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ABSTRACT

In this paper we study approximate seeds of strings, that is,substrings of a given stringx that cover
(by concatenations or overlaps) a superstring ofx, under a variety ofdistancerules (the Hamming
distance, the edit distance, and the weighted edit distance). We solve thesmallest distance approxi-
mate seedproblem and therestricted smallest approximate seedproblem in polynomial time and we
prove that the generalsmallest approximate seedproblem is NP-complete.
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1. Introduction

Finding regularities in strings is useful in a wide area of applications which involve string
manipulations. Molecular biology, data compression and computer-assisted music analysis
are classic examples. By regularities we mean repeated strings of an approximate nature.
Examples of regularities include repetitions, periods, covers and seeds. Regularities in strings
have been studied widely the last 20 years.

There are severalO(n log n)-time algorithms [11, 6, 27] for findingrepetitions, that is,
equal adjacent substrings, in a stringx, wheren is the length ofx. Apostolico and Breslauer
[2] gave an optimalO(log log n)-time parallel algorithm (i.e., total work isO(n log n)) for
finding all the repetitions.

The preprocessing of the Knuth-Morris-Pratt algorithm [22] finds all periods ofx in linear
time— in fact, all periods of every prefix ofx. Apostolico, Breslauer and Galil [3] derived an
optimalO(log log n)-time parallel algorithm for finding all periods.

The fact that in practise it was often desirable to relax the meaning of “repetition”, has led
more recently to the study of a collection of related patterns—“covers” and “seeds”. Covers
are similar to periods, but now overlaps, as well as concatenations, are allowed. The notion
of covers was introduced by Apostolico, Farach and Iliopoulos in [5], where a linear-time
algorithm to test superprimitivity, was given (see also [8,9, 18]). Moore and Smyth [29]
and recently Li and Smyth [25] gave linear time-time algorithms for finding all covers of a
stringx. In parallel computation, Iliopoulos and Park [19] obtained an optimalO(log log n)
time algorithm for finding all covers ofx. Apostolico and Ehrenfeucht [4] and Iliopoulos and
Mouchard [17] considered the problem of finding maximal quasiperiodic substrings ofx. A
two-dimensional variant of the covering problem was studied in [12, 15], and a minimum
covering by substrings of a given length in [20].

An extension of the notion of covers, is that ofseeds; that is, covers of a superstring ofx.
The notion of seeds was introduced by Iliopoulos, Moore and Park [16] and anO(n log n)-
time algorithm was given for computing all seeds ofx. A parallel algorithm for finding all
seeds was presented by Berkman, Iliopoulos and Park [7], that requiresO(log n) time and
O(n log n) work.

In applications such as molecular biology and computer-assisted music analysis, finding
exact repetitions is not always sufficient. A more appropriate notion is that ofapproximate
repetitions ([10, 13]); that is, finding strings that are “similar” to a given pattern, by allowing
errors. In this paper, we consider three different kinds of “similarity” (approximation): the
Hamming distance, theedit disctance[1, 35] and a generalization of the edit distance, the
weighted edit distance, where different costs are assigned to each substitution, insertion and
deletion for each pair of symbols.

Approximate repetitions have been studied by Landau and Schmidt [24], who derived
anO(kn log k log n)-time algorithm for finding approximate squares whose edit distance is
at mostk in a text of lengthn. Schmidt also gave anO(n2 log n) algorithm for finding
approximate tandem or nontandem repeats in [31] which uses an arbitrary score for similarity
of repeated strings. More recently, Sim, Iliopoulos, Park and Smyth provided polynomial
time algorithms for finding approximate periods [33] and, Sim, Park, Kim and Lee solved the
approximate covers problem in [34].

In this paper, we introduce the notion of approximate seeds,an approximate version of
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seeds. We solve thesmallest distance approximate seedproblem and therestricted smallest
approximate seedproblem and we prove that the more generalsmallest approximate seed
problem is NP-complete.

The paper is organized as follows. In section 2, we present some basic definitions. In
section 3, we describe the notion of approximate seeds and wedefine the three problems
studied in this paper. In section 4, we present the algorithms that solve the first two problems
and the proof that the third problem is NP-complete. Section5 contains our conclusion.

2. Preliminaries

A string is a sequence of zero or more symbols from an alphabetΣ. The set of all strings
overΣ is denoted byΣ∗. The length of a stringx is denoted by|x|. Theempty string, the
string of length zero, is denoted byε. Thei-th symbol of a stringx is denoted byx[i].

A string w is a substringof x if x = uwv, whereu, v ∈ Σ∗. We denote byx[i..j]
the substring ofx that starts at positioni and ends at positionj. Conversely,x is called a
superstringof w. A stringw is aprefixof x if x = wy, for y ∈ Σ∗. Similarly, w is asuffix
of x if x = yw, for w ∈ Σ∗. We call a stringw a subsequence(also called a subword [14])
of x (or x is asupersequenceof w) if w is obtained by deleting zero or more symbols at any
positions fromx. For example,ace is a subsequence ofaabcdef . For a given setS of strings,
a stringw is called acommon supersequenceof S if s is a supersequence of every string in
S.

The stringxy is aconcatenationof the stringsx andy. The concatenation ofk copies of
x is denoted byxk. For two stringsx = x[1..n] andy = y[1..m] such thatx[n− i + 1..n] =
y[1..i] for somei ≥ 1 (that is, such thatx has a suffix equal to a prefix ofy), the string
x[1..n]y[i + 1..m] is said to be asuperpositionof x andy. Alternatively, we may say thatx
overlapswith y.

A substringy of x is called arepetitionin x, if x = uykv, whereu, y, v are substrings of
x andk ≥ 2, |y| 6= 0. For example, ifx = aababab, thena (appearing in positions 1 and 2)
andab (appearing in positions 2, 4 and 6) are repetitions inx; in particulara2 = aa is called
a square and(ab)3 = ababab is called acube.

A substringw is called aperiod of a stringx, if x can be written asx = wkw′ where
k ≥ 1 andw′ is a prefix ofw. The shortest period ofx is calledthe periodof x. For example,
if x = abcabcab, thenabc, abcabc and the stringx itself are periods ofx, while abc is the
period ofx (i.e. the shortest period).

A substringw of x is called acover of x, if x can be constructed by concatenating or
overlapping copies ofw. We also say thatw coversx. For example, ifx = ababaaba, then
aba andx are covers ofx. If x has a coverw 6= x, x is said to bequasiperiodic; otherwise,x
is superprimitive.

A substringw of x is called aseedof x, if w covers one superstring ofx (this can be
any superstring ofx, includingx itself). For example,aba andababa are some seeds of
x = ababaab.

We call thedistanceδ(x, y) between two stringsx andy, the minimum cost to transform
one stringx to the other stringy. There are several well known distance functions, described
in the next paragraph. The special symbol∆ is used to represent the absence of a character.
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Figure 1: Alignment example

2.1. Distance functions

Theedit distancebetween two strings is the minimum number ofedit operationsthat trans-
form one string into another. The edit operations are theinsertionof an extraneous symbol
(e.g.,∆ → a), thedeletionof a symbol (e.g.,a → ∆) and thesubstitutionof a symbol by
another symbol (e.g.,a → b). Note that in the edit distance model we only count thenumber
of edit operations, considering the cost of each operation equal to 1.

TheHamming distancebetween two strings is the minimum number ofsubstitutions(e.g.,
a → b) that transform one string to the other. Note that the Hamming distance can be defined
only when the two strings have the same length, because it does not allow insertions and
deletions.

We also consider a generalized version of the edit distance model, theweighted edit dis-
tance, where the edit operations no longer have the same costs. It makes use of apenalty
matrix, a matrix that specifies the cost of each substitution for each pair of symbols, and the
insertion and deletion cost for each character. A penalty matrix is a metric when it satisfies
the following conditions for alla, b, c ∈ Σ ∪ {∆}:

• δ(a, b) ≥ 0,

• δ(a, b) = δ(b, a),

• δ(a, a) = 0, and

• δ(a, c) ≤ δ(a, b) + δ(b, c) (triangle inequality).

The similarity between two strings can be seen by using analignment; that is, any pairing
of symbols subject to the restriction that if lines were drawn between paired symbols, as in
Figure 1, the lines would not cross. The equality of the lengths can be obtained by inserting or
deleting zero or more symbols. In our example, the string “abcae” is transformed to “abdeg”
by deleting, substituting and inserting a character at positions 3, 4 and 6, respectively. Note
that this is not the only possible alignment between the two strings.

We say that a distance functionδ(x, y) is a relative distance functionif the lengths of
stringsx andy are considered in the value ofδ(x, y); otherwise it is anabsolute distance
function. The Hamming distance and the edit distance are examples of absolute distance
functions. There are two ways to define a relative distance betweenx andy:

• First, we can fix one of the two strings and define a relative distance function with
respect to the fixed string. Theerror ratio with respect tox is defined to bed/|x|,
whered is an absolute distance betweenx andy.

• Second, we can define a relative distance function symmetrically. Thesymmetric error
ratio is defined to bed/l, whered is an absolute distance betweenx andy, andl =
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Figure 2: Approximate Seed example.

(|x|+ |y|)/2 [32]. Note that we may takel = |x|+ |y|, in which case everything is the
same except that the ratio is multiplied by 2.

If d is the edit distance betweenx andy, the error ratio with respect tox or the symmetric
error ratio is called arelative edit distance. The weighted edit distance can also be used as a
relative distance function because the penalty matrix can contain arbitrary costs.

3. Problem Definitions

Definition 1 Letx ands be strings overΣ∗, δ be a distance function andt be a number (the
precision). We calls a t-approximate seed ofx if and only if there exist stringss1, s2, . . . , sr

(si 6= ε) such that

(i) δ(s, si) ≤ t, for 1 ≤ i ≤ r, and

(ii) there exists a superstringy = uxv, |u| < |s| and|v| < |s|, ofx that can be constructed
by overlapping or concatenating copies of the stringss1, s2, . . . , sr.

Eachsi, 1 ≤ i ≤ r, will be called a seed block ofx.

Note thaty can beanysuperstring ofx, includingx itself (in which case,s is an approxi-
mate cover). Note, also, that there can be several versions of approximate seeds according to
the definition of distance functionδ.

An example of an approximate seed is shown in Figure 2. For stringsx = BABACCB
ands = ABAB, s is an approximate seed ofx with error 1 (hamming distance), because
there exist the stringss1 = ABAB, s2 = ABAC, s3 = CBAB, such that the distance
betweens and eachsi is no more than 1, and by concatenating or overlapping the strings
s1, s2, s3 we construct a superstring ofx, y = ABABACCBAB.

We consider the following three problems related to approximate seeds.

Problem 1 SMALLEST DISTANCE APPROXIMATE SEED Letx be a string of lengthn, s be
a string of lengthm, andδ be a distance function. Find the minimum numbert such thats is
a t-approximate seed ofx.

In this problem, the strings is given a priori. Thus, it makes no difference whetherδ is an
absolute distance function or an error ratio with respect tos. If a thresholdk ≤ |s| on the edit
distance is given as input to Problem 1, the problem asks whethers is ak-approximate seed
of x or not (thek-approximate seedproblem). Note that if the edit distance is used forδ, it is
trivially true thats is an|s|-approximate seed ofx.

Problem 2 RESTRICTED SMALLEST APPROXIMATE SEED Given a stringx of lengthn,
find a substrings of x such that:s is a t-approximate seed ofx and there is no substring of
x that is ak-approximate seed ofx for all k < t.
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Since any substring ofx can be a candidate fors, the length ofs is not (a priori) fixed in
this problem. Therefore, we need to use a relative distance function (i.e., an error ratio or a
weighted edit distance) rather than an absolute distance function. For example, if the absolute
edit distance is used, every substring ofx of length 1 is a 1-approximate seed ofx. Moreover,
we assume thats is of length at most|x|/2, because, otherwise the longest proper prefix ofx
(or any long prefix ofx) can easily become an approximate seed ofx with a small distance.
This assumption will be applied to Problem 3, too.

Problem 3 SMALLEST APPROXIMATE SEED Given a stringx of lengthn, find a strings
such that:s is at-approximate seed ofx and there is no substring ofx that is ak-approximate
seed ofx for all k < t.

Problem 3 is a generalization of Problem 2;s can now be any string, not necessarily a
substring ofx. Obviously, this problem is harder than the previous one; wewill prove that it
is NP-complete.

4. Algorithms and NP-Completeness

4.1. Problem 1

Our algorithm for Problem 1 consists of two steps. Letn = |x| andm = |s|.

1. Compute the distance betweens and every substring ofx.

We denote bywij the distance betweens andx[i..j], for 1 < i ≤ j < n. Note that, by
definition of approximate seeds,x[i..n] can be matched to any prefix ofs, andx[1..j]
can be matched to any suffix ofs (becauses has to coveranysuperstring ofx). Thus,
we denotewin the minimum value of the distances between all prefixes ofs andx[i..n],
andw1j the minimum value of the distances between all suffixes ofs andx[1..j].

2. Compute the minimumt such thats is a t-approximate seed ofx.

We use dynamic programming to computet as follows. Letti be the minimum value
such thats is ati-approximate seed ofx[1..i]. Let t0 = 0. For i = 1 to n, we compute
ti by the following formula:

ti = min
0≤h<i

{max { min
h≤j<i

{tj}, wh+1,i}} (1)

The valuetn is the minimumt such thats is at-approximate seed ofx.

To compute the distance between two strings,x andy, in step 1, a dynamic programming
table, called theD table, of size(|x| + 1) × (|y| + 1), is used. Each entryD[i, j], 0 ≤ i ≤
|x| and0 ≤ j ≤ |y|, stores the minimum cost of transformingx[1..i] to y[1..j]. Initially,
D[0, 0] = 0, D[i, 0] = D[i−1, 0]+ δ(x[i], ∆) andD[0, j] = D[0, j−1]+ δ(∆, y[j]). Then
we can compute all the entries of theD table inO(|x||y|) time by the following recurrence:

D[i, j] = min











D[i − 1, j] + δ(x[i], ∆)

D[i, j − 1] + δ(∆, y[j])

D[i − 1, j − 1] + δ(x[i], y[j])
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Figure 3: The second step of the algorithm.

whereδ(a, b) is the cost of substituting charactera with characterb, δ(a, ∆) is the cost of
deletinga andδ(∆, a) is the cost of insertinga.

The second step of the algorithm is computed as shown in Figure 3. For everyh, we cover
x[h + 1..i] with one copy ofs, with errorwh+1,i. What is left to be covered isx[1..h]. We
obtain this by covering eitherx[1..h], with errort[h], orx[1..h+1], with errort[h+1], . . . or
x[1..i − 1], with errort[i − 1], (in generalx[1..j], with errort[j]); we choose thex[1..j] (the
shaded box) that gives the smallest error. Note that, this box covers a superstring ofx[1..j].

Theorem 1 Problem 1 can be solved inO(mn2) time when a weighted edit distance is used
for δ. If the edit or the Hamming distance is used forδ, it can be solved inO(mn) time.

Proof. For an arbitrary penalty matrix, step 1 takesO(mn2) time, since we make aD table
of size(m + 1) × (n − i + 2) for each positioni of x. The fact that asuperstringof x,
rather thanx itself, has to be “covered” does not increase the time complexity, if we use
the following procedure: instead of computing a newD-table between eachs[1..k] (resp.
s[k..m]) andx[i..n] (resp. x[1..j]), we just make oneD-table betweens andx[i..n] (resp.
sR (x[1..j])R) and take the minimum value of the last column of this table.

In step 2, we can compute the minimumt in O(n2) time as follows. The innermin loop of
Eq. (1) can be computed in constant time by reusing themin values computed in the previous
round. The outermin loop is repeatedi times, for1 ≤ i ≤ n, i.e.,O(n2) repetitions.

Thus, the total time complexity isO(mn2).
When the edit distance is used for the measure of similarity,this algorithm for Problem 1

can be improved. In this case,δ(a, b) is always 1 ifa 6= b andδ(a, b) = 0 otherwise. Now
it is not necessary to compute the edit distances betweens and the substrings ofx whose
lengths are larger than2m because their edit distances withs will exceedm. (It is trivially
true thats is anm-approximate seed ofx.) Step 1 now takesO(m2n) time since we make
a D table of size(m + 1) × (2m + 1) for each position ofx. Also, step 2 can be done in
O(mn) time since we compareO(m) values at each position ofx. Thus, the time complexity
is reduced toO(m2n).

However, we can do better. Step 1 can be solved inO(mn) time by the algorithm due to
Landau, Myers and Schmidt [23]. Given two stringsx andy and a forward (resp. backward)
solution for the comparison betweenx andy, the algorithm in [23] incrementally computes
a solution forx andby (resp.yb) in O(k) time, whereb is an additional character andk is a
threshold on the edit distance. This can be done due to the relationship between the solution
for x andy and the solution forx andby. Whenk = m (i.e., the threshold is not given)
we can compute all the edit distances betweens and every substring ofx whose length is at
most2m in O(mn) time using this algorithm. Recently, Kim and Park [21] gave asimpler
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Figure 4: Computing newD tables

O(mn)-time algorithm for the same problem. Therefore, we can solve Problem 1, inO(mn)
time if the edit distance is used forδ. When the thresholdk is given as input for Problem 1,
it can be solved inO(kn) time because each step of the above algorithm takesO(kn) time.

If we use the Hamming distance forδ, in step 1 we consider only the substrings ofx
of lengthm. (Recall that the Hamming distance is defined only between strings of equal
length) Since there areO(n) such substrings, and we needO(m) time to compute the distance
between each substring ands, step 1 takesO(mn) time. Also, as in the case of the edit
distance, step 2 can be done inO(mn) time (we compareO(m) values at each position of
x). Thus, the overall time complexity isO(mn). 2

4.2. Problem 2

In this problem, we are not given a strings. Any substring ofx is now a candidate for
approximate seed. Lets be such a candidate string. Recall that, since the length ofs is not
fixed in this case, we need to use a relative distance function(rather than an absolute distance
function); that is, an error ratio, in the case of the Hammingor edit distance, or a weighted
edit distance.

When the relative edit distance is used for the measure of similarity, Problem 2 can be
solved inO(n4) time by our algorithm for Problem 1. If we take each substringof x ass and
apply theO(mn) algorithm for Problem 1 (that uses the algorithm in [23]), ittakesO(|s|n)
time for eachs. Since there areO(n2) substrings ofx, the overall time isO(n4).

For weighted edit distances (as well as for relative edit distances), we can solve Problem 2
in O(n4) time, without using the somewhat complicated algorithm in [23]. Like before, we
consider every substring ofx as candidate strings, and we solve Problem 1 forx ands. But,
we do this, by processing all the substrings ofx that start at positioni, at the same time, as
follows.

Let T be the minimum distance so far. Initially,T = ∞. For eachi, 1 ≤ i ≤ n, we
process then − i + 1 substrings that start at positioni as candidate strings. Letm be the
length of a chosen substring ofx ass. Initially, m = 1.

1. Takex[i..i + m − 1] ass and computewhj , for all 1 ≤ h ≤ j ≤ n. This computation
can be done by makingn D tables withs and each of then suffixes ofx. By adding
just one row to each of previousD tables (i.e.,n D tables whens = x[i..i + m − 2]),
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we can compute these newD tables inO(n2) time. See Figure 4. (Note that when
m = 1, we create newD tables.)

2. Compute the minimum distancet such thats is at-approximate seed ofx. This step is
similar to the second step of the algorithm for Problem 1. Letti be the minimum value
such thats is ati-approximate seed ofx[1..i] andt0 = 0. For i = 1 to n, we compute
ti by the following formula:

ti = min
0≤h<i

{max { min
h≤j<i

{tj}, wh+1,i}}

The valuetn is the minimumt such thats is at-approximate seed ofx. If tn is smaller
thanT , we updateT with tn. If m < n − i + 1, increasem by 1 and go to step 1.

When all the steps are completed, the final value ofT is the minimum distance and the
substrings that is aT -approximate seed ofx is an answer to Problem 2. (Note that there can
be more than one substrings that areT -approximate seeds ofx).

Theorem 2 Problem 2 can be solved inO(n4) time when a weighted edit distance or a
relative edit distance is used forδ. When a relative Hamming distance is used forδ, Problem
2 can be solved inO(n3) time.

Proof. For a weighted edit distance, we maken D tables inO(n2) time in step 1 and com-
pute the minimum distance inO(n2) time in step 2. Form = 1 to n − i + 1, we repeat
the two steps. Therefore, it takesO(n3) time for eachi and the total time complexity of this
algorithm isO(n4). If a relative edit distance is used, the algorithm can be slightly simplified,
as in Problem 1, but it still takesO(n4) time.

For a relative Hamming distance, it takesO(n) time for each candidate string and since
there areO(n2) candidate strings, the total time complexity isO(n3). 2

4.3. Problem 3

Given a set of strings, theshortest common supersequence(SCS) problem is to find a shortest
common supersequence of all strings in the set. The SCS problem is NP-complete [26, 30].
We will show that Problem 3 is NP-complete by a reduction fromthe SCS problem. In this
section we will call Problem 3 theSAS problem(abbreviation of the smallest approximate
seed problem). The decision versions of the SCS and SAS problems are as follows:

Definition 2 (SCS) Given a positive integerm and a finite setS of strings fromΣ∗ whereΣ
is a finite alphabet, the SCS problem is to decide if there exists a common supersequencew
of S such that|w| ≤ m.

Definition 3 (SAS) Given a numbert, a stringx from (Σ′)∗ whereΣ′ is a finite alphabet,
and a penalty matrix, the SAS problem is to decide if there exists a stringu such thatu is a
t-approximate seed ofx.

Now we transform an instance of the SCS problem to an instanceof the SAS prob-
lem. We can assume thatΣ = {0, 1} since the SCS problem is NP-complete even if
Σ = {0, 1} [28, 30]. Assume that there aren strings s1, . . . , sn in S. First, we set
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Figure 5: The penalty matrixM

Σ′ = Σ∪ {a, b, #, $, %, ∗1, ∗2, ∆}. Let x = %#∗1
m$#∗2

m$#s1$ #s2$ · · ·#sn$ #∗3
m$

#∗4
m$%. Then, sett = m and define the penalty matrix as in Figure 5. It is easy to see that

this transformation can be done in polynomial time.

Definition 4 Given a stringx and an approximate seedu of x, if every character inu can
be aligned with a character (including∆) in a seed block ofx, we say that the seed block is
fully aligned withu in x.

For convenience, we assumesi, 1 ≤ i ≤ n, in S is different from each other and there are
at least two seed blocks each of which is fully aligned withu. The latter assumption is quite
reasonable because otherwise, the longest proper prefix or suffix of given string always can
be the approximate seed with the minimum distance which is trivial.

Lemma 1 Assume thatx is constructed as above. Ifu is anm-approximate seed ofx, then
u cannot have%.

Proof. In Appendix A. 2

Lemma 2 Assume thatx is constructed as above. Ifu is anm-approximate seed ofx, then
u should have one# and one$.

Proof. In Appendix A. 2

Lemma 3 Assume thatx is constructed as above. Ifu is anm-approximate seed ofx, then
u is of the form#Y $ whereY ∈ {a, b}m.

Proof. In Appendix A. 2
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m

a# a
(=AS)

u b b $

*3 *3 *3

*4 *4 *4 *4

*3

sn

s1

s2 # 1

∆

#

∆

∆

∆
∆ 1

1

1∆

# 0

0

$

$

$

*1 *1 *1 *1

*2 *2 *2 *2# $* 2
m

# $* 1
m

case (b)case (a) case (c)

m

%

%

# $* 3
m

# $* 4

Figure 6: An alignment ofS′ ∪ {u}

Theorem 3 The SAS problem is NP-complete.

Proof. It is easy to see that the SAS problem is in NP. To show that the SAS problem is
NP-complete, we need to show thatS has a common supersequencew such that|w| ≤ m if
and only if there exists a stringu such thatu is anm-approximate seed ofx.

• (if) By Lemma 3,u = #Y $ whereY ∈ {a, b}m. Sinceu is anm-approximate seed
of x, the distance betweenu and each seed block#si$ is at mostm. (The distances
betweenu and the four fully aligned seed blocks of#∗i

m$, 1 ≤ i ≤ 4, are alwaysm.)
Consider an alignment ofS′ ∪ {u}. Since|Y | = m and the distance betweenY and
si is at mostm, eacha (resp.b) in Y must be aligned with0 (resp.1) or ∆ in si. (See
case (a) and case (b) in Figure 6.) If we substitute0 for a and1 for b in Y , we obtain
a common supersequencew of s1, . . . , sn such that|w| = m. (Note that ifa or b in
Y is aligned with∆ for all si, we can delete the character inY and we can obtain a
common supersequence which is shorter thanm. See case (c) in Figure 6.)

• (only if) Let w be a common supersequence ofS such that|w| ≤ m. Let Y be the
string constructed by substitutinga for 0 andb for 1 in w. (When|w| < m, we append
some characters from{a, b} to Y so that|Y | = m.) Assume that each seed block ofx
has one# and one$ except two% at both sides ofx. Then the distance between each
seed block ofx and#Y $ is m since eacha (resp.b) in Y can be aligned with0 (resp.
1), ∆, ∗1, or ∗2 in each seed block. (The first (resp. last) seed block ofx % can be
aligned with$ (resp.#) in u.) Therefore,#Y $ is anm-approximate seed ofx.

2
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5. Conclusions

In this paper, we solved thesmallest distance approximate seedproblem, inO(mn) time for
the Hamming and edit distance andO(mn2) for the weighted edit distance, and therestricted
smallest approximate seedproblem, inO(n4) time for the edit and weighted edit distance and
O(n3) for the Hamming distance. We also proved that thesmallest approximate seedproblem
is NP-complete.

The significance of our work comes from the fact that we solvedthe first two problems
for approximate seeds, with exactly the same time complexities as those for approximate
periods [33] and approximate covers [34], despite the fact that seeds allow overlaps, as well
as concatenations, and cover asuperstringof a stringx (rather than covering the stringx
itself).
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A. Proofs of Lemmas

Recall thatx = %#∗1
m$#∗2

m$#s1$ #s2$ · · ·#sn$ #∗3
m$ #∗4

m$%, wheres1, . . . , sn

are strings inS, and the penalty matrix is defined as in Figure 5.

Lemma 1 Assume thatx is constructed as above. Ifu is anm-approximate seed ofx, then
u cannot have%.

Proof. First, we show thatu cannot have more than one%. By assumption, there are at least
two fully aligned seed blocks. And thus, if there is more thanone% in u, at least one% in u
cannot be aligned with% in x. Note that the distance between% and any other character is
at leastm and each string between# and$ in x is unique.

Assumeu has one%. Let u = u′%u′′ such that there is no% in u′ andu′′. Let A be the
first fully aligned seed block withu in x andB be the last fully aligned seed block withu in
x. Due to the penalty matrix,% in u must be aligned with% or # or $ in x. There are three
cases according to the existence of% in A andB.

(a) NeitherA norB has%.
In this case,A andB should be of the formu′#u′′ or u′$u′′. AssumeA = u′#u′′ and
B = u′$u′′. (The opposite case is similar.) Due to the definition ofx andA, u′ must
be finished with$. (# should be preceded by$ in x.) But this makes a contradiction
because$$ cannot appear inB. Now, assumeA = B = u′#u′′.(The case when
A = B = u′$u′′ is similar.) Note that there cannot be∗i’s, 1 ≤ i ≤ 4, in u′ andu′′

because thoughA = B, the starting positions of two strings are different. Consider the
last (not fully aligned) seed block ofx. It should contain∗3

m and∗4
m because the last

fully aligned seed blockB does not contain them. In this case, however, the distance
betweenu and the last seed block exceedsm due to the penalty matrix.

(b) OnlyA (resp.B) has%.
Assume onlyA has%. First,A 6= %. If A = %, u′ should not have# or $. Consider
the second fully aligned seed block ofx. It must start with# sinceA = %, and thus,%
in u should be aligned with# and so that the distance betweenu and the second fully
aligned seed block does not exceedm, u′ = ε andu′′ = ∗1

∗ such thatδ(u′′, ε) ≤ m.
It means there is no# and$ in u′′. But in this case, the distance betweenu and at least
one seed block ofx will exceedm. Thus, we can setA = %#A′, and thenu′′ in u and
B should start with#. So,B = u′$u′′.

The last (not fully aligned) seed block must be% itself, otherwise, i.e., if it is longer,
it should have$ before%. For the distance betweenu and the last seed block not to
exceedm, there should be$ in u′ and it should be aligned with$ in the last seed block.
But by the definition ofx andB, there should be a# between the$ in u′ and the% in
u, which makes the distance betweenu and the last seed block exceedm.

Thus,u′′ in B should have#∗4
m$ but thenδ(u, A) will exceedm.

(c) BothA andB have%.
In this case,A is a prefix ofx andB is a suffix ofx. It is easy to see that% in u should
be aligned with% in A andB, respectively. But in this case, the distance betweenu
and any other seed block will exceedm.
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By (a), (b), and (c), there can be no% in u. 2

Lemma 2 Assume thatx is constructed as above. Ifu is anm-approximate seed ofx, then
u should have one# and one$.

Proof. By Lemma 1,# (resp.$) in each seed block ofx must be aligned with# (resp.$)
in u, and thus,u must have at least one# and one$. Now we show that unlessu has one#
and one$, the distance betweenu and at least one seed block ofx must exceedm.

Assume thatu has two#’s. (The other cases are similar.) There are three cases according
to the number of$’s in u.

1. Suppose thatu has one$.
In this case,u = #Y $#Z such thatY, Z ∈ {0, 1, a, b, ∗1, ∗2, ∗3, ∗4}

∗. Consider the
last seed block ofx. It must be% itself or#∗4

m$%.

(a) %: The last fully aligned seed blockB must end with$. Then,δ(u, B) will
exceedm.

(b) #∗4
m$%: In this case,Y = ∗4

m and the distance betweenu and at least one
seed block will exceedm.

2. Suppose thatu has two$’s.
In this case,u can be of the form#Y $#Z$, or X$#Y $#Z. First, whenu =
#Y $#Z$, there are two cases according to the last seed block ofx. The last seed
block ofx can be% or #∗4

m$%.

(a) %: In this case,B = #∗3
m$#∗4

m$. Then,u should havem characters from
{∗3, ∗4} and the distance betweenu and any other fully aligned seed block will
exceedm.

(b) #∗4
m$%: In this case,Y = ∗4

m, and B = #sn$#∗3
m$ or B =

#∗3
m$#∗4

m$. In both cases,δ(u, B) will exceedm.

Next, whenu = X$#Y $#Z, the first seed block ofx can be%#Y $#Z where
Y = ∗1

m andZ = ∗2
i (0 ≤ i ≤ m) or %#Z whereZ = ∗1

i (0 ≤ i ≤ m). The
last seed block ofx can beX$#Y $% whereX = ∗3

j (0 ≤ j ≤ m) andY = ∗4
m or

X$% whereX = ∗4
j (0 ≤ j ≤ m).

(a) the first seed block is%#Y $#Z and the last seed block isX$#Y $%: It con-
tradicts becauseY cannot be∗1

m and∗4
m at the same time.

(b) the first seed block is%#Y $#Z and the last seed block isX$%: Consider the
last fully aligned seed blockB. B should be of the formsn

′$#∗3
m$#∗4

k such
thatsn

′ is a suffix ofsn and0 ≤ k ≤ m. But in this case,δ(u, B) will exceedm
sinceY = ∗1

m.

(c) the first seed block is%#Z and the last seed block isX$#Y $%: Consider the
first fully aligned seed blockA. A should be of the form∗1

k$#∗2
m$#s1

′ such
that0 ≤ k ≤ m ands1

′ is a prefix ofs1. But in this case,δ(u, A) will exceedm
sinceY = ∗4

m.
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(d) the first seed block is%#Z and the last seed block isX$#Y $%: Consider the
first fully aligned seed block ofx A and the last fully aligned seed block ofx B.
A = ∗1

k$#∗2
m$#s1

′ such that0 ≤ k ≤ m ands1
′ is a prefix ofs1 andB =

sn
′$#∗3

m$#∗4
l such that0 ≤ l ≤ m andsn

′ is a suffix ofsn. By the definition
of approximate seed,k + i ≥ m andl + j ≥ m. Then,δ(u, A) = 2 ·max(k, j)+
δ(∗2

m, Y )+2·δ(∗1
i, s1

′) andδ(u, B) = 2·δ(∗4
j , sn

′)+δ(∗3
m, Y )+2·max(i, l).

There are four cases according to the values ofmax(k, j) andmax(i, l).

(i) max(k, j) = k andmax(i, l) = i: Thenδ(u, A) = 2k + δ(∗2
m, Y ) + 2 ·

δ(∗1
i, s1

′) ≥ 2k + δ(∗2
m, Y ) + 2i ≥ 2m + δ(∗2

m, Y ) > m.
(ii) max(k, j) = k andmax(i, l) = l: The same case as (i).
(iii) max(k, j) = j and max(i, l) = i: Sincek + i ≥ m and l + j ≥ m,

k + i + j + l ≥ 2m. Thus,2(i + j) ≥ k + i + j + l ≥ 2m. Therefore,
δ(u, A) = 2j + δ(∗2

m, Y ) + 2 · δ(∗1
i, s1

′) ≥ 2j + δ(∗3
m, Y ) + 2i ≥

2m + δ(∗2
m, Y ) > m.

(iv) max(k, j) = j and max(i, l) = l: Then δ(u, B) = 2 · δ(∗4
j , sn

′) +
δ(∗3

m, Y ) + 2l ≥ 2j + δ(∗3
m, Y ) + 2l ≥ 2m + δ(∗3

m, Y ) > m.

3. Suppose thatu has three$’s.
In this case,u = X$#Y $#Z$. Then, the first seed block can be% or %#∗1

m$ or
%#∗1

m$#∗2
m$ and the last seed block can be% or X$%. But when the first seed

block is%, the distance betweenA andu must exceedm due to the penalty matrix.
Thus, there are four cases according to the first and the last seed block ofx.

(a) The first seed block is%#∗1
m$ and the last seed block is%: In this case,X = ε

since the last seed block is%, andZ = ∗1
m for the distance betweenu and the

first seed block ofx not exceedm. But becauseB = sn
′$#∗3

m$#∗4
m$ where

sn
′ is a suffix ofsn, δ(u, B) will exceedm.

(b) The first seed block is%#∗1
m$ and the last seed block isX$%: In this case,

Z = ∗1
m so that the distance betweenu and the first seed block does not exceed

m. But becauseB = sn
′$#∗3

m$#∗4
m$ wheresn

′ is a suffix ofsn, δ(u, B) will
exceedm.

(c) The first seed block is%#∗1
m$#∗2

m$ and the last seed block is%: In this
case,Y = ∗1

m andZ = ∗2
m so that the distance betweenu and the first seed

block ofx does not exceedm. But if so,δ(u, B) will exceedm.

(d) The first seed block is%#∗1
m$#∗2

m$ and the last seed block isX$%: The
same case as (c).

Now, we can conclude thatu should have just one# and one$. 2

Lemma 3 Assume thatx is constructed as above. Ifu is anm-approximate seed ofx, then
u is of the form#Y $ whereY ∈ {a, b}m.

Proof. By Lemma 1 and Lemma 2,u = X#Y $Z where X, Y, Z ∈ {0, 1, a, b,
∗1, ∗2, ∗3, ∗4, ∆}∗. Sinceu has one# and one$, every fully aligned seed block also should
have one# and one$. That is, each fully aligned seed block is of the form#α$ where
α ∈ {0, 1, a, b, ∗1, ∗2, ∗3, ∗4, ∆}∗, and the first and the last seed block ofx is % at both sides
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of x. Consider the first two fully aligned seed blocks ofx #∗1
m$ and#∗2

m$. If Y contains
i ∗1’s for i ≥ 1, Y must also havei ∗2’s and the remainingm − 2i characters inY must be
from {a, b} so that the distances betweenu and the first two fully aligned seed blocks ofx
do not exceedm. However, this makes the distance betweenu and any other seed block ofx
exceedm due to∗1’s and∗2’s in Y . HenceY cannot have∗1 or ∗2 and similarly,Y cannot
have∗3 or ∗4. Also, Y cannot have any character from{0, 1, ∆} since0, 1 and∆ have cost
2 with ∗i, 1 ≤ i ≤ 4, in the first two fully aligned seed blocks and the last two fully aligned
seed blocks ofx. For the distances betweenu and the four fully aligned seed blocks ofx to
be at mostm, X andZ must be empty andY must be of the form{a, b}m. See Figure 6.2


