 2.

If d is the edit distance betweerandy, the error ratio with respect toor the symmetric
error ratio is called aelative edit distanceThe weighted edit distance can also be used as a
relative distance function because the penalty matrix oaain arbitrary costs.

3. Problem Definitions

Definition 1 Letx ands be strings ovel*, § be a distance function andoe a number (the
precision). We calk a t-approximate seed af if and only if there exist strings,, so, .. ., Sr
(s; # ¢€) such that

(i) d(s,s;) <t,forl <i<r, and

(i) there exists a superstring = uxv, |u| < |s| and|v| < |s|, ofz that can be constructed
by overlapping or concatenating copies of the stringsss, . . ., s;..

Eachs;, 1 < i < r, will be called a seed block af.

Note thaty can beanysuperstring ofz, includingz itself (in which cases is an approxi-
mate cover). Note, also, that there can be several versi@ppooximate seeds according to
the definition of distance functioh

An example of an approximate seed is shown in Figure 2. Fmgst: = BABACCB
ands = ABAB, s is an approximate seed ofwith error 1 (hamming distance), because
there exist the strings; = ABAB,sy = ABAC,s3 = CBAB, such that the distance
betweens and eachs; is no more than 1, and by concatenating or overlapping ttiegstr
s1, S2, 83 We construct a superstring of y = ABABACCBAB.

We consider the following three problems related to appnaxe seeds.

Problem 1 SMALLEST DISTANCE APPROXIMATE SEED Letx be a string of lengtts, s be
a string of lengthm, andé be a distance function. Find the minimum numbsuch thats is
a t-approximate seed af.

In this problem, the string is given a priori. Thus, it makes no difference whetbiés an
absolute distance function or an error ratio with respest tba thresholdk < |s| on the edit
distance is given as input to Problem 1, the problem asksheheis a k-approximate seed
of x or not (thek-approximate seedroblem). Note that if the edit distance is useddpit is
trivially true thats is an|s|-approximate seed af.

Problem 2 RESTRICTED SMALLEST APPROXIMATE SEED Given a stringz of lengthn,
find a substrings of = such that:s is a¢t-approximate seed af and there is no substring of
x that is ak-approximate seed af for all & < t.

6 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

Since any substring af can be a candidate fat the length ofs is not (a priori) fixed in
this problem. Therefore, we need to use a relative distamoetibn (i.e., an error ratio or a
weighted edit distance) rather than an absolute distamzifun. For example, if the absolute
edit distance is used, every substring:aff length 1 is a 1-approximate seed:ofMoreover,
we assume thatis of length at mosjz|/2, because, otherwise the longest proper prefix of
(or any long prefix of) can easily become an approximate seed wfith a small distance.
This assumption will be applied to Problem 3, too.

Problem 3 SMALLEST APPROXIMATE SEED Given a stringz of lengthn, find a strings
such that:s is at-approximate seed afand there is no substring afthat is ak-approximate
seed ofr for all k& < t.

Problem 3 is a generalization of Problem<£2¢an now be any string, not necessarily a
substring ofz. Obviously, this problem is harder than the previous onewillgorove that it
is NP-complete.

4. Algorithms and NP-Completeness

4.1. Problem 1
Our algorithm for Problem 1 consists of two steps. ket |z| andm = |s|.

1. Compute the distance betweeand every substring af.
We denote byw;; the distance betweenandz]i..j], for 1 < ¢ < j < n. Note that, by
definition of approximate seeds|i..n] can be matched to any prefix efandx[1..5]
can be matched to any suffix ef(because has to coveanysuperstring ofr). Thus,
we denotev;,, the minimum value of the distances between all prefixesaofdz[i..n],
andw;; the minimum value of the distances between all suffixesaridz|(1..j].

2. Compute the minimumsuch thats is a t-approximate seed af.
We use dynamic programming to comptitas follows. Let; be the minimum value
such that is at;-approximate seed off1..i]. Lett, = 0. Fori = 1 to n, we compute
t; by the following formula:

ti = min {max{ min {t;},wn1}} (1)

The valuet,, is the minimumt such thats is at-approximate seed of.

To compute the distance between two stringandy, in step 1, a dynamic programming
table, called theD table of size(|z| + 1) x (Jy| + 1), is used. Each entrP[i, j], 0 < i <
|z] and0 < j < |y|, stores the minimum cost of transformingl..i] to y[1..5]. Initially,
DJ0,0] =0, D[i,0] = D[i —1,0]+d(z[i], A) andD[0, j] = D[0,5 — 1]+ (A, y[4]). Then
we can compute all the entries of thetable inO(|z||y|) time by the following recurrence:

D[i —1,7] + o(x[i], A)
D[i,j] = min ¢ D[i,j—1] + (A, ylj])

Approximate Seeds Of Strings 7

/ \
/
S ..
x| | H
1 h+1 J) n

Figure 3: The second step of the algorithm.

whered(a,b) is the cost of substituting charactemwith characteb, é(a, A) is the cost of
deletinga andd(A, a) is the cost of inserting.

The second step of the algorithm is computed as shown in &@uFor every,, we cover
z[h + 1..7] with one copy ofs, with errorwy, 1 ;. What is left to be covered ig[1..h]. We
obtain this by covering eithef{1..h], with error¢[h], or z[1..h + 1], with errort[h +1], ... or
x[1..i — 1], with errort[i — 1], (in generalz[1..5], with errort[j]); we choose the(1..j] (the
shaded box) that gives the smallest error. Note that, thixbwers a superstring of[1..j].

Theorem 1 Problem 1 can be solved ii(mn?) time when a weighted edit distance is used
for 4. If the edit or the Hamming distance is used doit can be solved i (mn) time.

Proof. For an arbitrary penalty matrix, step 1 takeénn?) time, since we make & table
of size(m + 1) x (n — i + 2) for each position of z. The fact that asuperstringof z,
rather thane itself, has to be “covered” does not increase the time coxitglef we use
the following procedure: instead of computing a n®atable between eacH1..k] (resp.
s[k..m]) andx[i..n] (resp. z[1..5]), we just make oné-table betweer andz[i..n| (resp.
sft (z[1..5])%) and take the minimum value of the last column of this table.

In step 2, we can compute the minimuim O(n?) time as follows. The innewnin loop of
Eq. (1) can be computed in constant time by reusingiilve values computed in the previous
round. The outerin loop is repeatedtimes, forl < i < n, i.e.,O(n?) repetitions.

Thus, the total time complexity i9(mn?).

When the edit distance is used for the measure of simildhity,algorithm for Problem 1
can be improved. In this cas&g, b) is always 1 ifa # b andd(a,b) = 0 otherwise. Now
it is not necessary to compute the edit distances betweerd the substrings of whose
lengths are larger tha?m because their edit distances witlwill exceedm. (It is trivially
true thats is anm-approximate seed af.) Step 1 now take®(m?n) time since we make
a D table of size(m + 1) x (2m + 1) for each position of:. Also, step 2 can be done in
O(mn) time since we compai@(m) values at each position ef Thus, the time complexity
is reduced ta@)(m?n).

However, we can do better. Step 1 can be solve@(imn) time by the algorithm due to
Landau, Myers and Schmidt [23]. Given two stringandy and a forward (resp. backward)
solution for the comparison betweerandy, the algorithm in [23] incrementally computes
a solution forz andby (resp.yb) in O(k) time, whereb is an additional character akds a
threshold on the edit distance. This can be done due to tagareship between the solution
for x andy and the solution for: andby. Whenk = m (i.e., the threshold is not given)
we can compute all the edit distances betweand every substring of whose length is at
most2m in O(mn) time using this algorithm. Recently, Kim and Park [21] gav&@rapler

8 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

x T
z[j..n] ; z[j..n] ;
x s x s
i+m-2
N
Newly computed i+m-1
row
s==zli..i + m— 2] s=z[i..i +m —1]
(Previous D table) (New D table)

Figure 4: Computing neuwD tables

O(mn)-time algorithm for the same problem. Therefore, we canesBoblem 1, irO(mn)
time if the edit distance is used fér When the threshold is given as input for Problem 1,
it can be solved irD(kn) time because each step of the above algorithm téKés) time.

If we use the Hamming distance fér in step 1 we consider only the substringsaof
of lengthm. (Recall that the Hamming distance is defined only betweengst of equal
length) Since there a@(n) such substrings, and we ne@¢mn) time to compute the distance
between each substring andstep 1 take®)(mn) time. Also, as in the case of the edit
distance, step 2 can be done(mn) time (we compar€(m) values at each position of
x). Thus, the overall time complexity &8(mn).]

4.2. Problem 2

In this problem, we are not given a strisg Any substring ofz is now a candidate for
approximate seed. Letbe such a candidate string. Recall that, since the lengthihot
fixed in this case, we need to use a relative distance funfriiner than an absolute distance
function); that is, an error ratio, in the case of the Hammingdit distance, or a weighted
edit distance.

When the relative edit distance is used for the measure dfasity, Problem 2 can be
solved inO(n*) time by our algorithm for Problem 1. If we take each substdfg ass and
apply theO(mn) algorithm for Problem 1 (that uses the algorithm in [23]}aitesO(|s|n)
time for eachs. Since there ar®(n?) substrings ofr, the overall time iD(n?).

For weighted edit distances (as well as for relative edtagises), we can solve Problem 2
in O(n*) time, without using the somewhat complicated algorithm28][Like before, we
consider every substring afas candidate string, and we solve Problem 1 farands. But,
we do this, by processing all the substringscdhat start at position, at the same time, as
follows.

Let T be the minimum distance so far. Initially; = co. For eachi, 1 < i < n, we
process thes — i + 1 substrings that start at positiaras candidate strings. Let be the
length of a chosen substring #fass. Initially, m = 1.

1. Takezx[i..i +m — 1] ass and computevy,;, forall1 < h < j < n. This computation
can be done by making D tables withs and each of the: suffixes ofz. By adding
just one row to each of previous tables (i.e. D tables whers = z[i..i + m — 2]),

Approximate Seeds Of Strings 9

we can compute these nelw tables inO(n?) time. See Figure 4. (Note that when
m = 1, we create new tables.)

2. Compute the minimum distan¢such thats is at-approximate seed af. This step is
similar to the second step of the algorithm for Problem 1.¢L.&e the minimum value
such thats is at;-approximate seed af[1..i] andt, = 0. Fori = 1 to n, we compute
t; by the following formula:

fi= gin, tmax { i, {1} wn i)

The valuet,, is the minimunt such that is at-approximate seed af. If ¢,, is smaller
thanT’, we updaté’ with ¢,,. If m < n — 14 + 1, increasen by 1 and go to step 1.

When all the steps are completed, the final valug’a$é the minimum distance and the
substrings that is al'-approximate seed af is an answer to Problem 2. (Note that there can
be more than one substrirghat areT’-approximate seeds aj.

Theorem 2 Problem 2 can be solved i®(n*) time when a weighted edit distance or a
relative edit distance is used far When a relative Hamming distance is usedfoProblem
2 can be solved i@ (n?) time.

Proof. For a weighted edit distance, we makeD tables inO(n?) time in step 1 and com-
pute the minimum distance i@(n?) time in step 2. Foin = 1ton — i + 1, we repeat
the two steps. Therefore, it tak€n?) time for eachi and the total time complexity of this
algorithm isO(n?). If a relative edit distance is used, the algorithm can lghdly simplified,
as in Problem 1, but it still take@(n*) time.

For a relative Hamming distance, it tak€%n) time for each candidate string and since
there areD(n?) candidate strings, the total time complexityO$n?). O

4.3. Problem 3

Given a set of strings, thghortest common superseque(BES) problem is to find a shortest
common supersequence of all strings in the set. The SCSegmnabINP-complete [26, 30].
We will show that Problem 3 is NP-complete by a reduction fiten SCS problem. In this
section we will call Problem 3 th8AS problenfabbreviation of the smallest approximate
seed problem). The decision versions of the SCS and SASegnaxre as follows:

Definition 2 (SCS) Given a positive integet, and a finite sefS of strings from>* whereX:
is a finite alphabet, the SCS problem is to decide if therda®egi€ommon supersequence
of S such thafjw| < m.

Definition 3 (SAS) Given a numbet, a stringz from (X')* whereX' is a finite alphabet,
and a penalty matrix, the SAS problem is to decide if therst®xai stringu such thatu is a
t-approximate seed af.

Now we transform an instance of the SCS problem to an instahdke SAS prob-
lem. We can assume that = {0,1} since the SCS problem is NP-complete even if
¥ = {0,1} [28, 30]. Assume that there ave stringssi,...,s, in S. First, we set

10 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

O|1|a|b|*x|%x|*xl~x#|$|%A
0[{0|2]1|2]|2|2]|2]|2|mImdm+l 1
112|0|2|1|2|2]2|2|mlImlmd]
aj1|2/0(21|1|1]1|mimeim+l]
bj2|1|2{0|1|1|1]21|mimiml]
| 2121|1022 2 |mimImsl 2
x| 2121 1] 12|02 2 |mimdim+l 2
% 212 1] 1] 2/ 2| 0| 2|mImim+l 2
* | 2| 2] 1| 1] 2| 2| 2| 0 |mImtim+l 2
|MmEIm+lm+Im+im+im+lm+m+ll O M+l M m+1
$ |mEIm+Im+Im+Im+im+Im+im+Im+1 Q | M |m+]
Op| MHIm+Im+Im+Im+im+lm+iim+l] M| m| Q |m+l
Al1|1] 1] 1] 2 2/2]2|mimim o

Figure 5: The penalty matri’/

Y =XU{a,b,#,8,%, %1, %2, A}. Letx = Yo+ SH+2"" #5185 #5028 - - - #5,8 #x3™M$
#x,"$%. Then, set = m and define the penalty matrix as in Figure 5. It is easy to s&e th
this transformation can be done in polynomial time.

Definition 4 Given a stringz and an approximate seadof z, if every character inu can
be aligned with a character (including) in a seed block of, we say that the seed block is
fully aligned withu in z.

For convenience, we assumg1 < ¢ < n, in S is different from each other and there are
at least two seed blocks each of which is fully aligned withThe latter assumption is quite
reasonable because otherwise, the longest proper prefixfor af given string always can
be the approximate seed with the minimum distance whiclivigkr

Lemma 1 Assume that is constructed as above. dfis anm-approximate seed af, then
u cannot havés.

Proof. In Appendix A. |

Lemma 2 Assume that is constructed as above. dfis anm-approximate seed af, then
u should have onét and ones.

Proof. In Appendix A.]

Lemma 3 Assume that is constructed as above. dfis anm-approximate seed af, then
u is of the form#Y'$ whereY € {a,b}™.

Proof. In Appendix A.]

Approximate Seeds Of Strings 11

case (a) case (b) case (c)
m
%
*T # *1 *1 , *1 *1 $
*3 # *2 *2 3 *2 *2 $
S # 0 A 1 $
S, # 1 A 1 $
0 A A 1 $
*5 # *3 *3 3 *3 *3 $
*q # *4 *4 : *4 *4 $
%
u # b - a b $
(=AS)

Figure 6: An alignment of’ U {u}

Theorem 3 The SAS problem is NP-complete.

Proof. It is easy to see that the SAS problem is in NP. To show that & [oblem is
NP-complete, we need to show thfahas a common supersequenceuch thajw| < m if
and only if there exists a stringsuch that. is anm-approximate seed af.

o (if) By Lemma 3,u = #Y$ whereY € {a,b}™. Sinceu is anm-approximate seed
of z, the distance betweeanand each seed blogks;$ is at mostm. (The distances
between. and the four fully aligned seed blocks ##,™$, 1 < i < 4, are alwaysn.)
Consider an alignment &’ U {u}. Since|Y| = m and the distance betweénhand
s; iIs at mostm, eacha (resp.b) in Y must be aligned witld (resp.1) or A in s;. (See
case ¢) and casel in Figure 6.) If we substituté for ¢ and1 for b in Y, we obtain
a common supersequeneeof sq, ..., s, such thajw| = m. (Note that ifa or b in
Y is aligned withA for all s;, we can delete the characterihand we can obtain a
common supersequence which is shorter tharSee casecf in Figure 6.)

e (only if) Let w be a common supersequenceS$uch thatw| < m. LetY be the
string constructed by substitutingfor 0 andb for 1 in w. (When|w| < m, we append
some characters frofu, b} to Y so that|Y'| = m.) Assume that each seed blockaof
has one#t and oneb except twa% at both sides of. Then the distance between each
seed block of: and#Y'$ is m since eachu (resp.b) in Y can be aligned witld (resp.

1), A, %1, or x5 in each seed block. (The first (resp. last) seed block &f can be
aligned with$ (resp.#) in u.) Therefore#Y'$ is anm-approximate seed af.

12 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

5. Conclusions

In this paper, we solved themallest distance approximate sgedblem, inO(mn) time for
the Hamming and edit distance afdmn?) for the weighted edit distance, and tlestricted
smallest approximate se@doblem, inO(n*) time for the edit and weighted edit distance and
O(n?) for the Hamming distance. We also proved thatdimallest approximate se@doblem

is NP-complete.

The significance of our work comes from the fact that we soledfirst two problems
for approximate seeds, with exactly the same time compé=xds those for approximate
periods [33] and approximate covers [34], despite the feat $eeds allow overlaps, as well
as concatenations, and coveswperstringof a stringz (rather than covering the string
itself).

References

[1] A. AHO, T. PETERSON A minimum distance error-correcting parser for contegef
languagesSIAM J. Computing (1972), 305-312.

[2] A. ArposToLicq D. BRESLAUER, An optimal O(log log N)-time parallel algorithm
for detecting all squares in a strin§IAM Journal on Computing5 (1996) 6, 1318—
1331.

[3] A. AposToLicq D. BRESLAUER Z. GALIL,, Optimal parallel algorithms for periods,
palindromes and squares. IRroc. 19th Int. Collog. Automata Languages and Pro-
gramming 623, 1992, 296-307.

[4] A. AposToLicq A. EHRENFEUCHT, Efficient detection of quasiperiodicities in
strings.Theoretical Computer Sciendd9(1993) 2, 247-265.

[5] A. AposToLicq M. FARACH, C. S. LiopouLos, Optimal superprimitivity testing
for strings.Information Processing Lette39 (1991) 1, 17-20.

[6] A. AposToLicq F. P. REPARATA, Optimal off-line detection of repetitions in a string.
Theoretical Computer Sciené@ (1983), 297-315.

[7] O. BERKMAN, C. S. LioPouLOS K. PARK, The subtree max gap problem with appli-
cation to parallel string coveringnformation and Computatioh23(1995) 1, 127-137.

[8] D. BRESLAUER, An On-Line String Superprimitivity Tesinformation Processing Let-
ters44(1992) 6, 345-347.
citeseer. nj.nec.coni bresl auer95line. ht n

[9] D. BRESLAUER, Testing String Superprimitivity in Parallelnformation Processing
Letters49(1994) 5, 235-241.
citeseer.nj.nec.conl bresl auer92testing. htm

[10] T. CRAWFORD, C. S. LIoPouLOS R. RAMAN, String matching techniques for musi-
cal similarity and melodic recognitio@omputing in Musicolog$1 (1998), 73-100.

[11] M. CROCHEMORE An optimal algorithm for computing repetitions in a wotdfor-
mation Processing Lettei? (1981) 5, 244-250.

Approximate Seeds Of Strings 13

[12] M. CROCHEMORE C. S. LlopouLOS M. KORDA, Two-dimensional prefix string
matching and covering on square matricsigiorithmica20(1998), 353-373.

[13] M. CROCHEMORE C. S. LIoPOULOS, H. Yu, Algorithms for computing evolutionary
chains in molecular and musical sequences.Rroc. 9th Australasian Workshop on
Combinatorial Algorithms1998, 172—-185.

[14] M. CROCHEMORE W. RYTTER, Text AlgorithmsOxford University Press, 1994.

[15] C. S. lLloPouLOS M. KoORDA, Optimal parallel superprimitivity testing on square
arraysParallel Processing Letter§ (1996) 3, 299-308.

[16] C. S. lLlopouLos D. MOORE, K. PaRK, Covering a stringAlgorithmical6 (1996),
288-297.

[17] C. S. lLiopPouLOS L. MOUCHARD, An O(nlogn) algorithm for computing all max-
imal quasiperiodicities in strings. IrProc. Computing: Australasian Theory Sympo-
sium Lecture Notes in Computer Science, 1999, 262-272.

[18] C. S. lLiopouLos K. Park, An optimalO(log log n)-time algorithm for parallel su-
perprimitivity testingJ. Korea Inform. Sci. So21 (1994), 1400-1404.

[19] C. S. LiopouLos K. PARK, A work-time optimal algorithm for computing all string
covers.Theoretical Computer Sciend&4(1996), 299-310.

[20] C. S. LiopPouLOSs W. F. SWYTH, On-line algorithms fok-covering. In:Proceedings
of the 9th Australasian Workshop On Combinatorial AlgarthPerth, WA, Australia,
1998, 97-106.
citeseer.nj.nec.conliliopoul 0s98line. htn

[21] S. Kim, K. PARK, A dynamic edit distance table. Iroc. 11th Symp. Combinatorial
Pattern Matching 1848, Springer, Berlin, 2000, 60-68.

[22] D. E. KNUTH, J. H. MORRIS, V. R. PRATT, Fast pattern mathcing in stringSIAM
Journal on Computing (1977) 1, 323-350.

[23] G. M. LANDAU, E. W. MYERS, J. P. £HMIDT, Incremental String Compariso8IAM
Journal on Computin@7(1998) 2, 557-582.
citeseer. nj.nec.con | andau98i ncrenental . ht m

[24] G. M. LANDAU, J. P. £HMIDT, An algorithm for approximate tandem repeats. In:
Proceedings of the 4th Annual Symposium on CombinatoriittFPaMatching 684,
Springer-Verlag, Berlin, Padova, Italy, 1993, 120-133.
citeseer.nj.nec.conl | andau93al gorithm htni

[25] Y. L1, W. F. SuYTH, An optimal on-line algorithm to compute all the covers ofring).
citeseer.nj.nec.conl 154219. ht

[26] D. MAIER, The complexity of some problems on subsequences and supersces.
Journal of the ACM25(1978) 2, 322—-336.

[27] M. G. MAIN, R. J. LORENTZ An algorithm for finding all repetitions in a string.
Journal of Algorithms (1984), 422-532.

[28] M. MIDDENDORF, More on the complexity of common superstring and supesecg
problemsTheoretical Computer Scien@@5(1994) 2, 205-228.

14 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

[29] D. MOORE, W. F. SMYTH, A correction to “An optimal algorithm to compute all the
covers of a string”Information Processing Lette&4 (1995) 2, 101-103.

[30] K. J. RAIHA, E. UKKONEN, The shortest common supersequence problem over binary
alphabet is NP-complet&heoretical Computer Sciend® (1981), 187-198.

[31] J. P. £HMIDT, All highest scoring paths in weighted grid graphs and itgliaption
to finding all approximate repeats in strin@8AM Journal on Computing7 (1998) 4,
972-992.

[32] P. H. ELLERS, Pattern recognition genetic sequences by mismatch gieBsitetin of
Mathematical Biology6 (1984) 4, 501-514.

[33] J. S. 9m, C. S. LiorPouLOs K. PARK, W. F. SVYTH, Approximate Periods of
Strings.Theoretical Computer Scien@62(2001), 557-568.
citeseer.nj.nec.conl 467710. htm

[34] J. S. 9™, K. PARK, S. KiM, J. LEE, Finding Approximate Covers of Stringdournal
of Korea Information Science Soci&tg (2002) 1, 16-21.

[35] R. WAGNER, M. FISHER, The string-to-string correction probledournal of the ACM
21(1974),168-173.

Approximate Seeds Of Strings 15

A. Proofs of Lemmas

Recall thatr = %ot " S##0™SH 518 #5908 - - - #5, 8 #Hx3™8 #x,"8%, wheresy, ..., sp
are strings inS, and the penalty matrix is defined as in Figure 5.

Lemma 1 Assume that is constructed as above. dfis anm-approximate seed af, then
u cannot havé.

Proof. First, we show that, cannot have more than ofie By assumption, there are at least
two fully aligned seed blocks. And thus, if there is more thae% in u, at least oné&; in u
cannot be aligned witft in x. Note that the distance betwe&hand any other character is
at leastm and each string betweef and$ in x is unique.

Assumeu has oné€s. Letu = v'%u” such that there is n% in v’ andu”. Let A be the
first fully aligned seed block witl in 2z and B be the last fully aligned seed block within
x. Due to the penalty matri¥} in « must be aligned witl¥% or # or $ in z. There are three
cases according to the existenc&in A andB.

() NeitherA nor B has%.
In this case A and B should be of the form/#u" or u'$u”". Assumed = v'#u’" and
B = «'$u”. (The opposite case is similar.) Due to the definitior@nd A, v’ must
be finished with$. (# should be preceded yin x.) But this makes a contradiction
becauseb$ cannot appear ilB. Now, assumed = B = u'#u”.(The case when
A = B = u/$u” is similar.) Note that there cannot bgs, 1 < i < 4, in v’ andu”
because though = B, the starting positions of two strings are different. Cdesithe
last (not fully aligned) seed block af It should contain3™ andx,™ because the last
fully aligned seed block3 does not contain them. In this case, however, the distance
betweeny and the last seed block exceedslue to the penalty matrix.

(b) Only A (resp.B) has%.
Assume onlyA has%. First, A # %. If A = %, «’ should not havet or $. Consider
the second fully aligned seed blockaflt must start with# sinceA = %, and thus%
in u should be aligned witht and so that the distance betwaeand the second fully
aligned seed block does not excerdu’ = ¢ andu” = ;* such that(u”,e) < m.
It means there is ngt and$ in »”. But in this case, the distance betweeand at least
one seed block of will exceedm. Thus, we can sed = %#A’, and then.” in v and
B should start with#:. So,B = u'$u".

The last (not fully aligned) seed block must %eitself, otherwise, i.e., if it is longer,
it should have before%. For the distance betweenand the last seed block not to
exceedn, there should b8 in «’ and it should be aligned withiin the last seed block.
But by the definition ofc and B, there should be & between thé in v’ and the% in
u, which makes the distance betwaeand the last seed block exceed
Thus,u” in B should have#x,™$ but thend(u, A) will exceedm.

(c) Both A andB have%.
In this caseA is a prefix ofz andB is a suffix ofz. It is easy to see th&t in v should
be aligned with% in A and B, respectively. But in this case, the distance between
and any other seed block will exceed

16 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

By (a), (b), and (c), there can be fgin w.]

Lemma 2 Assume that is constructed as above. dfis anm-approximate seed af, then
u should have onét and ones.

Proof. By Lemma 1,# (resp.$) in each seed block af must be aligned with (resp.$)
in u, and thusy must have at least oré and ones. Now we show that unless has one#
and one$, the distance betweenand at least one seed block:omust exceedh.

Assume that, has two#'’s. (The other cases are similar.) There are three casesditgo
to the number o$’s in w.

1. Suppose that has one$.
In this casep = #Y$#Z such thatv, Z € {0,1, a, b, x1, *2, 3, %4 }*. Consider the
last seed block of. It must be% itself or #x,™$%.

(@) %: The last fully aligned seed blockB must end with$. Then,d(u, B) will
exceedn.

(b) #*4™8$%: In this caseY = x,™ and the distance betweenand at least one
seed block will exceedh.

2. Suppose that has two$’s.
In this case,u can be of the form#Y $#28, or X$#Y$#Z. First, whenu =
#Y $#78, there are two cases according to the last seed bloak dfhe last seed
block of z can be% or #x,"$%.

(@) %: In this case B = #x3™$#x,™$. Then,u should haven characters from
{*3,*4} and the distance betweerand any other fully aligned seed block will
exceedn.

(b) #x4m$%: In this case,Y = 4™, and B = #s,$#+3™$ or B =
#x3m84#%,™8$. In both casesi(u, B) will exceedm.

Next, whenu = XS$#Y$+#Z, the first seed block of can be%#Y $#Z where
Y =+ andZ = %' (0 < i < m) or %#Z whereZ = %' (0 < i < m). The
last seed block of can beX $#Y$% whereX = x37 (0 < j < m) andY = x4™ or
X$% whereX = %47 (0 < j < m).

(a) the first seed block i%#Y $# 7 and the last seed block ¥$#Y $%: It con-
tradicts becausE cannot bex;™ andx,™ at the same time.

(b) the first seed block i%#Y $# 7 and the last seed block %$%: Consider the
last fully aligned seed block. B should be of the forms,,’$#x3™$#x,* such
thats,, is a suffix ofs,, and0 < k < m. Butin this casej(u, B) will exceedm
sinceY = %™,

(c) the first seed block i%+#2Z and the last seed block E$#Y$%: Consider the
first fully aligned seed blocld. A should be of the form; ¥$#sx,™$#s,’ such
that0 < k < m ands;’ is a prefix ofs;. But in this casej(u, A) will exceedm
sinceY = x,™.

Approximate Seeds Of Strings 17

(d) the first seed block i%# Z and the last seed block §$+#Y$%: Consider the
first fully aligned seed block of A and the last fully aligned seed block ofB.
A = % *$#x,m$45," such thah) < k < m ands,’ is a prefix ofs; andB =
sn/$##3™$H+,4' such thab < I < m ands,,’ is a suffix ofs,,. By the definition
of approximate seed,+: > m andl+ j > m. Then,0(u, A) = 2-max(k,j) +
S(x2™, Y)+2:6(%1%, 51") andd(u, B) = 2-6(*47, 8,/) +6(%3™, V) +2-max(i, 1).
There are four cases according to the valuesat(k, j) andmax(i, 1).

(i) max(k,j) = k andmax(i,l) = i: Thend(u, A) = 2k + §(x2™,Y) + 2 -
S(x1%,81") > 2k + 0(x2™,Y) + 20 > 2m + §(x2™,Y) > m.

(i) max(k,j) = k andmax(i,!) = I: The same case as (i).

(i) max(k,j) = j andmax(i,l) = i: Sincek +i > m andl + j > m,
kE+i+j74+1>2m. Thus,2(i+j) > k+ i+ j+1 > 2m. Therefore,
S(u, A) = 25 4+ 6(x2™Y) + 2 - 8(x1%,81") > 25 + 6(x3™,Y) + 2i >
2m + 6(x2™,Y) > m.

(iv) max(k,j) = j andmax(i,l) = I: Thend(u,B) = 2 - §(x47,8,") +
(k3™ Y) + 21 > 25+ 0(x3™,Y) + 20 > 2m + §(x3™,Y) > m.

3. Suppose that has threé'’s.
In this caseu = X$#Y $#Z$. Then, the first seed block can Beor %#+,™$ or
%F#+1m$#x,™$ and the last seed block can tieor X $%. But when the first seed
block is %, the distance betwee# and« must exceedn due to the penalty matrix.
Thus, there are four cases according to the first and thedadttdock ofz.

(a) The first seed block i&+#x,™$ and the last seed block %: In this case X = ¢
since the last seed block %, andZ = x;™ for the distance betweanand the
first seed block of: not exceedn. But becausé® = s,,’$#x3™$#*,™$ where
s, is a suffix ofs,,, d(u, B) will exceedm.

(b) The first seed block i%#x,"$ and the last seed block §$%: In this case,
Z = x1™ so that the distance betweerand the first seed block does not exceed
m. Butbecaus® = s,,'$#x3™$+#+,"$ wheres,,’ is a suffix ofs,,, 6 (u, B) will
exceedn.

(c) The first seed block i%+#x*;™$#x2™$ and the last seed block ¥%: In this
case,Y = x;™ andZ = x,™ so that the distance betweearand the first seed
block of z does not exceedh. But if so,d(u, B) will exceedm.

(d) The first seed block i%#x;™$#x,™$ and the last seed block £$%: The
same case as (c).

Now, we can conclude thatshould have just ong and ones.]

Lemma 3 Assume that is constructed as above. dfis anm-approximate seed af, then
u is of the form#Y'$ whereY € {a,b}™.

Proof. By Lemma 1 and Lemma 2y = X#Y$Z where X,Y,Z € {0,1,qa,b,
1, %o, *3, %4, A}*. Sinceu has one# and one}, every fully aligned seed block also should
have one#t and one$. That is, each fully aligned seed block is of the fogaa$ where

a € {0,1,a,b,*1, %2, *3, x4, A}*, and the first and the last seed blockiaé % at both sides

18 M. Christodoulakis, C. S. lliopoulos, K. Park, J. S. Sim

of x. Consider the first two fully aligned seed blocksioftx;™$ and#x,™8$. If Y contains
i %1's for¢ > 1, Y must also have x,'s and the remaining:. — 2i characters irt” must be
from {a, b} so that the distances betweerand the first two fully aligned seed blocks of
do not exceedr. However, this makes the distance betweeand any other seed block of
exceedn due tox;'s andx,’s in Y. HenceY cannot have:; or x5 and similarly,Y” cannot
havexs or x4. Also, Y cannot have any character fraf, 1, A} since0, 1 andA have cost
2 with x;, 1 < 4 < 4, in the first two fully aligned seed blocks and the last twdyfaligned
seed blocks of. For the distances betweearand the four fully aligned seed blocks ofto

be at mosin, X andZ must be empty anilr must be of the forn{a, b}"™. See Figure 6.0

