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Abstract Several findings on forced solitons generated by the forced Korteweg-
de Vries equation (fKdV) are discussed in this paper. This equation has lost
group symmetries due to the forcing term. The traditional group-theoretical
approach can no longer generate analytic solution of solitons, because there
are no infinitely many conservation laws. Approximate solution and numerical
simulation seem to be the only way to solve fKdV equations. In this paper
we show how approximate scheme can be used to solve the fKdV equation and
generate uniform forced solitons. A detail derivation of the approximate solution
was provided and various profiles of fKdV such as the depth of depression zone;
hd, amplitude; as, speed; s and the period; Ts of generation of forced uniform
solitons was given.

Keywords Forced soliton, uniform soliton, soliton collision and forced Korteweg
de-Vries equation.

Abstrak Beberapa keputusan tentang penjanaan soliton paksaan oleh per-
samaan paksaan Korteweg-de Vries (fKdV) telah dibincangkan dalam kertas
kerja ini. Sistem persamaan seperti ini telah hilang sifat simetri kumpulannya
akibat dari gangguan atau paksaan ke atasnya. Kaedah teori kumpulan tidak
lagi mampu memberikan penyelesaian secara analitik kerana tidak wujud lagi
ketakterhinggaan banyaknya hukum keabadian. Dengan itu kaedah penyelesa-
ian secara penghampiran dan berangka sahaja yang mampu menyelesaikannya.
Dalam kertas kerja ini kita akan tunjukkan bagaimana penyelesaian secara peng-
hampiran mampu menyelesaikan persamaan fKdV dan seterusnya menjana soli-
ton paksaan seragam. Penyelesaian hampir telah diterbitkan secara terperinci
dan beberapa profil bagi fKdV seperti kedalaman zon tertekan; hd, amplitud;
as, laju; s dan tempoh; Ts penjanaan soliton paksaan seragam telah diberikan.

Katakunci Soliton paksaan, soliton seragam, perlanggaran soliton dan per-
samaan paksaan Korteweg-de Vries.
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1 Introduction

In the last ten years, several researchers have conducted extensive studies on Korteweg-
de Vries (KdV) equation and they were able to get free solitons generated, Shen (1993) [8].
With forcing terms added to the original KdV equation, it has lost group symmetries and
the traditional group-theoretical approach can no longer generate analytical solution of
solitons, because there is no infinitely many conservation laws. Approximate solution and
numerical simulation seem to be the only way to solve fKdV equations, Shen(2002)[6].

When a fluid flow interacts with a topographic feature, and the fluid can support wave
propagation, then there is the potential for waves to be generated upstream or downstream.
In many cases when the topographic feature has a small amplitude, the situation can be
successfully described by using a linearized theory and any nonlinear effects are determined
as a small perturbation on the linear theory. However, when the flow is critical, that
is, the system supports a long wave with zero group velocity in the reference frame of
the topographic feature, then the linear theory failed and hence an intrinsically nonlinear
theory need to be developed. It is now known that in many cases such a transcritical,
weakly dispersive theory leads to a fKdV equation.

The first evidence of the existence of such solitons was provided by the celebrated
discovery of the upstream radiated waves by a Caltech fluid mechanics group led by Wu
T.Y. in 1982 [3]. This phenomenon is given in Figure (1). They claimed that these solitary
waves are solitons.

Figure 1: An illustration of the schematic solution η(x, t) of fKdV for a fixed time t.

These waves have been successfully modelled by Shen in 1996 [9] and he was able to
radiate these forced solitons. In free KdV equation, there exist infinitely many conservation
laws but this is not true when we are dealing with fKdV; whereby certain symmetries
such as the translation invariant property is broken or certain conservation laws, such as
conservation of momentum is not satisfied. These equations have lost group symmetries due
to forcing. The traditional group-theoretical approach can no longer generate analytical



Approximate Solution of Forced Korteweg-de Vries Equation 69

solution of solitons because there is no infinitely many conservation laws. Approximate
solution and numerical simulation seem to be the only way to solve the forced nonlinear
evolution equations in asymmetric systems.

In Section 2 we will derive the approximate solitary wave solution of fKdV and provide
the profiles of fKdV solitons. Conclusion and discussion are given in Section 3.

2 Approximate Solution of fKdV

Since there is no analytical solution for fKdV equation and we would like to understand
the behavior of forced solitons in fKdV, therefore an approximate scheme will be developed
to solve the fKdV model given by equation (1).

ηt + ληx + 2αηηx + βηxxx =
γ

2
f ′(x), −∞ < x < ∞. (1)

In this case, η(x, t) describes the free surface profile of the water flows over a bump, λ

measures the deviation of the bump speed from the shallow water velocity, γ is computed
from the cross section area of the bump, whereas

f ′(x) = δx(x)

is an isolated forcing function of Dirac-delta function, x is the spatial coordinate along the
channel, t is time, α < 0 and β < 0 are constants. The control parameters in this model
are the bump size parameter γ and the bump speed parameter λ. The initial condition for
equation (1) is η(x, 0) = 0 which is the water surface profile at rest. The solution consists
of a forced soliton region generated upstream with amplitude; as and speed s, a depression
region with depth hd immediately on the lee side of the bump and a lee diminishing cnoidal
wave further downstream. The schematic solution of equation (1) is shown in Figure (1).

2.1 Derivation of Approximate Solution of fKdV

The kth upstream soliton of the fKdV, Shen (1993),[8] may be expressed in the fol-
lowing form

η(k)(x, t) = assech
2

{√
3as

2
(x + st − δk)

}

, (2)

where δk is the specific phase shift for the kth soliton, s is the upstream advancing speed
of the solitons and as = 2(λ + s) is the amplitude of the soliton.

For each soliton η(k), with the first three conservation laws one has
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∫

∞

−∞

η(k)dx = 4
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3
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3
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Based upon the mass balance postulate that the upstream soliton mass comes solely
from the downstream depression when time is sufficiently large, one can derive approximate
expressions of the depression depth hd, soliton amplitude as, soliton propagation speed s,
and soliton generation period Ts in terms of the control parameters γ and λ.

In the stationary state with α = − 3
4 and β = − 1

6 , equation (1) can be reduced to;

ληx − 3

2
η ηx − 1

6
ηxxx =

γ

2
δx(x). (3)

In this case, we know that ηt = 0 (stationary state), η(−∞) = hs and η(∞) = −hd.
By letting η(x) = ξ(x) + hs, equation(3) becomes

λξx − 3

2
(ξ + hs)ξx − 1

6
ξxxx =

γ

2
δx(x), (4)

and thus gives us
[

λ − 3

2
hs

]

ξx − 3

2
ξξx − 1

6
ξxxx =

γ

2
δx(x), (5)

with ξ(−∞) = 0 and ξ(∞) = −(hs + hd).

Equation (5) is only solvable when ξ(x) is a smooth fall from the upstream zero solution
to a downstream solitary wave tail. So λ − 3

2hs < 0 and ξ(x) = 0 for all x in the domain
(−∞, 0). Integrating equation (5) in the domain (0,∞) gives

[

λ − 3

2
hs

]

ξ − 3

4
ξ2 − 1

6
ξxx =

γ

2
δ(x). (6)

In the case δ(x) = 0 if x > 0 and that reduce equation (6) is reduced to

[

λ − 3

2
hs

]

ξ − 3

4
ξ2 − 1

6
ξxx = 0, (7)

when x > 0, ξ(0+) = 0; ξx(0+) = −3γ and ξ(∞) = −(hs + hd).

By integrating again equation (7) after multiplying by ξx the following expression is
obtained

2[λ − 3

2
hs]ξ

2 − ξ3 − 1

3
ξ2
x +

1

3
(9γ2) = 0,

which can be further simplified into

1

3
ξ2
x = 2[λ − 3

2
hs]ξ

2 − ξ3 + 3γ2. (8)

Equation (8) is solvable only when the third order polynomial on the right hand side
has a double roots. So,

2[λ − 3

2
hs]ξ

2 − ξ3 + 3γ2 = 0. (9)

On differentiating equation (9) once, we obtained
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4[λ − 3

2
hs]ξ − 3ξ2 = 0.

So, a root of this equation is

ξ =
4

3
(λ − 3

2
hs). (10)

Since ξ(∞) = −(hs + hd),

hd = hs −
4

3
λ. (11)

We know one of the roots of equation (9) is given by r0 = 4
3 (λ− 3

2hs) and if we substitute
it into equation (9) we obtain

hs =
2

3
λ + (

3γ2

4
)

1

3 , (12)

and

hd = (
3γ2

4
)

1

3 − 2

3
λ. (13)

Equation (8) can now be written as

1

3
ξ2
x = ξ(s1 − ξ)(ξ − s1 + s2), (14)

where the roots are s1 = r1 − r2 > 0 ; s2 = r1 − r3 > 0 and r1, r2, r3 are roots of the
equation. So thus equation (8) has a double roots and this give us r1 = r; r2 = r3 = r0

with r0 = 4
3 (λ − 3

2hs). Therefore s1 = r − r0 and s2 = r − r0 = s1. So therefore equation
(14) becomes

1

3
ξ2
x = ξ2 (s1 − ξ) (15)

ξ2
x = 3 ξ2(s1 − ξ)

ξx =
√

3 ξ
√

(s1 − ξ)

dξ√
3ξ
√

(s1 − ξ)
= dx

ξ = s1sech
2

√
3s1

2
(x). (16)

Since s1 = hs =
2

3
λ + (

3γ2

4
)

1

3 so we can replace it in equation (16) to obtain

ξ =

[

2

3
λ + (

3γ2

4
)

1

3

]

sech2

√

3[ 23λ + ( 3γ2

4 )
1

3 ]

4
( x ) . (17)

In order to know more profiles related to fKdV, we will integrate equation (1) from
−∞ to 0− with respect to x to obtain

∫ 0−

−∞

ηt dx + λ

[

η

]0−

−∞

− 3

4

[

η2

]0−

−∞

− 1

6

[

ηxx

]0−

−∞

=

[

γ

2
δ(x)

]0−

−∞

. (18)
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But the term

[

γ

2
δ(x)

]0−

−∞

is always zero in the region of (−∞, 0−) and −1

6

[

ηxx

]0−

−∞

= 0

due to the “jump”. With this in mind equation (18) will become

(
∫ 0−

−∞

η dx

)

t

+ λη(0, t) − 3

4
η2(0, t) = 0. (19)

By letting

N =number of upstream solitons,

ms =mass of one soliton and

Ts =period of generating one soliton.

We can now define the rate of change of mass as

d

dt

(

∫ 0−

−∞

η1 dx

)

=
N ms

N Ts

=
ms

Ts

,

so equation (19) will become

ms

Ts

= −λη(0, t) +
3

4
η2(0, t). (20)

By integrating [equation (1) multiply by η(x, t)] from −∞ to 0− with respect to x will yield

∫ 0−

−∞

ηηt dx + λ

∫ 0−

−∞

ηηx dx − 3

2

∫ 0−

−∞

η2ηx dx

− 1

6

∫ 0−

−∞

ηηxxx dx =
γ

2

∫ 0−

−∞

ηδx(x) dx.

This can be further simplified into

d

dt

(

∫ 0−

−∞

η2 dx

)

= −λη2(0−, t) + η3(0−, t)

+
1

3

[

η(0−, t)ηxx(0−, t)

]

− 1

6

[

η2
x(0−, t)

]

. (21)

By denoting
d

dt

(

∫ 0−

−∞

η2 dx

)

as the rate of change of momentum which is equal to
N Mhs

N Ts

=

Mhs

Ts

; equation (21) becomes

Mhs

Ts

= −λη2(0−, t) + η3(0−, t)

+
1

3

[

η(0−, t)ηxx(0−, t)

]

− 1

6

[

η2
x(0−, t)

]

. (22)
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By intuitive observations, we will then make the following approximation

lim
T→∞

1

T

∫ T

0

η(0−, t) dt = hs,

lim
T→∞

1

T

∫ T

0

η2(0−, t) dt = h2
s,

lim
T→∞

1

T

∫ T

0

η3(0−, t) dt = h3
s,

lim
T→∞

1

T

∫ T

0

η(0−, t) η1xx(0−, t) dt = 0,

lim
T→∞

1

T

∫ T

0

η2
1x(0−, t) dt = 0.

By using the above approximation we will simplify equation (20) and obtained

ms

Ts

= −λ hs +
3

4
h2

s. (23)

By using the same approximation we will simplify equation (22) and obtained

Mhs

Ts

= −λ h2
s + h3

s . (24)

By dividing equation (24) by equation (23) we get the important relationship

Mhs

ms

=
−λ h2

s + h3
s

−λ hs + 3
4 h2

s

=
−λ hs + h2

s

−λ + 3
4 hs

. (25)

But we know that the mass one soliton is given by

ms =

∫

∞

−∞

η(k)dx = 4
[as

3

]
1

3

,

and the momentum of one soliton is given by

Mhs =

∫

∞

−∞

(η(k))2dx = 8[
2

3
(λ + s)]

3

2 = 8
[as

3

]
3

2

,

therefore
Mhs

ms

=
8[as

3 ]
3

2

4[as

3 ]
1

3

=
2

3
as. (26)

By equating equation (26) to equation (25) we get the amplitude of forced solitons as given
by

2

3
as =

−λ hs + h2
s

−λ + 3
4 hs

as =
3

2

[

hs(−λ + hs)

−λ + 3
4 hs

]

as = 2

[

(hd + 4
3λ)(hd + 1

3λ)

hd

]

. (27)
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Again we will integrate equation (1) from −∞ to xD with respect to x, that will yield

∫ xD

−∞

ηt dx + λ

∫ xD

−∞

ηx dx − 3

2

∫ xD

−∞

ηηx dx

− 1

6

∫ xD

−∞

ηxxx dx =
γ

2

∫ xD

−∞

δx(x) dx. (28)

Equation (28) then becomes

∫ xD

−∞

ηt dx + λ

[

η

]xD

−∞

− 3

4

[

η2

]xD

−∞

− 1

6

[

ηxx

]xD

−∞

=
γ

2

[

δ(x)

]xD

−∞

. (29)

By substituting the approximation that we have made earlier; equation (29) will yield

ms

Ts

+ λ hs −
3

4
h2

s = 0

ms

Ts

=
3

4
h2

s − λ hs

Ts =
ms

3
4 h2

s − λ hs

Ts =
4[as

3 ]
1

2

3
4 h2

s − λ hs

Ts =
16

3

[

2(hd + 1
3λ)

3h3
d(hd + 4

3λ)

]
1

2

. (30)

2.2 Profile of fKdV Solitons

From the above derivations, which is based upon the mass balance postulate that
the upstream soliton mass comes solely from the downstream depression zone when time is
sufficiently large, one can derive approximate expressions of the depression depth hd, soliton
amplitude as, soliton propagation speed s, and soliton generation period Ts, in terms of the
control parameters γ and λ, Shen(2002) [6] given as

hd = {3

4
γ2} 1

3 − 2

3
λ, (31)

as =
2(hd + 4

3λ)(hd + 1
3λ)

hd

, (32)

s =
as

2
− λ, (33)

Ts =
16

3

[

2(hd + 1
3λ)

3h3
d(hd + 4

3λ)

]
1

2

. (34)

These profiles are important features in the study and research on fKdV. With these new
findings, we are able to provide another way or scheme to solve fKdV since the analytical
solution of fKdV is still unknown.
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2.3 Dirac-delta Forcing in fKdV Equation.

The forcing function in equation (1) given by γ
2 f ′(x) which may due to the bottom

topography of the fluid domain (such as a bump on the bottom of a two dimensional
channel), or due to an external pressure on the free surface (such as the wind stress on the
surface of an ocean). By taking f ′(x) = δx(x) which is a Dirac-delta forcing as in Shen
(1996), [9], γ = 1 and if we keep λ = 0 so as to remain in the transcritical region we are
able to observe the generations of forced uniform solitons as given by Figure 2 which shows
the 3D plot of the forced uniform solitons propagations. At a specific time t = 10,t = 20,
t = 30 and t = 40 we observe that the solution to equation (1) was given by Figure 3,
Figure 4, Figure 5 and Figure 6 respectively. The approximate solution of the nonlinear
partial differential equation (1) with the depth of depression zone hd, amplitude as, speed
s and generation period Ts of the matured uniform forced solitons can be calculated from
the above approximate expression. For λ = 0 and γ = 1.0 the profiles are:

hd = 0.9086, as = 1.8172, s = 0.9086, and Ts = 5.0280.
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Figure 2: Uniform Solitons Generated by Dirac delta Forcing (3D Plot).

In Figure 3, when t = 10 < 2Ts we can only observe one matured soliton and another
soliton emerging and will be matured at t = 10.056.
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Figure 3: Generations of Forced Solitons at t = 10 (2D Plot).
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Figure 4: Generations of Forced Solitons at t = 20 (2D Plot).

In Figure 5, when t = 30 < 6Ts we can only observe only 5 matured soliton and another
soliton emerging and will be matured at t = 30.168.
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Figure 5: Generations of Forced Solitons at t = 30 (2D Plot).

In Figure 6, when t = 40 < 8Ts we can only observe only 7 matured soliton and another
soliton emerging and will be matured at t = 40.224.
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Figure 6: Generations of Forced Solitons at t = 40 (2D Plot).

3 Conclusion and Discussion

Approximate solution can be another scheme to solve fKdV equation. By knowing
the various characteristics of those forced solitons generated we can be very sure of its
nature. We also know the amplitude, speed, depth of the depression zone and the period
of generation of forced uniform solitons. With known values of the control parameter λ
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and γ we do generates forced uniform solitons and we know the profiles of each forced
uniform solitons generated. With this new findings, we have another resource to confirm
our research results with other schemes namely the numerical simulation or even with the
analytical solution of fKdV if ever found.
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