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Approximate simulation-free Bayesian inference

for multiple changepoint models with

dependence within segments

Jason Wyse∗, Nial Friel† and H̊avard Rue‡

Abstract. This paper proposes approaches for the analysis of multiple change-

point models when dependency in the data is modelled through a hierarchical

Gaussian Markov random field. Integrated nested Laplace approximations are

used to approximate data quantities, and an approximate filtering recursions ap-

proach is proposed for savings in compuational cost when detecting changepoints.

All of these methods are simulation free. Analysis of real data demonstrates the

usefulness of the approach in general. The new models which allow for data de-

pendence are compared with conventional models where data within segments is

assumed independent.

Keywords: Changepoints, Gaussian Markov Random Field, Integrated Nested

Laplace Approximation (INLA), approximate inference, model selection

1 Introduction

There is a substantial volume of literature devoted to the estimation of multiple change-

point models. These models are used frequently in econometrics, signal processing and

bioinformatics as well as other areas. The idea is that “time” ordered data (where time

may be fictitious and only refers to some natural ordering of the data) is assumed to fol-

low a statistical model which undergoes abrupt changes at some time points, termed the

changepoints. The changepoints split the data into contiguous segments. The paramet-

ric model assumed for the data usually remains the same across segments, but changes

occur in its specification. For example, in the famous coal mining disasters data (Jar-

rett 1979), disasters are usually assumed to follow a Poisson distribution where the rate

of this distribution undergoes abrupt changes at specific timepoints. Fearnhead (2006)
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502 Multiple changepoints with dependence within segments

discusses how to perform exact simulation from the posterior distribution of multiple

changepoints for a specific class of models using recursive techniques based on filtering

distributions. The class of models considered assumes data is independent within a

homogeneous segment and the prior taken on the unknown model parameters for that

segment allows analytical evaluation of the marginal likelihood for that segment. The

paper of Fearnhead (2006) proposes a very promising step forward for the analysis of

multiple changepoint models, where the number of changepoints is not known before-

hand. The methods developed there allow for efficient simulation of large samples of

changepoints without resorting to Markov chain Monte Carlo.

An obstacle which may prevent wide applicability of the methods discussed in Fearn-

head (2006) is the requirement that the assumed model must have a segment marginal

likelihood which is analytically tractable. However, such a requirement can usually not

be fulfilled by models which allow for data dependency within a segment, a desirable

assumption in many situations. Dependency is possible across regimes in some cases

(see Fearnhead and Liu (2011)), but the assumption of independent data still holds.

The main aim of this paper is to provide a solution to these issues and open up the

opportunity for more complex segment models which allow for temporal dependency be-

tween data points. This is achieved by hybridizing the methods in Fearnhead (2006) and

recent methodology for the approximation of Gaussian Markov random field (GMRF)

model quantities due to Rue et al. (2009) termed INLAs (integrated nested Laplace

approximations).

The INLA methodology provides computationally efficient approximations to GMRF

posteriors, which have been demonstrated to outperform MCMC in certain situations

(Rue et al. 2009). An advantage to such approximations is that they avoid lengthly

MCMC runs to fully explore the posterior support and they also avoid the need to

demonstrate that these runs have converged. Another advantage is that the approxi-

mations may be used to estimate quantities such as the marginal likelihood of the data

under a given GMRF model, the quantity which is of main interest here to overcome

the requirement of an analytically tractable segment marginal likelihood in Fearnhead

(2006).

The R-INLA package Rue et al. (2009) for R-2.11.1 may be used to do all of the

aforementioned approximations for a range of GMRF hierarchical models. It aims to

give an off-the-shelf tool for INLAs. Currently the package implements many exponen-

tial family models; Gaussian with identity-link; Poisson with log-link; Binomial with

logit-link. Dependence may be modelled using many different temporal GMRFs; ran-
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dom effects models; first order auto-regressive; first and second order random walk.

Neither the list of observation models or GMRF models is exhaustive. The package also

implements spatial GMRFs in two and three dimensions and is currently still evolving

with new additions on a regular basis. Use of this package avoids programming for

specific models as it allows the selection of any observational data model and selection

of the desired GMRF through a one line call to the R-INLA package. The R-INLA

package is used for all the computations on hierarchical GMRF models in this paper.

The remainder of this paper is organised as follows. Section 2 gives a brief review

of recursions for performing inference conditional on a particular number of change-

points as given in Fearnhead (2006). In Section 3 possible computational difficulties

are discussed and solutions for these are proposed. Sections 4 and 5 analyze real data

examples; the coal-mining data is analyzed using a model with dependency and this is

compared with the analysis of Fearnhead (2006); and Well-log data (Ó Ruanaidh and

Fitzgerald 1996) is analyzed with a model that allows for dependency between adjacent

data points, such that the dependency relation may change across segments. Section 6

explores the possibility of detecting changepoints under the assumption of a stochastic

volatility model. The paper concludes with a discussion.

2 Changepoint models

Fearnhead (2006) gives a detailed account of how filtering recursions approaches may be

applied in changepoint problems. Some of the models considered there used a Markov

point process prior for the number and position of the changepoints. Wyse and Friel

(2010) demonstrated that the posterior distribution may sometimes be sensitive to the

choice of the parameters for the point process. In this paper, the focus will be on

performing inference for the changepoint positions after estimating the most probable

number of changepoints a posteriori, although it is noted that the methods also apply

to the case of a point process prior. Denote k ordered changepoints by τ1, . . . , τk. The

likelihood for the data y1:n, conditional on the k changepoints and the latent field x,

assuming segments are independent of one another is

π(y|x,θ) =

k+1
∏

j=1

π(yτj−1:τj
|xj , θj),

where τ0 = 0, τk+1 = n, xj represents the part of the GMRF x which belongs to the

jth segment, and θ = (θT

1 , . . . , θT

k+1)
T are the segment hyperparameters. Independent

priors are taken on the members of Θ and the changepoints given their number. The
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prior taken on changepoints is assumed to have the product form

πcp

k (τ1, . . . , τk) =

k
∏

j=0

πcp

k (τj |τj+1).

where τ0 = 0, τk+1 = n. Note that this prior is conditional on a given number of

changepoints, k. The idea is to introduce a prior on k and use the hierarchical form

π(k|y) ∝ π(y|k)π(k) (1)

to find the most likely number of changepoints. Using this, the most likely positions for

the changepoints can then be found.

2.1 Recursively computing the posterior

Let L
(k)
j (t) = Pr(yt:n|τj = t−1, k). Then L

(k)
j (t) is the probability of the data from time

point t onwards given the jth changepoint is at time t− 1 and there are k changepoints

in total, meaning that there are k− j changepoints between times t and n. It is possible

to compute L
(k)
j (t) in a backward recursion;

L
(k)
j (t) =

n−k+j
∑

s=t

P (t, s)L
(k)
j+1(s + 1)πcp

k (τj = t − 1|τj+1 = s)

with j going from k−1 to 1 and t going from n−k+j−1 to j+1, where P (t, s) = π(yt:s) is

the marginal likelihood of the segment yt:s. The marginal likelihood of y1:n(= y) under

a k changepoint model may be computed as

Pr(y1:n|k) =

n−k
∑

s=1

P (1, s)L
(k)
1 (s + 1)πcp

k (τ0 = 0|τ1 = s). (2)

2.2 Choice of changepoint prior and computational cost

It will be necessary to compute π(y1:n|k) for a range of values, say k = 0, . . . , K in

order to do inference for k using (1). This requires computational effort in O(n2K2)

and storage requirements in O(nK2) which could be costly. Both of these may be

reduced by choosing an appropriate changepoint prior. One such prior, as used and

noted by Fearnhead (2006), is to take changepoint positions distributed as the even

numbered order statistics of 2k + 1 uniform draws from the set {1, . . . , n − 1} without
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replacement. Doing this gives

πcp

k (τ1, . . . , τk) =
1

Zk

k
∏

j=0

δ(τj |τj+1)

where δ(s|t) = t−s−1 and the normalizing constant Zk =

(

n − 1

2k + 1

)

. Using this prior

restricts the dependence of the prior on the number of changepoints to the normalizing

constant only, meaning that

L
(k+r)
j+r (t) =

n−[k+r−(j+r)]
∑

s=t

P (t, s)L
(k+r)
j+r+1(s + 1)δ(τj+r = t − 1|τj+r+1 = s)

=

n−k+j
∑

s=t

P (t, s)L
(k+r)
j+r+1(s + 1) × (s − t)

=

n−k+j
∑

s=t

P (t, s)L
(k)
j+1(s + 1) × (s − t) = L

(k)
j (t).

Reusing these values gives a reduction by a factor of K in computational effort and

storage requirements. The recursions are now

L
(k)
j (t) =

n−k+j
∑

s=t

P (t, s)L
(k)
j+1(s + 1)δ(τj = t − 1|τj+1 = s) (3)

and

Pr(y1:n|k) =

n−k
∑

s=1

P (1, s)L
(k)
1 (s + 1)δ(τ0 = 0|τ1 = s). (4)

Then (4) is divided by Zk to correctly normalize the prior and (1) is obtained by

multiplying this by the prior weight for k changepoints π(k). This prior will be used in

the examples later.

2.3 Posterior of any changepoint

Since the prior on changepoints makes the changepoint model factorizable, it is possible

to write down the posterior distribution of τj conditional on τj−1 and k;

Pr(τj |τj−1,y1:n, k) ∝ P (τj−1 + 1, τj)L
(k)
j (τj + 1)δ(τj−1|τj)/L

(k)
j−1(τj−1 + 1).

This is used for the forward simulation of changepoints once the backward recursions

have been computed. It is also used to give the modal changepoint configuration as in

the examples later.
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3 Approximate changepoint inference using INLAs

The essential ingredient of the approach presented in this paper is to replace the segment

marginal likelihood P (t, s) in the recursions (3) with a segment marginal likelihood

approximated using INLA. It is the case that P (t, s) needs to be available in closed

form to use a filtering recursions approach. This will never be the case for hierarchical

GMRF models, which can account for within segment dependency. However, INLAs

can be used to get a good approximation to P (t, s) for hierarchical GMRF segment

models. This opens up the opportunity for more realistic data models in many cases.

There are also two other advantages: the posterior of the number of changepoints may

be well approximated for model selection; and the posterior of any given changepoint

can be computed to a high degree of accuracy.

There are two potential drawbacks of the proposed approach however. The first is

that it could require fitting a GMRF model to a very small amount of data, which could

be limiting depending on the complexity of the within-regime model. For example, at

least five data points would be required to make fitting a first order auto-regressive

random field feasible. This means that for the approach to be reasonable it may be

necessary to expect changepoints to be quite well separated. The second potential

drawback contrasts with the first. For large amounts of data, using INLAs to compute

the n(n + 1)/2 segment marginal likelihoods necessary to compute the recursions (3)

could be costly. The next section proposes a way to overcome both of these problems

simultaneously, while still retaining almost all of the advantages of using a filtering

recursions approach. This proposed solution is termed reduced filtering recursions for

changepoints (RFRs).

3.1 Reduced filtering recursions for changepoints

The main idea of RFRs is to compute the recursions at a reduced number of time

points and approximate the full recursions (3). The recursion is not computed at every

time point which takes O(n2) computation. The motivation is that if segments have

a reasonable duration, changepoints can be detected in the region where they have

occurred.

An analysis using RFRs permits a changepoint to occur at some point in the reduced

time index set {t1, . . . , tN} with ti < tj for all i < j. The assumption is that if there is

a changepoint between ti and ti+2 it can be detected at ti+1. For convenience, define
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t0 = 0 and tN+1 = n. The spacing of the ti is an important issue. If the spacing is

too wide, then changepoints will not be detected. If the spacing is too narrow, many

points are required to represent the entire data, thus increasing the computation time.

If there is little prior knowledge of where changepoints occur the natural choice is equal

spacing; ti = ig for some choice of g. The following example briefly explores the choice

of g and makes the preceding discussion clearer.

Consider the data simulated from a Gaussian changepoint model shown at the top

of Figure 1(a) with a clear change at 97. Searching for one changepoint, the bottom

plot in Figure 1(a) shows the posterior probability of a changepoint for reduced time

index sets given by g = 1, 5, 10. Note that g = 1 corresponds to the original recursions

(3). For g = 5 the changepoint is detected at 95 and g = 10 detects it at 100. In both

cases the changepoint is identified as the closest possible point to its actual position.

Figure 1(b) shows a similar example, where this time one of the segments is very short

(only 13 points). Again, the changepoint is identified at the closest possible position in

the cases of g = 1, 5. In the case of g = 10 it is the second closest, possibly due to the

noise in the data contaminating the separation of the two regimes. The magnitude of

the regime changes in these examples is large for illustration. If the magnitude of the

change is small it will be necessary to have a longer segment to identify its presence

with high power. It is also the case that if changes are short-lived, a large value of g

may cause changepoints to be missed.

Recursions on the reduced time index set

The changepoints are τ1, . . . , τk. The reduced time index set is {t1, . . . , tN}. The change-

point prior is now defined on the set of numbers {1, . . . , N} and we let cj = r if τj = tr.

That is, cj corresponds to the changepoint position if time is indexed by {1, . . . , N}
whereas τj gives the changepoint position in the reduced time index set {t1, . . . , tN}.
Define

R
(k)
j (r) = Pr(ytr+1:n|τj = tr, k).

For r = N, . . . , k + 1

R
(k)
k (r) = P (tr + 1, n)δ(ck = r|ck+1 = N + 1).

Then recursively, for j = k − 1, . . . , 1 and r = N − k + j − 1, . . . , j + 1

R
(k)
j (r) =

N−k+j
∑

s=r+1

P (tr + 1, ts)R
(k)
j+1(s)δ(cj = r|cj+1 = s).
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Figure 1: Results when searching for one changepoint in simulated Gaussian data for

g = 1, 5, 10. It can be seen that the changepoint is detected at one of its closest

neighbouring points in the reduced time index set.

After computing these, the approximate marginal likelihood of the data conditional on

k changepoints follows as,

Pr(y1:n|k) ≈
N−k
∑

s=1

P (1, ts)R
(k)
1 (s)δ(c0 = 0|c1 = s)/Zk.

When the grid spacing g is not too large, that is n is greater than a reasonable

multiple of g, the approximation to the marginal probability of k changepoints should

be reasonable for the competing models. There are many computational savings with

this approach. Using the RFRs decreases the number of marginal likelihood evaluations

required to nr(nr + 1)/2 where

nr = ⌊n/g + 1 − I(g = 1)⌋.

and I(·) is the indicator function, taking the value of 1 when the argument is true and

0 otherwise.
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Distribution of any changepoint

When the maximum a posteriori number of changepoints has been found, it is deter-

mined where the changepoints are most likely to occur on the reduced time index set.

The distribution of cj is

Pr(cj |cj−1,y1:n, k) ∝ P (tcj−1
+ 1, tcj

)R
(k)
j (cj)δ(cj |cj+1)/R

(k)
j−1(cj−1). (5)

Instead of generating samples of changepoints, our focus is to deterministically search

for the most probable changepoint positions a posteriori. The first changepoint detected

on the reduced time index set will be

ĉ1 = arg max
c1

Pr(c1|c0 = 0,y1:n, k).

Conditioning on ĉ1 the search proceeds for c2, . . . , ck in the same way. In general,

ĉj = arg max
cj

Pr(cj |ĉj−1,y1:n, k).

This procedure is repeated until the k changepoints tĉ1
, tĉ2

, . . . , tĉk
are found.

Refining changepoint detection

After detecting changepoints on the reduced time index set, it is possible to refine

the search and hone in on the most likely position of the changepoint. To begin, the

changepoints obtained from the search above, τ
(0)
1 , . . . , τ

(0)
k where τ

(0)
j = tĉj

, will all be

multiples of g. Condition on the value of τ
(0)
2 to update τ1. Compute

P (1, τ)P (τ + 1, τ
(0)
2 )

using INLAs for τ ∈ {τ (0)
1 − g + 1, . . . , τ

(0)
1 + g − 1}. Then take τ

(1)
1 to be the τ which

maximizes this. Similarly τ = τ
(1)
j maximizes

P (τ
(1)
j−1, τ)P (τ + 1, τ

(0)
j+1).

This procedure can be carried out just once, or repeated until there is no difference

between updates.

This step does of course require additional computation. It may not be necessary in

all cases to carry out a refined search. For example, the case of large n and small g would

mean that refining the search would probably give little additional information. This

approach should give near the global MAP for the changepoint positions. To ensure the

global MAP is found it would be necessary to use some sort of Viterbi algorithm which

would also use the approximated marginal likelihood values.
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Simulation of changepoint positions

The approximate methods discussed here are entirely simulation free. It may be use-

ful to allow for simulation of changepoints from their joint posterior, once all of the

marginal likelihoods have been approximated as in Fearnhead (2006). Introduction of

the RFRs makes this a little more difficult here. We expect that for larger values of

g the distribution of the changepoints on the reduced time index set will be quite de-

generate. This is since for a changepoint in a given region, it will always be detected

at the same point in the reduced time index set. However, for smaller values of g it

may still be possible to simulate changepoints on the reduced time index set and refine

their positions by simulating from a distribution which conditions on the two neigh-

bouring changepoints— a stochastic version of the approach to refine the position of

the changepoint discussed above (Section 3.1).

Exploring approximation error and computational savings in a DNA segmentation

example

To get a rough idea of the approximation error and the possible computational savings

to be made by using RFRs, the methods were applied in a DNA segmentation task with

a conditional independence model. This deviates from the general theme of the paper

(to fit models relaxing conditional independence), however, it is included to offer some

insight into RFRs in general.

DNA sequence data is a string of the letters A,C,G and T representing the four

nucleic acids, adenine, cytosine, guanine and thymine. Interest focuses on segmenting

the sequence into contiguous segments characterized by their C+G content. It is as-

sumed that within a segment the frequency of constituent acids follows a multinomial

distribution, so that

π(yt:s|θ) =

s
∏

i=t

θ
I(yi=A)
A θ

I(yi=C)
C θ

I(yi=G)
G θ

I(yi=T)
T .

With a Dirichlet(α, α, α, α) prior on θ(t:s) the marginal likelihood for a segment is

P (t, s) =
Γ{4α}

Γ{α}4Γ{s − t + 1 + 4α}
∏

j∈{A,C,G,T}

Γ
{

n
(t:s)
j + α

}

where n
(t:s)
j is the number of occurences of acid j ∈ {A,C,G,T} in the segment from t

to s inclusive.
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Figure 2: Cumulative counts of A,C,G,T for the DNA data. Identified changepoints are

overlain (vertical lines).

The data analyzed is the genome of a parasite of the intestinal bacterium Escherichia

coli. The sequence consits of 48,502 base pairs, and so will provide a good measure of

the computational savings to be made for larger datasets when using RFRs. This

data has previously been analyzed by Boys and Henderson (2004), who implemented a

hidden Markov model using reversible jump MCMC (RJMCMC) to select the Markov

order. Here however, a changepoint model assuming data in segments are independent

is applied. Cumulative counts of the nucleic acids over location along the genome are

shown in Figure 2.

The RFRs were applied to this data using an equally spaced reduced time index set

with g = 1, 5, 10, 15, 20, 25. The prior taken on the number of changes was uniform on

{0, 1, . . . , 20}. All runs were on a 2.66GHz processor using code written in C and the

segment marginal likelihoods calculated in a step before the recursions were computed.

Table 1 gives the identified changepoints and the computing time for each analysis. The

value g = 1 corresponds to filtering recursions on the entire data. It can be seen that

using RFRs does not appear to have a considerable effect on the detected changepoints.

However, there are drastic differences in computing time— the RFRs for g = 25 give a
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g 1 5 10 15 20 25

Time taken (s) 1353.69 51.78 13.05 5.99 4.09 3.03

Changepoints 176 176 176 176 176 176

20092 20101 20092 20092 20092 20092

20920 20920 20920 20920 20920 20920

22546 22585 22546 22546 22546 22546

24119 24119 24119 24119 24119 24119

27831 27831 27831 27831 27831 27831

31226 31226 31226 31226 31226 −
33101 33101 33101 33101 33101 33089

38036 38036 38049 38011 38036 38036

46536 46536 46536 46536 46501 46501

Table 1: Location of changepoints and computing time for DNA segementation example.

As g increases there is little deviation in changepoint estimates. Reported changepoints

are found after a refined search.

450 fold decrease in computing time with respect to recursions on the full data set. It

can be seen that as the value of g increases there are slight deviations in the result. For

example, with g = 25, nine changepoints are most probable a posteriori, compared with

ten for all other g values. Also, for g = 5 the second and fourth changepoints are detected

in a different position to all other values of g. This could be overcome by allowing for a

wider search than just g points either side in the refined search (Section 3.1). Despite

this, the computational savings are large, and the approach appears to successfully

isolate the regions where changepoints occur in a large search space.

It should be noted that the computation of the marginal likelihoods can be nested,

although this was not done here. For example, the marginal likelihood calculations for

g = 5 could be reused for g = 10, 15, . . . and likewise, some of the calculations for g = 10

can be used for g = 5 if it is desired to perform analysis for different values of g.

3.2 Other approaches to save on computation

The RFRs approach reduces the computation necessary to perform analysis for change-

point models by introducing an approximation to full filtering recursions. This is compli-

mentary with another approach to reduce computation suggested by Fearnhead (2006).
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There, recursions are “pruned” by truncating the calculation of the backward recursion

when the terms to be truncated will only contribute negligibly to the overall value. This

occurs in situations where it is clear that a changepoint will have occurred before a cer-

tain time in the future, and so considering times after this point does not lead to gains

in information. These ideas could be used together with the approach presented here to

gain extra speed up in computation. In particular, RFRs are useful for situations where

segment sizes are large while pruning ideas are useful when the number of changepoints

is large (so that calculations may be truncated often), so combining the two approaches

should be useful for large scale problems with regular changes and will lead to even

greater computational savings than just using RFRs alone.

4 Coal mining disasters

This data records the dates of serious coal-mining disasters between 1851 and 1962

and is a benchmark dataset for new changepoint approaches. It has been analyzed

in Fearnhead (2006), Yang and Kuo (2001), Chib (1998), Green (1995), Carlin et al.

(1992) and Raftery and Akman (1986), amongst others. In all of these analyses it is

assumed that observations arise from a Poisson process. This Poisson process is assumed

to have intensity which follows a step function with a known or unknown number of

steps. These steps or “jumps” in intensity occur at the changepoints. Other models

have also been fit to this data. For example, a smoothly changing log-linear function

for the intensity of the Poisson process:

λ(t) = ν exp{−γt}

(see for example Cox and Lewis (1966) and the original source of this data Jarrett

(1979)). The log-linear intensity model would favour more gradual change, rather than

the abrupt changes implied by changepoint models. There is an argument for some of the

elements of such a model that allows for gradual change. Although, as noted in Raftery

and Akman (1986), abrupt changes in this data are most likely due to changes in the

coal mining industry at the time, such as trade unionization, the possibility of more

subtle changes in rate could and should be entertained. A GMRF model applied to this

data should be able to model gradual as well as abrupt change.

As in Fearnhead (2006) a week is the basic time unit. The data spans 5,853 weeks

over 112 years. The latent field is taken as AR(1). This allows for an inhomogeneous

Poisson process within segments, opening up the possibility for gradual change. The

rate of the Poisson process is related to the field through a log-link function. More
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specifically,

yi ∼ Poisson(λi)

where

λi = exp{α + xi}, i = 1, . . . , n.

The parameter α is an intercept and xi follows an AR(1) process with persistence

parameter φ.

Priors were chosen to loosely mimic the behaviour of the data. The priors chosen

were

σ−2
x

∼ Gamma(4, 0.01)

κ ∼ N(3, 1.892)

α ∼ N(0, 102).

where we have reparametrized κ = logit
(

1+φ

2

)

. Following Fearnhead (2006) and Green

(1995), the prior on the number of changepoints was taken to be Poisson with mean 3.

A spacing of g = 50 was used. Figure 3 (a) shows the posterior distribution of the

number of changepoints for the AR(1) latent field model. A two changepoint model is

most likely, a posteriori. Figure 3 (b) shows the most likely position of these change-

points computed using the methods of Section 3.1. A plot of the log intensity of the

Poisson process over the entire 5,853 weeks is shown in Figure 4, obtained by condition-

ing on the MAP changepoint positions from the two changepoint model. From this it

can be argued that a model accounting for gradual changes in the rate of disasters is not

entirely unjustified. There appears to be small fluctuations of rate around a mean rate.

These fluctuations are treated differently to the two abrupt changes that are detected

by the GMRF model.

There is a discrepancy between the posterior of the number of changepoints from

RFRs given here and that given in Fearnhead (2006) (see Figure 1(a) there) which

allowed changepoints at all possible points in the data. This is a good opportunity

to further investigate the approximation error introduced by using RFRs. Figure 5

shows the posterior number of changepoints obtained from using grids of size g =

1, 5, 10, 15, 25, 50 for the model and prior assumptions in Fearnhead (2006). It is clear

that as the value of g increases, the RFRs become less sensitive to small or short lived

changes for this model, as might be expected. However, at large values of g the ability to

pick out two abrupt changes does not seem to diminish. As pointed out by one reviewer,

a simple strategy for choosing g is possible by exploiting the nesting ideas outlined in
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Figure 3: Coal mining data: results from an anlysis using INLAs and g = 50. The left

figure (a) shows the posterior distribution of the number changes while (b) shows the

cumulative counts of disasters and the changepoints indicated (blue dashed line).

Section 3.1. Starting out with a large value of g corresponding to a coarse search this

may be gradually reduced to see how values of the approximated marginal likelihood for

a given number of changepoints differ. Approximate marginal likelihoods computed for

larger values of g may be recycled in doing computations for the more refined searches.

It is possible to compute approximate Bayes factors for the GMRF and independent

data models conditional on there being a given number of changepoints. The marginal

likelihood of the data conditional on k changepoints is approximately

π(y1:n|k) ≈
N−k
∑

s=1

P (1, ts)R
(k)
1 (s)δ(c0 = 0|c1 = s)/Zk.

The different models are characterized by model assumptions and consequently the way

in which the segment marginal likelihoods are computed;

PINLA(t, s) and PANALYTIC(t, s).

The approximate Bayes factor for the GMRF model versus the analytic model condi-
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Figure 4: Coal mining data: Inferred log intensity by week.

tioning on k changepoints is given by

Bk =
πINLA(y|k)

πANALYTIC(y|k)
.

For a one changepoint model, this was B1 = 4.63 and for two changepoints it was

B2 = 5.25. This implies that there is more support for the GMRF model in these cases,

suggesting that modelling small scale variation in the rate of disasters is worthwhile.

This supports the interpretation of Figure 4. It is well known that Bayes factors can

be sensitive to prior assumptions. In this case prior hyperparameters have been chosen

with care for both the independent data model and the GMRF model. A change in

these choices could potentially lead to a different strength of conclusion as to which is

the best model. However, it is still promising in this setting to see that modelling the

dependency in the data appears worthwhile.
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Figure 5: Investigating approximation error in RFRs; results from analyses of coal

mining disasters with different values of g using the model from Fearnhead (2006).

5 Well-log data

The Well-log data of Ó Ruanaidh and Fitzgerald (1996) records 4050 measurements

on the magnetic response of underground rocks obtained from a probe lowered into a

bore-hole in the Earth’s surface. The data is shown in Figure 6. The model fitted here

aims to account for dependency in the nuclear magnetic response as the probe is lowered

into the bore-hole. This is an improvement on the independence model fitted in Section

4.2 of Fearnhead (2006); as the probe lowers, it moves through different rock strata and

some will have greater depth than others. Therefore, it would be expected to see some

correlation between observations arising from rock strata of the same type. Fitting this

model can also reduce the detection of false signals as changepoints. See Fearnhead and

Clifford (2003) for a discussion of the issue of outliers in Well-log data.

Since this is a large data set (n = 4050) a larger value of g should be used to isolate

regions where changepoints occur. This vastly reduces the computational time required

for the necessary approximations for data of this size. Analyses using g = 10, 25, 50
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Figure 6: Well-log data. Observations are the nuclear magnetic response recorded by a

probe being lowered into a bore-hole in the Earth’s surface.

were carried out, choosing the prior parameters using the information obtained from

an analysis using MCMC and an independent data model. In each instance numerical

instability prevented the recursions on the reduced time index set from being computed.

This happened because the scale of the data is so large (∼ 105). In general, measures

need to be introduced to prevent numerical instabilities in these types of recursions. In

the computations of the RFRs a measure similar to those in Fearnhead (2005) (change-

point models) and Scott (2002) (hidden Markov models) was employed. This consisted

of two steps to ensure stability. Firstly, compute

R
(k)
j (r)

R
(k−1)
j−1 (r + 1)

=

N−k+j
∑

s=r+1

δ(cj = r|cj+1 = s) exp
{

logP (tr + 1, ts) + logR
(k)
j+1(s)

−logR
(k−1)
j−1 (r + 1)

}

and then

logR
(k)
j (r) = logR

(k−1)
j−1 (r + 1) + log

(

R
(k)
j (r)

R
(k−1)
j−1 (r + 1)

)

.

The reason these do not work here is that the large scale of the data means that
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logP (tr + 1, ts) is much larger than usual, since it is the marginal likelihood of g =

10, 25, 50 points. It thus makes the argument to the exponential function in the first

stabilizing equation cause instabilities at some points. This then carries through the

remainder of the recursions.

A simple way to overcome the issues is to just do an equivalent analysis of the data

on a smaller scale, so that large logP (tr + 1, ts) is avoided. Simply dividing the data

by its sample standard deviation s reduces the scale appropriately. The parameters for

the prior specification were also adjusted to allow for the difference in scale to give the

priors

σ−2
y

∼ Gamma(1, 0.01)

σ−2
x

∼ Gamma(1, 0.01)

κ ∼ N(5, (
√

10)2),

where κ = logit
(

1+φ

2

)

. The prior on κ here gives most prior weight to values of φ

in [0.9, 1) (about 93%). This will allow the possibility for the AR(1) GMRF model to

closely approximate the behaviour of a random walk of order one. However, it still allows

the freedom for the dependence pattern to vary across segments. Fearnhead (2006) fits

a random walk model of order one to this data, showing that a latent field can be robust

to short lived changes and outliers for Well-log data. A uniform prior on {0, . . . , 30}
was taken for the number of changepoints.

For the final analysis g was taken to be 25. This reduced the necessary number

of approximate marginal likelihood approximations from roughly 8.2 × 106 (for g = 1)

to 1.3 × 104; over 600 times less. The computations for these approximations took

about a day of computing time. This appears lengthly, however this should be judged

along with the fact that the model is more flexible and that the mean signal can be

estimated at every point in the data. Figure 7 shows the posterior probability of the

number of changepoints. The mode is at 19, but there appears to be support for up to

22. Conditioning on 19 changepoints, their locations were determined using the search

strategy outlined in Section 3.1. These locations were then refined to hone in on the

actual changepoint positions. Conditioning on these positions inference was carried out

for the latent field. This is shown in the top panel of Figure 8. The field appears

to follow the trend of the data closely, while the changepoint model caters for abrupt

change. Fearnhead (2006) compared the results of a first order random walk field to

those from an independent Gaussian model for the data. Similarly, the results from the

GMRF model here are compared with those obtained using an MCMC sampler with
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Figure 7: Posterior of the number of changepoints for the Well-log data fitting an AR(1)

GMRF model. This suggests the most likely number of changepoints a posteriori is 19.

an independent data model on the Well-log data. For comparison, the 54 most likely

changepoints (mode of posterior) were taken from the independent Gaussian model, and

segment means were computed conditional on these (bottom of Figure 8). It can be seen

that the independent model is sensitive to changes in the mean and is conservative when

inferring changepoints (more rather than less). The GMRF model however appears to

be more robust to noisy data points and only infers changepoints when abrupt changes

occur in the field.

6 Stochastic volatility data

The aim of this section is to explore whether INLAs and RFRs can be used to estimate

changepoint models where segment observations are assumed to arise from a stochastic

volatility model. To this end, the approach proposed could potentially be used to detect
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Figure 8: Well-log data: results from RFRs and INLA (top) and independent data

model (bottom).
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Figure 9: Simulated stochastic volatility data with the corresponding latent log squared

volatilities shown on the bottom.

shocks in financial and other time series. The segment model assumed is

yi ∼ N
(

0, β2exi
)

, i = 1, . . . , n,

with x following an AR(1) process with persistence parameter φ and innovation variance

σ2
x

where 2logβ may be interpreted as an intercept for the volatilities. Data in different

segments are assumed independent, so that concern here is only in the complex intra

segment correlation structure.
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Figure 10: Posterior of the number of changepoints for simulated stochastic volatility

data.

The approach was applied to a simulated data set of length 1000 with eight change-

points at times 200, 400, 600, 700, 800, 850, 900 and 950, shown along with the corre-

sponding log latent squared volatilities in Figure 9. Segment parameters were chosen

as outlined in Table 2. The lengths of the segments were reduced as well as the magni-

tude of the regime change to see how powerful the approach is in detecting smaller and

Segment 1 2 3 4 5 6 7 8 9

φ 0.9 0.8 0.9 0.7 0.8 0.9 0.8 0.9 0.8

2logβ 0 2 0 1 0 0.5 0 0.25 0

σx 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Table 2: Segment parameters for simulated stochastic volatility data.
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Figure 11: MAP changepoint positions conditioning on six changepoints.

smaller changepoints.

The priors assumed for the analysis were

σ−2
x

∼ Gamma(30, 0.02)

κ ∼ N(3, 1)

and the computations were done for a reduced time index set with spacing g = 5. Priors

were chosen to loosely mimic the behaviour of the data. The prior chosen for the number

of changepoints was Poisson(5).

Figure 10 shows the posterior of the number of changepoints with most support for

six changes, but reasonable support for any number from five to eight. The change-

point positions found using the search strategy of Section 3.1 while conditioning on six

changepoints were 192, 400, 595, 697, 806 and 939. These changepoints are shown with

the data in Figure 11. The changepoints are not detected at their exact positions, but

are roughly close to the true positions given the scale of the data. The two changepoints

at 850 and 900 are missed by this estimation strategy. These two changes are small in

magnitude and are barely noticeable by simply looking at the data. In this situation

it may be too difficult for any estimation strategy to distinguish between noise and a

weak signal.
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7 Discussion

This paper demonstrates two new useful approximate methods for changepoint problems

when the assumption of independent data is relaxed. The first of these was INLAs, a

new approximate inference method for GMRFs due to Rue et al. (2009). This allows

the marginal likelihood for complex segment models to be evaluated approximately, so

that it may be used for an approximate filtering recursions approach.

Some computational considerations led to the second proposed method. Instead of

performing filtering recursions analysis on the entire data, RFRs were introduced so

that recursions may be computed only on a reduced time index set, thus using all of

the data, but only searching for changepoints in the general region where they occur.

It was demonstrated that this method can be useful in cutting computation time for

larger datasets by applying it to a DNA segmentation example with about 49,000 data

points.

The hybrid INLAs-RFRs methodology was applied to three different data examples.

The first of these was an analysis of the coal mining disasters data where the model

allowed for small scale variation in the intensity of the process and allowed for week to

week dependency. This new model was more supported by the data than the usual step

function intensity models which are often fitted. This was demonstrated by approximate

calculation of Bayes factors for the GMRF model and the independent data model for

one and two changepoint models. The GMRF model out-performed the independent

data model in both cases. The second example was an analysis of the Well-log data of Ó

Ruanaidh and Fitzgerald (1996). It was shown that allowing for segment dependency

can be more robust to noisy observations, and that unnecessary changepoints (short

lived changes, outliers etc.) are not inferred in this case. For the final example, the

methods were applied to some simulated stochastic volatility data. Performance of the

approach was promising in this case, however, there was difficulty in detecting some

smaller changes.

It is worth noting again that RJMCMC would be practically infeasible for the data

models considered here. This is since in addition to the issue of efficient sampling from

hierarchical GMRF models (see Rue and Held (2005)), there is also segmentation of

the data. Thus adding a new changepoint would require designing a reversible move

between proposed and current field hyperparameters and in addition resampling field

elements. Making moves of this type which exhibit good mixing would be challenging,

and further diagnosing convergence would be difficult with the chains possibly requiring
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very long run times. This gives the approximate approach even more of an advantage.

This is true especially in the case of models which require good corresponding proposal

densities to perform well when it comes to MCMC, such as stochastic volatility models.

Overall, this paper has explored a promising new direction for estimation of change-

point models by creating a hybrid of two popular methods in their respective fields,

namely INLAs in the GMRF field of study, and filtering recursions for sequential change-

point model estimation. Other data models are possible which have not been applied

to any of the examples in this paper. For example, it is possible to have higher or-

der Markov dependencies for random walk fields in the R-INLA package. Zero inflated

Poisson and Binomial data models are also possible.

LaTeX Warning: There were multiply-defined labels.
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