
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 513-524
www.stacs-conf.org

APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX :

OPTIMAL SIZE DATA STRUCTURES FOR UNWEIGHTED GRAPHS

NEELESH KHANNA 1 AND SURENDER BASWANA 2

1 Oracle India Pvt. Ltd, Bangalore-560029, India.
E-mail address: neelesh.khanna@gmail.com

2 Indian Institute of Technology Kanpur, India.
E-mail address: sbaswana@cse.iitk.ac.in

Abstract. Let G = (V, E) be any undirected graph on V vertices and E edges. A path P
between any two vertices u, v ∈ V is said to be t-approximate shortest path if its length is
at most t times the length of the shortest path between u and v. We consider the problem
of building a compact data structure for a given graph G which is capable of answering
the following query for any u, v, z ∈ V and t > 1.

report t-approximate shortest path between u and v when vertex z fails
We present data structures for the single source as well all-pairs versions of this problem.

Our data structures guarantee optimal query time. Most impressive feature of our data
structures is that their size nearly match the size of their best static counterparts.

1. Introduction

The shortest paths problem is a classical and well studied algorithmic problem of com-
puter science. This problem requires processing of a given graph G = (V,E) on n = |V |
vertices and m = |E| edges to compute a data structure using which shortest path or dis-
tance between any two vertices can be efficiently reported. Two famous and thoroughly
studied versions of this problem are single source shortest paths (SSSP) problem and all-
pairs shortest paths (APSP) problem.

Most of the applications of the shortest paths problem involve real life graphs and
networks which are prone to failure of nodes (vertices) and links (edges). This has motivated
researchers to design dynamic solution for the shortest paths problem. For this purpose, one
has to first develop a suitable model for the shortest paths problem in dynamic networks.
In fact two such models exists, and each of them has its own algorithmic objectives.

The shortest paths problem in the first model is described as follows : There is an
initial graph followed by an on-line sequence of insertion and deletion of edges interspersed

1998 ACM Subject Classification: E.1 [Data Structures]:Graphs and Networks; G.2.2[Discrete Math-
ematics]:Graph Theory - Graph Algorithms .

Key words and phrases: Shortest path, distance, distance queries, oracle.
Part of this work was done while the authors were at Max-Planck Institute for Computer Science, Saar-

bruecken, Germany during the period May-July 2009.

c© N. KHANNA and S. BASWANA
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2481

514 N. KHANNA AND S. BASWANA

with shortest path (or distance) queries. Each query has to be answered with respect to the
graph which exists at that moment (incorporating all the updates preceding the query on
the initial graph). A trivial solution of this problem is to recompute all-pairs shortest paths
from scratch after each update. This is certainly a wasteful approach since a single update
usually does not cause a huge change in the all-pairs distance information. Therefore, the
algorithmic objective here is to maintain a data structure which can answer distance query
efficiently and can be updated after any edge insertion or deletion in an efficient manner. In
particular, the time required to update the data structure has to be substantially less than
the running time of the best static algorithm. Many novel algorithms have been designed
in the last ten years for this problem and its variants (see [6] and the references therein).

On one hand the first model is important since it captures the worst possible hardness
of any dynamic graph problem. On the other hand, it can also be considered as a pessimistic
model for real life networks. It is true that the networks are never immune to failures. But
in addition to it, it is also rare to have networks which may have arbitrary number of failures
in normal circumstances. It is essential for network designers to choose suitable technology
to make sure that the failures are quite infrequent in the network. In addition, when a
vertex or edge fails (goes down), it does not remain failed/down indefinitely. Instead, it
comes up after some finite time due to simultaneous repair mechanism going on in the
network. These aspects can be captured in the second model which takes as input a graph
and a number ℓ ≪ n. This model assumes that there will be at most ℓ vertices or edges
which may be inactive at any time, though the corresponding set of failed vertices or edges
may keep changing as the time progresses : the old failed vertices become active while some
new active vertices may fail. The algorithmic objective in this model is to preprocess the
given graph to construct a compact data structure which for any subset S of at most ℓ
vertices may answer the following query for any u, v ∈ V .

Report the shortest-path (or distance) from u to v in G\S.
It is desired that each query gets answered in optimal time : retrieval of distance in

O(1) time and the shortest path in time which is of the order of the number of its edges.
The ultimate research goal would be to understand the complexity of the above problem
for any given value ℓ. In this pursuit, the first natural step would be to efficiently solve
and thoroughly understand the complexity of the problem for the case ℓ = 1, that is, the
shortest paths problem avoiding any failed vertex. Interestingly, this problem appears as a
sub problem in many other related problems, namely, Vickrey pricing of networks [9], most
vital node of a shortest path [11], the replacement path problem [12], and shortest paths
avoiding forbidden subpaths [1].

The first nontrivial and quite significant breakthrough on the all-pairs version of this
problem was made by Demetrescu et al. [7]. They designed an O(n2 log n) space data
structure, namely distance sensitivity oracle, which is capable of reporting the shortest path
between any two vertices avoiding any single failed vertex. The preprocessing time of this
data structure is O(mn2). Recently, Bernstein and Karger [4] improved the preprocessing
time to O(mn log n). Though Θ(n2 log n) space bound of this all-pairs distance sensitivity
oracle is optimal up to logarithmic factors, it is too large for many real life graphs which
appear in various large scale applications [13]. In most of these graphs usually m ≪ n2,
hence a table of Θ(n2) size may be too large for practical purposes. However, it is also known
[7] that even a data structure which reports exact distances from a fixed source avoiding a
single failed vertex will require Ω(n2) space in the worst case. So approximation seems to
be the only way to design a small space compact data structure for the problem of shortest

APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX 515

paths avoiding a failed vertex. A path between u, v ∈ V is said to be t-approximate shortest
path if its length is at most t times that of the shortest path between the two. The factor
t is usually called the stretch. We would like to state here that many algorithms and data
structures have been designed in the last fifteen years for the static all-pairs approximate
shortest paths (see [2, 13] and references therein). The prime motivation underlying these
algorithms has been to achieve sub-quadratic space and/or sub-cubic preprocessing time
for the static APSP problem. However, no data structure was designed in the past for
approximate shortest paths avoiding any failed vertex.

In this paper, we present really compact data structures which are capable of reporting
approximate shortest paths between two vertices avoiding any failed vertex in undirected
graphs. The most impressive feature of our data structures is their nearly optimal size. In
fact their size almost matches the size of their best static counterparts.

1.1. New Results

Single source approximate shortest paths avoiding any failed vertex.
First we address weighted graphs. For the weighted graphs, we present an O(m log n) time
constructible data structure of size O(n log n) which can report 3-approximate shortest
path from the source to any vertex v ∈ V avoiding any x ∈ V . We then consider the case
of undirected unweighted graphs. For these graphs, we present an O(n log n

ǫ3
) space data

structure which can even report (1 + ǫ)-approximate shortest path for any ǫ > 0.
All-pairs approximate shortest paths avoiding any failed vertex.
Among the existing data structures for static all-pairs approximate shortest paths, the
approximate distance oracle of Thorup and Zwick [13] stands out due to its amazing features.
Thorup and Zwick [13] showed that an undirected graph can be preprocessed in sub-cubic

time to build a data structure of size O(kn1+1/k) for any k > 1. This data structure, despite
of its sub-quadratic size, is capable of reporting (2k− 1)-approximate distance between any
two vertices in O(k) time (and the corresponding approximate shortest path in optimal
time), and hence the name oracle. Moreover, the size-stretch trade off achieved by this data
structure is essentially optimal. It is a very natural question to explore whether it is possible
to design all-pairs approximate distance oracle which may handle single vertex failure. We
show that it is indeed possible for unweighted graphs. For this purpose, we suitably modify
the approximate distance oracle of Thorup and Zwick [13] using some new insights and our
single source data structure mentioned above. These modifications make the approximate
shortest-paths oracle of Thorup and Zwick handle vertex failure easily, and (surprisingly)
still preserving the old (optimal) trade-off between the space and the stretch. For precise
details, see Theorem 5.3.

For the algorithmic details missing in this extended abstract due to page limitations,
we suggest the reader to refer to the journal version [10]. Our data structures can be easily
adapted for handling edge failure as well without any increase in space or time complexity.

2. Preliminaries

We use the following notations and definitions in the context of a given undirected
graph G = (V,E) with n = |V |, m = |E| and a weight function ω : E → R+.

• Tr : single source shortest path tree rooted at r.
• P(x, y) : the shortest path between x and y.

516 N. KHANNA AND S. BASWANA

• δ(x, y) : the length of the shortest path between x and y.
• P(x, y, z) : the shortest path between x and y avoiding vertex z.
• δ(x, y, z) : the length of the shortest path between x and y avoiding vertex z.
• Tr(x) : the subtree of Tr rooted at x.
• Gr(x) : the subgraph induced by the vertices of set Tr(x) and augmented by vertex

r and edges from r as follows. For each v ∈ Tr(x) with neighbors outside Tr(x),
keep an edge (r, v) of weight = min(u,v)∈E,u/∈Tr(x)(δ(r, u) + ω(u, v)).

• P :: Q : a path formed by concatenating path Q at the end of path P with an edge
(u, v) ∈ E, where u is the last vertex of P and v is the first vertex of Q.

• E(X) : the set of edges from E with at least one endpoint in X.

Our algorithms will also use a data structure for answering lowest common ancestor (LCA)
queries on Tr. There exists an O(n) time computable data structure which occupies O(n)
space and can answer any LCA query in O(1) time (see [3] and references therein).

3. Single source 3-approximate shortest paths avoiding a failed vertex

We shall first solve a simpler sub-problem where the vertex which may fail belong to
a given path P ∈ Tr. Then we use divide and conquer strategy wherein we decompose Tr

into a set of disjoint paths and for each such path, we solve this sub-problem.

3.1. Solving the Sub-Problem : the failures of a vertex from a given path P(r, t)

Given the shortest path tree Tr, let P(r, t) = 〈r(= x0), x1, ..., xk(= t)〉 be any shortest path
present in Tr. We shall design an O(n) space data structure which will support retrieval of a
3-approximate shortest path from r to any v ∈ V when some vertex from P(r, t) fails. The
preprocessing time of our algorithm will be O(m+n log n) which matches that of Dijkstra’s
algorithm. The algorithm is inspired by the algorithm of Nardelli et al. [11] for computing
the most vital vertex on a shortest path. Consider vertex xi lying on the path P(r, t). We

r

xi−1
xi

xi+1

Oi

Ui

Di

P

Figure 1: Partitioning of the shortest path tree Tr at xi ∈ P

partition the tree Tr\{xi} into the following 3 parts (see Figure 1).

(1) Ui : the tree Tr after removing the subtree Tr(xi)
(2) Di : the subtree of Tr rooted at xi+1

(3) Oi : the portion of Tr left after removing Ui, xi, and Di.

Note that a vertex of the tree Tr is either a vertex of the path P(r, t) or it belongs to some
Oi for some i. We build the following two data-structures of total O(n) size.

APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX 517

(1) a data structure to retrieve 3-approximate shortest path from r to any v ∈ Di.
(2) a data structure to retrieve 3-approximate shortest path from r to any v ∈ Oi.

3.1.1. Data structure for 3-approximate shortest paths to vertices of Di when xi has failed.
Consider the vertex xi+1 and any other vertex y ∈ Di. Note that the shortest path P(xi+1, y)
remains intact even after removal of xi, and its length is certainly less than δ(r, y). Based
on this simple observation one can intuitively see that in order to travel from r to y when
xi fails, we may travel along shortest route to xi+1 (that is P(r, xi+1, xi)) and then along
P(xi+1, y). Using triangle inequality and the fact that the graph is undirected, the length
of this path P(r, xi+1, xi) :: P(xi+1, y) can be approximated as follows.

δ(r, xi+1, xi) + δ(xi+1, y) ≤ δ(r, y, xi) + δ(y, xi+1, xi) + δ(xi+1, y)

≤ δ(r, y, xi) + 2δ(xi+1, y)

≤ δ(r, y, xi) + 2δ(r, y) ≤ 3δ(r, y, xi)

Therefore, in order to support retrieval of 3-approximate shortest path to any v ∈ Di in
optimal time, it suffices to store the path P(r, xi+1, xi).

In order to devise ways of efficient computation and compact storage of P(r, xi+1, xi)
for a given i, we use the following lemma about the structure of the path P(r, xi+1, xi).

Lemma 3.1. The shortest path P(r, xi+1, xi) is of the form P1 :: P2 where P1 is a shortest
path from r in the subgraph induced by Ui ∪ Oi, and P2 is a path present in Di.

It follows that in order to compute P(r, xi+1, xi), first we need to compute shortest paths
from r in the subgraph induced by Ui ∪ Oi. Let δi(r, v) denote the distance from r to v ∈
Ui∪Oi in this subgraph. Note that δi(r, v) for v ∈ Ui and the corresponding shortest path is
the same as in the original graph, and is already present in Tr. For computing shortest paths
from r to vertices of Oi, we build a shortest path tree (denoted as Tr(Oi)) from r in the
subgraph induced by vertices Oi ∪ {r} and the following additional edges. For each z ∈ Oi

with at least one neighbor in Ui, we add an edge (r, z) with weight = min(u,z)∈E,u∈Ui
(δ(r, u)+

ω(u, z)). Applying Lemma 3.1, let (yi, zi) be the edge of P(r, xi+1, xi) joining the sub
path present in Ui ∪ Oi with the sub path present in Di. This edge can be identified
using the fact that this is the edge which minimizes δi(r, y) + ω(y, z) + δ(xi+1, z) over all
z ∈ Di, y ∈ Ui ∪ Oi, (y, z) ∈ E. The vertex xi+1 stores the path P(r, xi+1, xi) implicitly
by keeping the edge (yi, zi) and the tree Tr(Oi). The shortest path P(r, xi+1, xi) can be
retrieved in optimal time using the trees Tr, Tr(Oi), and the edge (yi+1, zi+1). Due to
mutual disjointness of Oi’s, the overall space requirement of the data structure for retrieving
P(r, xi+1, xi) for all i ≤ k will be O(n).

3.1.2. Data structure for 3-approximate shortest paths to vertices of Oi when xi has failed.
In order to compute 3-approximate shortest path to Oi upon failure of xi, we shall use the
approximate shortest paths to Di as computed above. Here we use an interesting observation
which states that if we have a data structure to retrieve α-approximate shortest paths from
r to vertices of Di when xi fails, then we can use it to have a data-structure to retrieve
α-approximate shortest paths to vertices of Oi as well. To prove this result, this is how
we proceed. Consider the subgraph induced by Oi and augmented with vertex r and some
extra edges which are defined as follows.

518 N. KHANNA AND S. BASWANA

• For each o ∈ Oi having neighbors from Ui, keep an edge (r, o) and assign it weight
= min(u,o)∈E,u∈Ui

(δ(r, u) + ω(u, o)).
• For each o ∈ Oi having neighbors from Di, keep an edge (r, o) and assign it weight =

min(u,o)∈E,u∈Di
(δ̂(r, u, xi) + ω(u, o)), where δ̂(r, u, xi) is the α-approximate distance

to u upon failure of xi. (In the present situation we have α = 3.)

Let us denote this graph as Gr(Oi). Observation 3.3 is based on the following lemma which
is easy to prove.

Lemma 3.2. The Dijkstra’s algorithm from r in the graph Gr(Oi) computes α-approximate
shortest paths from r to all v ∈ Oi avoiding xi.

Observation 3.3. If we can design a data structure for retrieving (1 + ǫ)-approximate
shortest paths from r to vertices of Di upon failure of xi, then it can also be used to design
a data structure which can support retrieval of (1 + ǫ)-approximate shortest paths to all
vertices of the graph upon failure of xi.

We compute and store the shortest path tree rooted at r in the graph Gr(Oi). This tree
along with the tree Tr and the data structure described in the previous sub-section suffice
for retrieval of 3-approximate shortest paths to o ∈ Oi upon failure of xi.
Query answering: Suppose the oracle receives a query asking for approximate shortest
path from r to v avoiding xi ∈ P(r, t). It first invokes lowest common ancestor (LCA)
query between v and xi on Tr. If LCA(v, xi) 6= xi, the shortest path from r to v remains
unaffected and so it reports the path P(r, t). Otherwise, it determines if v ∈ Di or v ∈ Oi.
Depending upon the two cases, it reports the approximate shortest path between r and vi

using one of the two data structures described above.

Theorem 3.4. An undirected weighted graph G = (V,E), a source r ∈ V , and a shortest
path P ∈ Tr can be processed in O(m + n log n) time to build a data structure of O(n) space
which can report 3-approximate shortest path from r to any v ∈ V avoiding any single failed
vertex from P .

3.2. Handling the failure of any vertex in Tr

We follow divide and conquer strategy based on the following simple lemma.

Lemma 3.5. There exists an O(n) time algorithm to compute a path P in Tr whose removal
splits Tr into a collection of disjoint subtrees Tr(v1), ...Tr(vj) such that

• |Tr(vi)| < n/2 for each i ≤ j.
• P ∪i Tr(vi) = T and P ∩ Tr(vi) = ∅ ∀i.

First we compute the path P ∈ Tr as mentioned in Lemma 3.5. We build the data
structure for handling failure of any vertex from P by executing the algorithm of Theorem
3.4. Let v1, ..., vj be the roots of the sub trees of Tr connected to the path P with an edge.
For each 1 ≤ i ≤ j, we solve the problem recursively on the subgraph Gr(vi), and build
the corresponding data structures. Lemma 3.5 and Theorem 3.4 can be used in straight
forward manner to prove the following theorem.

Theorem 3.6. An undirected weighted graph G = (V,E) can be processed in O(m log n +
n log2 n) time to build a data structure of size O(n log n) which can answer, in optimal time,
any 3-approximate shortest path query from a given source r to any vertex v ∈ V avoiding
any single failed vertex.

APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX 519

4. Single source (1+ǫ)-approximate shortest paths avoiding a failed vertex

In this section, we shall present a compact data structure for single source (1 + ǫ)-
approximate shortest paths avoiding a failed vertex in an unweighted graph. Let level(v)
denote the level (or distance from r) of vertex v in the tree Tr. Let Ux,Dx, Ox denote
the partitions of the tree Tr formed by deletion of vertex x, with the same meaning as
that of Ui,Di, Oi defined for xi in the previous section. On the basis of Observation 3.3,
our objective is to build a compact data structure which will support retrieval of (1 + ǫ)-
approximate shortest-paths to vertices of Dx upon failure of x for any x ∈ V . Let uchild(x)
denote the root of the subtree corresponding to Dx (it is similar to xi+1 in case of Di). For
reporting approximate distance between r and v ∈ Dx when x fails, the data structure of
previous section reports path of length δ(r, uchild(x), x)+δ(uchild(x), v) which is bounded
by δ(r, v, x)+2δ(uchild(x), v). It should be noted that the approximation factor associated
with it is already bounded by (1 + ǫ) for any ǫ > 0 if the following condition holds.

C : uchild(x) is close to v, that is, δ(uchild(x), v) ≤ ǫ
2δ(r, v).

We shall build a supplementary data structure which will ensure that whenever the
condition C does not hold, there will be some ancestor w of v lying on P(x, v), called a
special vertex, satisfying the following two properties.

(1) δ(w, v) ≪ δ(r, v), that is w is much closer to v than r.
(2) vertex w stores approximate shortest path to r avoiding x (with the approximation

factor arbitrarily close to 1).

We shall refer to such vertices w as special-vertices.

4.1. Constructing the set of special vertices

Let h be the height of BFS tree rooted at r. Let L be a set of integers such that
L = {i|⌊(1 + ǫ)i⌋ < h}. For a given i ∈ L, we define a subset Si of special vertices as

Si = {u ∈ V |level(u) = ⌊(1 + ǫ)i⌋ ∧ |Tr(u)| ≥ ǫlevel(u)}. We define the set of special
vertices as S = ∪∀i∈LSi. In addition, we also introduce the following terminologies.

• S(v): the nearest ancestor of v which belongs to set S.
• V (u): For a vertex u ∈ S, V (u) denotes the set of vertices v ∈ V with S(v) = u.

In essence, the vertex u will serve as the special vertex for each vertex from V (u).
For failure of any vertex x ∈ P(r, u), each vertex of set V (u) will query the data
structure stored at u for retrieval of approximate shortest path/distance from the
source.

We now state two simple lemmas based on the above construction.

Lemma 4.1. Let v ∈ V \S, then δ(v, S(v)) ≤
(

2ǫ
1+ǫ

)

level(v) if ǫ < 1

Lemma 4.2. Let u be a vertex at level ℓ and u ∈ S. Then V (u) ≥ ǫℓ.

If we can ensure that the data structure for a special vertex u (for retrieving approximate
shortest paths from r upon failure of any x ∈ P(r, u)) is of size O(level(u)), then it would
follow from Lemma 4.2 that the space required by our supplementary data structure will
be linear in n.

520 N. KHANNA AND S. BASWANA

4.2. The data structure for a special vertex

Consider a special vertex v with level(v) = ⌊(1 + ǫ)i⌋ We shall now describe a compact
data structure stored at v which will facilitate retrieval of approximate shortest path from
r to v upon failure of any vertex x ∈ P(r, v).

Let v′ be the special vertex which is present at level ⌊(1 + ǫ)i−1⌋ and is ancestor of v.
The data structure stored at v will be defined in a way that will prevent it from storing
information that is already present in the data structure of some special vertex lying on
P(r, v′).

If x ∈ P(v′, v), then the data structure described in the previous section itself stores a
path which is (1 + 2ǫ)-approximation of P(r, v, x).

Let us now consider the nontrivial case when x ∈ P(r, v′), x 6= v′. In order to discuss
this case, we would like to introduce the notion of detour. To understand it, let us visualize
the paths P(r, v, x) and P(r, v) simultaneously. Since P(r, v, x) and P(r, v) have the same
end-points and x doesn’t lie on P(r, v, x), there must be a middle portion of P(r, v, x) which
intersects P(r, v) at exactly two vertices, and the remaining portion of P(r, v, x) overlaps
with P(r, v). This middle portion is called a detour. We now define it more formally. Let
a and b be two vertices on the shortest path P(r, v). We use a ≺ b to denote that vertex a
is closer to r than vertex b. The notation a � b would mean that either a ≺ b or a = b. .
So here is the definition of detour (and the underlying observation).

Definition 4.3. Let x ∈ P(r, y). When x fails, the path P(r, y, x) will be of the form
of P(r, a) :: pa,b :: P(b, y), where r � a ≺ x ≺ b � y and the path pa,b is such that
pa,b ∩ P(a, b) = {a, b}. In other words, pa,b meets P(a, b) only at the end points. We shall
call pa,b as the detour associated with the shortest path P(r, y, x).

Let pa,b represent the detour w.r.t. to P(r, v, x). The handling of failure of vertices
x ∈ P(r, v) which lie above v′ would depend upon the detour pa,b. This detour can be of
any of the following types (see Figure 2 for illustration).

• I : b � v′.
• II : v′ ≺ b.

x x

aa

b

b

v′ v′

v v

rr

⌊(1 + ǫ)i⌋⌊(1 + ǫ)i⌋

pa,bpa,b

(i) (ii)

Figure 2: pa,b is shortest detour of P(r, v, x). (i) : detour of type I, (ii) : detour of type II

Handling detours of type I is relatively easy. Let w be the farthest ancestor of v such
that w ∈ S and level of w is greater or equal to the level of b. In this case, v stores the
corresponding detour implicitly by just keeping a pointer to the vertex w.

Handling detours of type II is slightly tricky since we can’t afford to store each of them
explicitly. However, we shall employ the following observation associated with the detours
of type II to guarantee low space requirement.

APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX 521

Observation 4.4. Let α1, α2,. . . ,αt be the vertices on P(r, v) (in the increasing order of
their levels) such that the shortest detour corresponding to P(r, v, αi) is of type II ∀i, then

δ(r, v, α1) ≥ δ(r, v, α2) ≥ · · · ≥ δ(r, v, αt)

It follows from the above observation that if δ(r, v, αi) ≤ (1+ ǫ)δ(r, v, αj) for any i < j,
then P(r, v, αi) may as well serve as (1+ ǫ)-approximate shortest path from r to v avoiding
αj . In other words, we need not store the detour associated with P(r, v, αj) in such situation.
Using this observation, we shall have to explicitly store only O(log1+ǫ n) detours of type II.
Moreover, we do not store explicitly detours of type II whose length is much larger than
level(v). Specifically, if P(r, v, x) ≥ 1

ǫ level(v), then v will merely store pointer to the path
P(r, uchild(x), x) :: P(uchild(x), v). This ensures that each detour of type II which v has
to explicitly store will have length O(1

ǫ level(v)).
It follows from the above description that for a special vertex v and x ∈ P(r, v), the data

structure associated with v stores (1 + 2ǫ)-approximation of the path P(r, v, x). Moreover,
the total space required by the data structure associated with all the special vertices will be
O(n log n

ǫ3
). This supplementary data structure combined with the data structure of previous

section can report (1 + 6ǫ)-approximation of P(r, z, x) for any z, x ∈ V .

Theorem 4.5. Given an undirected unweighted graph G = (V,E), source r ∈ V , and any

ǫ > 0, we can build a data structure of size O(n log n
ǫ3) that can report (1 + ǫ)-approximate

shortest path from r to any z ∈ V avoiding any failed vertex in optimal time.

5. All-pairs (2k − 1)(1 + ǫ)-approx. distance oracle avoiding a failed vertex

We start with a brief description of the approximate distance oracle of Thorup and
Zwick [13]. The key idea to achieve sub-quadratic space is to store distance from each
vertex to only a small set of vertices. For retrieving approximate distance between any two
vertices u, v ∈ V , it is ensured that there is a third vertex w which is close to both of them,
and whose distance from both of them is known. To realize this idea, Thorup and Zwick
[13] introduced two novel structures called ball and cluster which are defined for any two
subsets A,B of vertices as follows. (here δ(v,B) denotes the distance between v and its
nearest vertex from B).

Ball(v,A,B) = {w ∈ A|δ(v,w) < δ(v,B)} C(w,A,B) = {v ∈ V |δ(v,w) < δ(v,B)}

Construction of (2k − 1)-approximate distance oracle of Thorup and Zwick [13] employs a
k-level hierarchy Ak = 〈A0 ⊇ A1 ⊇ A2... ⊇ Ak−1 ⊃ Ak〉 of subsets of vertices as follows.
A0 = V , Ak = ∅, and Ai+1 for any i < k − 1 is formed by selecting each vertex from Ai

independently with probability n−1/k.
The data structure associated with the (2k− 1)-approximate distance oracle of Thorup

and Zwick [13] stores for each vertex v ∈ V the following information :

• the vertices of set ∪i<kBall(v,Ai, Ai+1) (and their distances).
• the vertex from Ai nearest to v (to be denoted as pi(v)).

Due to randomization underlying the construction of Ak, the expected size of
Ball(v,Ai, Ai+1) is O(n1/k), and hence the space required by the oracle is O(kn1+1/k).
We shall now outline the ideas in extending the (2k − 1)-approximate distance oracle to
handle single vertex failure. Kindly refer to the extended version [10] of this paper for
complete details.

522 N. KHANNA AND S. BASWANA

5.1. Overview of all-pairs approx. distance oracles avoiding a failed vertex

Firstly the notations used by the static approximate distance oracle of [13], in particular
ball and cluster, get extended for single vertex failure in a natural manner as follows. (here
δ(v,B, x) is the distance between v and its nearest vertex from B in G\{x}).

Ballx(v,A,B) = {w ∈ A|δ(v,w, x) < δ(v,B, x)}

Cx(w,A,B) = {v ∈ V |δ(v,w, x) < δ(v,B, x)}

Let px
i (v) denote the vertex from Ai which is nearest to v in G\{x}. Along the lines of the

static approximate distance oracle of Thorup and Zwick [13], the basic operation which the
approximate distance oracle avoiding a failed vertex should support is the following :

Report distance (exact or approximate) between v and w ∈ Ai if w ∈ Ballx(v,Ai, Ai+1)
for any given v, x ∈ V .

However, it can be observed that we would have to support this operation implicitly in-
stead of explicitly keeping Ballx(v,Ai, Ai+1) for each v, x, i. Our starting point is the simple
observation that clusters and balls are inverses of each others, that is, w ∈ Ballx(v,Ai, Ai+1)
is equivalent to v ∈ Cx(w,Ai, Ai+1). Now we make an important observation. Consider
the subgraph Gi(w) induced by the vertices of set ∪x∈V Cx(w,Ai, Ai+1). This subgraph
preserves the path P(w, v, x) for each x, v ∈ V if w ∈ Ballx(v,Ai, Ai+1). So it suffices
to keep a single source (approximate) shortest paths oracle on Gi(w) with w as the root.
Keeping this data structure for each w ∈ Ai provides an implicit compact data structure for
supporting the basic operation mentioned above. Using Theorem 4.5, it can be seen that
the space required at a level i will be of the order of

∑

w∈Ai
| ∪x∈V Cx(w,Ai, Ai+1)|, but

it is not clear whether we can get an upper bound of the order of n1+1/k on this quantity.
Here, as a new tool, we introduce the notion of ǫ-truncated balls and clusters.

Definition 5.1. Given a vertex x, any subsets A,B, and ǫ > 0

Ballx(v,A,B, ǫ) =

{

w ∈ A|δ(v,w, x) <
δ(v,B, x)

1 + ǫ

}

Instead of dealing with the usual balls (and clusters) under deletion of single vertex,
we deal with ǫ-truncated balls (and clusters) under deletion of single vertex. We note that
the inverse relationship between clusters and balls gets seamlessly extended to ǫ-truncated
balls and clusters under single vertex failure as well. That is,

∑

w∈Ai

| ∪x∈V Cx(w,Ai, Ai+1, ǫ)| =
∑

v∈V

| ∪x∈V Ballx(v,Ai, Ai+1, ǫ)|

So it suffices to get an upper bound on the size of the set ∪x∈V Ballx(v,Ai, Ai+1, ǫ) for any
vertex v ∈ V . The following lemma states a very crucial property of ǫ-truncated balls which
leads to prove the existence of a small set S of O(1

ǫ2
log n) vertices such that

∪x∈V Ballx(v,Ai, Ai+1, ǫ) ⊆ ∪x∈SBallx(v,Ai, Ai+1) ∪ Ball(v,Ai, Ai+1) (5.1)

Lemma 5.2. In a given graph G = (V,E), let v be any vertex and let u = pi+1(v). Let x1

and x2 be any two vertices on the P(v, u) path with x1 appearing closer to v on this path
and δ(v,Ai+1, x1) ≤ (1 + ǫ)δ(v,Ai+1, x2). Then

Ballx1(v,Ai, Ai+1, ǫ) ⊆ Ball(v,Ai, Ai+1) ∪ Ballx2(v,Ai, Ai+1)

APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX 523

Proof. Let w be any vertex in Ai. It suffices to show the following. If w does not belong
to Ball(v,Ai, Ai+1) ∪ Ballx2(v,Ai, Ai+1), then w does not belong to Ballx1(v,Ai, Ai+1, ǫ).
The proof is based on the analysis of the following two cases.
Case 1 : The vertex x2 is present in P(v,w, x1).
Since, w /∈ Ball(v,Ai, Ai+1), therefore, δ(v,w) is at least δ(v, u). Hence using triangle
inequality, δ(v, x2) + δ(x2, w) ≥ δ(v, u). Now δ(v, u) = δ(v, x2) + δ(x2, u) (since x2 lies on
P (v, u)). Hence δ(x2, w) ≥ δ(x2, u). Moreover, since x1 does not appear on P(x2, u), so
δ(x2, u) = δ(x2, u, x1). So

δ(x2, w, x1) ≥ δ(x2, u, x1) (5.2)

Now it is given that x2 ∈ P(v,w, x1), so P(v,w, x1) must be of the form P(v, x2, x1) ::
P(x2, w, x1), the length of which is at least δ(v, x2, x1) + δ(x2, u, x1) using Equation 5.2.
The latter quantity is at least δ(v, u, x1) which by definition is at least δ(v,Ai+1, x1). Hence
w /∈ Ballx1(v,Ai, Ai+1), and therefore, w /∈ Ballx1(v,Ai, Ai+1, ǫ).
Case 2 : The vertex x2 is not present in P(v,w, x1).
In this case, δ(v,w, x1) = δ(v,w, {x1 , x2}) ≥ δ(v,w, x2). The value δ(v,w, x2) is in turn
at least δ(v,Ai+1, x2) since w /∈ Ballx2(v,Ai, Ai+1). It is given that δ(v,Ai+1, x2) ≥
δ(v,Ai+1,x1)

1+ǫ , hence conclude that δ(v,w, x1) ≥
δ(v,Ai+1,x1)

1+ǫ . So w /∈ Ballx1(v,Ai, Ai+1, ǫ).

We shall now outline the construction of a small set S of vertices which will satisfy
Equation 5.1. Let u = pi+1(v) and let P(v, u) = v(= x0), x1, ..., xℓ(= u). Observe that
∪x∈V Ballx(v,Ai, Ai+1, ǫ) = ∪1≤j≤ℓBallxj(v,Ai, Ai+1, ǫ). For any node x ∈ P(u, v), let
value(x) = δ(v,Ai+1, x), and let h be the maximum value of any node on this path. The
set S is initially empty.

Let α(1) be the largest index from [1, ℓ] such that value(xi) ≥ h/(1 + ǫ). It can
be seen that for all j < α(1), δ(v,Ai+1, xj) ≤ (1 + ǫ)δ(v,Ai+1, xα(1)). Therefore, it
follows from Lemma 5.2 that for each vertex x ∈ {x1, ..., xα(1)}, Ballx(v,Ai, Ai+1, ǫ) ⊆
Ballxα(1)(v,Ai, Ai+1) ∪ Ball(v,Ai, Ai+1). So we insert xα(1) to S. Similarly α(2) ∈

[α(1) + 1, ℓ] be the greatest integer such that value(xα(2)) ≥ h/(1 + ǫ)2. We add xα(2)

to S, and so on. It can be seen that the set S constructed in this manner will satisfy
Equation 5.1 and its size will be O(log1+ǫ h) = O(log n

ǫ).
It can be shown using elementary probability theory that for each x ∈ V , the set

Ballx(v,Ai, Ai+1) has size O(n1/k log n) with high probability. Therefore, the construction
of the set S outlined above implies the following crucial bound for each v ∈ V, i < k − 1
which helps us design all-pairs approximate distance oracle avoiding a failed vertex.

| ∪x∈V Ballx(v,Ai, Ai+1, ǫ)| = O

(

n1/k log2 n

ǫ

)

Using this equation, and owing to inverse relationship between clusters and balls, it fol-

lows that
∑

w∈Ai
| ∪x∈V Cx(w,Ai, Ai+1, ǫ)| = O

(

n1+1/k log2 n
ǫ

)

. Our all-pairs approximate

distance oracle avoiding any failed vertex will keep the following data structures.

• Let px
i (v, ǫ) denote a vertex w from Ai with δ(v,w, x) ≤ (1+ǫ)δ(v, px

i (v), x). We keep
a data structure Ni ∀i < k, using which we can retrieve px

i (v, ǫ). This data-structure
is obtained by suitable augmentation of our single source (1+ǫ)-approximate oracle.

• For each w ∈ Ai, we keep our single source (1 + ǫ)-approximate oracle in Gi(w, ǫ)
which is the subgraph induced by ∪x∈V Cx(w,Ai, Ai+1, ǫ).

524 N. KHANNA AND S. BASWANA

It follows that the overall space required by the data structure will be O(kn1+1/k log3 n
ǫ4).

The query algorithm and the analysis on the stretch of the approximate distance reported
by the oracle are similar in spirit to that of Thorup and Zwick [13] (see [10] for details).

Theorem 5.3. Given an integer k > 1 and a fraction ǫ > 0, an unweighted graph G =
(V,E) can be processed to construct a data structure which can answer (2k − 1)(1 + ǫ)-
approximate distance query between any two nodes u ∈ V and v ∈ V avoiding any single

failed vertex in O(k) time. The total size of the data structure is O(kn1+1/k log3 n
ǫ4

).

Future work. (i) Can we design a data structure for single source (1+ǫ)-approx. shortest
paths avoiding a failed vertex for weighted graphs ? Such a data structure will immediately
extend our all-pairs approx. distance oracle avoiding a failed vertex to weighted graphs.
(ii) How to design approx. distance oracles avoiding two or more failed vertices ? Recent
work of Duan and Pettie [8], and Chechik et al. [5] provides additional motivation for this.

References

[1] M. Ahmed and A. Lubiw. Shortest paths avoiding forbidden subpaths. In STACS ’09: Proceedings
of 26th International Symposium on Theoretical Aspects of Computer Science, pages 63–74, Freiburg,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[2] S. Baswana and T. Kavitha. Faster algorithms for approximate distance oracles and all-pairs small
stretch paths. In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pages 591–602, Washington, DC, USA, 2006. IEEE Computer Society.

[3] M. A. Bender and M. Farach-Colton. The lca problem revisited. In LATIN ’00: Proceedings of the
4th Latin American Symposium on Theoretical Informatics, pages 88–94, London, UK, 2000. Springer-
Verlag.

[4] A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed vertices and edges. In STOC
’09: Proceedings of the 41st annual ACM symposium on Theory of computing, pages 101–110, New
York, NY, USA, 2009. ACM.

[5] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. Fault-tolerant spanners for general graphs. In
STOC ’09: Proceedings of the 41st annual ACM symposium on Theory of computing, pages 435–444,
New York, NY, USA, 2009. ACM.

[6] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths. J. ACM,
51(6):968–992, 2004.

[7] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran. Oracles for distances avoiding a
failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.

[8] R. Duan and S. Pettie. Dual-failure distance and connectivity oracles. In SODA ’09: Proceedings of the
Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pages 506–515, Philadelphia, PA,
USA, 2009. Society for Industrial and Applied Mathematics.

[9] J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an edge worth? In FOCS ’01:
Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, page 252, Washington,
DC, USA, 2001. IEEE Computer Society.

[10] N. Khanna and S. Baswana. Approximate shortest paths avoiding a failed vertex : optimal data struc-
tures for unweighted graphs. http://www.cse.iitk.ac.in/∼sbaswana/publications/algorithmica-09.pdf.

[11] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest path. Theor.
Comput. Sci., 296(1):167–177, 2003.

[12] L. Roditty. On the k-simple shortest paths problem in weighted directed graphs. In SODA ’07: Proceed-
ings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 920–928, Philadel-
phia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

[13] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

