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APPROXIMATE SOLUTIONS FOR A CLASS OF INTEGRAL EQUATIONS*

BY

RICHARD LATTER
The RAND Corporation

1. Introduction. Exact solutions for integral equations of the type

f(x) = g(x) + X f dyk(x- y)f(y), 0 < x < a, (1)
Jo

are, in general, exceedingly difficult to obtain, except for particularly simple forms for
k(x — y) such as a sum of polynomials times exponentials. In the present discussion,
it will be shown that by an extension of the Wiener-Hopf technique, it is possible to
obtain approximate solutions as well as approximate eigenvalues for this equation.
The accuracy of the solutions will be shown to improve exponentially with increasing
order of approximation. Application of the method is made to the cases wherein k(x) =
e~|x|, for which case an exact solution is obtained, and k(x) = l/(2ir)1/2 exp (—\/2x2),
for which case the lowest eigenvalue is obtained approximately.

2. Fourier transform of (1). The first step in the present method consists in obtaining
the generalized Fourier transform (Titchmarsh [1]) of (1). For this purpose, it is assumed
that /(x) = 0(eclxl) (c < 1), g(x) = 0(ed|1') (d < 1), k(x) = 0(e"M), and k(x) = k(-x),
k(x) real; and that these functions belong to L2(— m, °°). The following arguments
treat (1) as if it holds for all x. This constitutes no limitation since if (1) is assumed to
apply only for 0 < x < a, then the conditions k(x) = 0 for | x | > a and g(x) = 0 for
x < —a and for x > 2a may be arbitrarily required. From these conditions it is observed
that }(x) = 0 for x < —a and for x > 2a and therefore f(x), g(x) and k(x) automatically
satisfy the assumed growth conditions. To simplify the subsequent formulas, the following
quantities are defined and their region of analyticity indicated:

(i) f+(w) = f dxe""°f(x) (Im w > c),
J a

(it) fa(w) = [ dx ezx°f(x) (Im w > - co),
Jo

(in) f-(w) = f dxe""f(x) (Im w < —c),
«/ — 00

(iv) K(w) = f dxeix"k(x) (-1 < Im w < 1),
J —CO

(v) g+(w) = J dxe""g(x) (Im to > d),

(vi) ga(w) = / dx e'"°g(x) (Im w > — <=),
Jo

(vii) g-(w) = f dxe""g(x) (Im w < —d).
J — oo
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In terms of these quantities and by the Fourier inversion formula, (1) becomes

f die - g-{w)) + f dwe~"w[f+(w)
J in—co J it — oo

- g+(w) - 9a(w) - (XK(w) - 1 )/„(u>)] = 0, ®

where r> — l;c,d < r < 1, and n < —c, —d. By a theorem due to Titchmarsh ([1]»
p. 255), (2) yields directly for the transform of (1)

[\K(w) - 1 ]fa(w) = f+(w) + f-(w) - g+(w) - g_(w) - ga(w), (3)

where in the region | Im w | < 1, the functions f-(w) — g~(w) and f+(w) — g+(w) —
ga(iv) — (\K(w) — 1) fa(w) are regular and tend to zero uniformly as | R1 to | in
any interior strip. Since ja{w), g„(w) and K(w) are also regular and tend to zero uni-
formly as | R1 w | —> oo in any strip in | Im w | <1, the same properties hold for f+(w) —
g+(w).

3. Integral equations for f+(w) and In order to evaluate the functions
/„(w), /_(w) and f+(w) which determine the solution of (1), we shall need the following
easily proved properties:

(i) ja{w) and ga(w) are entire functions of w,
(ii)' /+ (iw) — g+(w) is regular for Im w > —1,

(iii) j~(w) — g-{w) is regular for Im w < 1,

(iv) \K(w) - 1 = *^4 c(w) for -1 < -a < a < 1 ([1], p. 339 and [2], p. 51)
X+\w)

where

(a) x-(w) is regular and free of zeros for Im w < a,
(b) m_ < | x~(w)wn/2 | < for Im w < a, where m_ and M_ are positive con-

stants,
(c) x+(w) is regular and free of zeros for Im w > —a,
(d) m+ < | x+(w) w~"/2 | < M+ for Im w > —a, where m, and M+ are positive

constants,
n/2

(e) o(iv) = and e(w) = ]~[ (w — w,), where n is the number of roots
»=1

Wi and —w, of X K(w) — 1 in | Im w | < a.
Using the property (iv), we may rewrite (3) as

e(w)e(-w)fa(w) = f+(w) + /_(w) - g+(w) - gjw) - gjw). (4)X+(w)

The present method depends upon converting (4) into two simultaneous integral equa-
tions for f+(w) and j-(w). To obtain the first of these equations, we re-express (4) as

f (in\ «(~w) _ /+(">) - g+(.w) - ga(w) , f-(w) - g-(w)
X+(w) e(w)X-(w) + e(w)X-(w) ' K >

where from the properties (i), (iii) and (iv) the term on the left-hand side is regular
for Im w > —a and the second term on the right-hand side is regular except at the
zeros of t(w) for Im w < a. We now consider a contour Ca which connects the points
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ia — a> and ia + oo by a curve which lies in the region — a < Im w < a and passes
below the zeros of t(w) and a contour C_„ which connects the points — ia — oo and
— ia + oo by a curve lying below Ca but above Im w = —a. Then we split the term

f+(w) - gjw) - gjw)
e(w)X-(w) '

and hence the whole of equation (4'), into two parts, one regular in the half-plane above
C-a and the other below Ca . Thus by Cauchy's theorem

f+(w) - gjw) - gM _ l /r _ r ra+" /■-'—}
e(w)x-(w) 2tTZ \Jc—a Jca Jiot—<D j

dw' fJw') - gjw') - gjw')
w — w t(w')x~(w')

where w lies within the closed contour. From the remark following (3) it follows that
the third and fourth integrals on the right-hand side of this equation vanish. Thus

f+(w) - g+(w) - gjw) _ l/f _r \ dw' f+(w') - g+(w') - gjw')
t(w)x-(w) 2iri \ Jc-. Jc« J w' — w e(w')x-(w) ^

= I(w, C-a) - I(w, Ca).

From the definition of I{w, C-a), we see that this function is regular for Im w above
C-a which results from the uniform convergence of the integral with respect to w in
any region whose closure is in the region Im w above C_a . Similarly, I{w, Ca) is regular
for Im w in the half plane below Ca . Thus (4') may be written

f-(w) ~ Q-(w) _ t/ C ) = f (w) e(~w~) — I(w C ) (6)
t(w)X-(.w) { ' a) ja{ ) x+(w)

From the preceding remarks, the right-hand side of this equation is regular for Im w
above C-a and the left-hand side is regular for Im w below C„ . Thus (6) defines a function
regular in the whole w-plane and thus it defines an entire function. From properties (iv)
(b) and (d), l/e(w)x~(w) and e(—w)/x+(w) are bounded for Im w below Ca and above
C_„ , respectively. Further, from Theorems III and V of [2], /_(«>) — g~(w) is bounded
in every properly included half-plane below Ca . Analogously, U(w) is bounded in the
half-plane above C_a . Finally, from the uniform convergence of I(w, C_a) and I(w, Ca)
with respect to w, it follows that these quantities are bounded and approach zero as
| w | —> oo in the interior of their respective half-planes of regularity. Thus, the two sides
of (6) are bounded and, hence, (6) defines a polynomial p(w) of degree at most zero.
However, since f-(w) — g~(w), fa(w), I(w, C_a), and I(w, Ca) vanish as | R1 w \ —> oo
in their respective regions of regularity, p(w) must be identically zero. Thus

f f \ _ x+(w) 1 f dw' f+(w') - gjw') - ga{w')
«(—w) 2iri J c-a w' — w t(w')x~(w')

for Im w above C-a and

f-(w) — gjw) = J_ r dw' fjw') - gjw') — ga(w')
e(w)x-(w) 2Jc.w' — w e(w')x-(w')

for Im w below Ca .
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In analogy with the calculation just described, if we start with (4), rewriting it as

x.(w)e(w)e'i'"fa(w) = e-'n/.M - ?+(w)]

+ - g.(w) - g.(u>)], (4")

then split the second term on the right-hand side into two parts, one regular for Im w
below Cfi and the other regular for Im w above C-p , where C_e connects — z/3 — oo to
—i/3 + oo by a contour passing above the zeros of t(—w) and contained in the region
-j3 Im tt < /3, and C$ connects i/3 — oo to if} + » and lies above C-fi in the strip
—/3 < Im w < /3, then we have

/.(to) TYTiinf ^ /"<",) ~ ~ mX-(w)t(w) 2m Jo, w — w e(—w )

for Im w below CB and

1/.M---ss/0
dw' f-(w') - g-(w') - ga(w')

w' — w e(-w')

for Im w above C-p . The presence of e~""° and the specific arrangement of g.{W) in
(4") are required in order to bound the two sides of (4") according to the argument
presented after (6); in particular, for this purpose, it is necessary to have the easily
derived results that | e~""°fa(w) | = o(l) as Im w —> — oo and | e~'aw[f+(w) — ^+(w)] | =
o(l) as Im w —> oo.

The important result is the pair of integral equations (8) and (10). The solutions of
these equations, when combined with (7), determine fa(w) and finally f(x). Unfortunately,
exact solutions can only be obtained for the case that K(w) is a rational fraction in w.
However, approximate solutions can be readily obtained.

4. Approximate solutions of (8) and (10). To solve (8) and (10) approximately
we let the contour Ca be shifted toward -K°° and the contour C_^ be shifted toward
—ioo. The contours sweep across the singularities of the integrands of (8) and (10).
The singularities are easily seen to be poles, except possibly for essential singularities
arising from x+(w) and x_(w>). If such essential singularities exist, they may be removed
from the finite part of the plane by a simple device. Namely, since only values of k(x)
in the interval —a < x < a enter into (1), k(x) may be chosen zero outside this interval
as remarked in Sec. 2. As a consequence, K(w) becomes an entire function and, therefore,
X+(w) and x~(w) have no essential singularities in the finite part of the w-plane. Thus
if the contours are moved to infinity, the only singularities crossed will be poles. In
this manner, (8) and (10) may be written

ui^r -« + £ *- (<#&j s^)+*>• <»>
[/.» - - S(») + Z Kes. + 8(w> <12»
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where

r(w) L r dw' 9+(w') + g.(wQ
{ ) 2Ti JCa w' -w t(w')X-(w') '

s{w) = 1 f -JEL [?-("') + 9Sw')]x+(.W) e-,w
2mJC-i,w —w t(—w)

R(w a0 = _L r,+"_^ /+(«0
K{w' a ' 2ri Jia.-„ w' -w 6(w')x-(w') '

^ = i r- *
2« w — w e(—w )

In (11) and (12) the summations are over the residues at the poles of the integrands
crossed by the contours as Ca is moved up to ia' and C_,s is moved down to —i/3'. Approxi-
mate solutions of (8) and (10) are therefore provided by (11) and (12) if R(w, a') and
S(w, f}') are neglected. The residues in (11) and (12) are obtained in this approximation
in terms of the approximation itself by solving an obvious system of linear equations
derived from (11) and (12). In the case that the contours Ca and C-p sweep across
multiple poles, the residues of (11) and (12) involve derivatives of /+(«>) and
These derivatives may be evaluated by differentiating (11) and (12), and including
the resultant equations into an extended system of linear equations for determining the
residues.

A question may be raised with regard to the uniqueness and convergence of the
residues obtained from the solution of the linear system derived from (11) and (12).
It has not been possible as yet to establish rigorously and generally this uniqueness
and convergence. In a number of simple applications of the present method, in par-
ticular to cases wherein K(w) is a rational fraction, the linear system has been found
to have unique solutions; that is, the determinant of the system was non-singular except
at eigenvalues. Moreover, for K(w) a rational fraction, convergence was automatic,
since the determinant was of finite order and an exact solution was obtainable. However,
since the determinant of the linear system involves only x+(w), x-(w) and t(w), and
hence depends only upon K(w), and, moreover, is non-singular except at eigenvalues
for some forms of K(w), it is a reasonable presumption that the determinant has no
special degeneracy and that only exceptional forms for K(w) will lead to non-uniqueness
or non-convergence.

Finally an estimate of the accuracy of the approximation for f+(w) and f~(w) may
be obtained by estimating the order of magnitude of the terms R(w, a') and S(w, fi').
Using the easily proved results that | f+(w)e~""° | —* 0 as Im w —> °° and | f-(w) \ —> 0
as Im w —* — oo, we find that

| R(w, a') | < Ke~aa'

and
| S(w, 0') | < Me-"'

where K and M are constants. Thus the accuracy of the approximation improves expo-
nentially with increasing a' and /3'.

The corresponding approximation for /„ (w) is determined by substituting (8) and
(10) into (4), after neglecting R(w, a') and S{w, &').
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5. Approximation for f(x). From the Fourier inversion formula and from (4), we
we find that, for 0 < x < a, j(x) is given by

/(*) = £ r'" dw'e~<x"'fa(w')
Lir j—if}—&

2,1^ awc L«(»')x-(w') \ «(-»') /

x+(w') ( fjw') \ _ x i(w') + g-(w') + g„(w')"]
e(-w') \e(w')X-(w')J X (">') «(»')«(-»') J ' U''

where1 — <*> < (3 < °°. For our purposes, we restrict /3 so that the contour in this equation
lies below the zeros of e(w) and x~(w), below the essential singularities, if any, of x~(w)
and below the singularities of g~(w), but above the zeros of e(—w) and poles of x+(w),
above the singularities of g+(w), and above any essential singularities of x+(w). [For
convenience it is assumed that w = 0 is not a root of t{w)]. Now in the first integral
on the right-hand side of (13) we allow — /3 to increase to, say, a'; in the second integral
we allow — 0 to decrease to, say, —This procedure leads to the following expression
for /(:r):

1 r"+°° hg+(W'^ + a ^ ( -\ /1J\- 2tt dW e V(«M-v>')X-(w') X+(W}' (14)

where

I(x a0 _ ± r+adW' (f+wx+M
7(X,a} 2tt «(w')x-(w') \ «(-»') /'

J(x, p) = " +" ,2tt J..e(—to ) \e(w )x-(w )/

and 0 < a: < a. The summations in (14) are over the residues at the poles crossed by
the contours as —is increased to a' in the first integral of (13) and is decreased to —
in the second integral.

The final approximation to f(x) is obtained by neglecting I(x, a') and J(x, /3') in
(14) and by using the expressions (11) and (12), neglecting R(w, a') and S(w, &'), for
f+(w) and j~{w). A straightforward calculation shows that the error resulting from
neglect of I(x, a') and J(x, /?') is

| /(*,«') | < Ae~(a-X,a'

and

| J(x, p) | < Be-"'',
where A and B are constants. Thus for large a' and /3', the error is small except in the
neighborhood of x = 0 and x = a, which for increasing a becomes less and less important.
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6. Eigenvalues of (1). In the case that g(x) = 0 in (1), we have an eigenvalue
problem. Then (11) and (12) become a system of linear homogeneous equations for
the determination of the values of f+(w) and f-(w) at the poles of the integrands of
(8) and (10). The values of X admitting of solutions of (11) and (12) under these cir-
cumstances will clearly then constitute approximate eigenvalues for (1).

7. Example:

fix) = e-aui+x r*.--™.
Jo

To illustrate the application of the present method, the above simple integral equation
will be treated. This equation admits of an exact solution since the transform of the
kernel is a rational fraction and, consequently, the series expansions in (11), (12) and
(14) terminate.

From the definitions (i)-(vii) of Sec. 2 and property (iv) of Sec. 3, we find:

9-(w) = 1
a + iw '

9+(w) = e«( <»-«>

<Ja(w) =

\K(w) - 1

a — iw
|  ^a(t'u>-a)

a — iw

2X - 1 -
w2 + 1 '

t(w) = w — (2X — 1)1/2,

x+(w) = w + i,

*-« - ■

Substitution of these quantities into (11) and (12) and evaluation of the residues leads
to the result

" JTTS + If- ,'(2x — !)■'• + l<a ̂  - 'lMla - 'l"1)

/,(») - — r' + (l - fax - l)'" +.]

J w — i '

a — IW

1 1 - exp {-a[g + t(2X - l)'/2]}\
.a - i(2\ - 1)1/2 + a + t(2X - 1)1/2 /

exp [ia{2X - 1)1/2] + [(2X - 1)I/2 - i]/_(-[2X - 1],/2)

exp [za(2X - 1
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Forming from these equations the linear system for evaluating /+([2X — 1]I/2) and
/_(—[2\ — 1]1/2) and carrying out the calculation gives

/+([2A - 1]/) = £ x(a2 + 2\ - 1) {i(2X - 1)1/2 - 1 CXP ̂ 2X ~ ^ 1

i ^ ~ a #>"""1
+ »(2X - l)1/a + 1 / '

/_(— [2X - 1]1/2) = x(ft2 + 2\ _ l) {a t(2X - 1)1/2 - 1 exp [m(2X ~ 1)1/2]

. « + t(2X - 1)1/2 , _ i(2\ - 1)1/8(1 - «) „\
+ t(2X - 1)1/2 + 1 exp [ m(2X ] + <(2X - 1)1/2 - 1 6 J '

where the determinant, D, of the linear system is given by

n — exp [—z'a(2X — 1)'/2] _ exp [m(2X — 1)1/2]
U ~ (i[2X - 1]1/2 + l)2 (i[2X - 1]1/2 - l)2'

The values of X for which D = 0 are the eigenvalues. For the present case, X = 1/2
is the smallest eigenvalue.

For 0 < x < a, evaluation of the residues in (14) yields

fix) = -(2x^1)1/a /+([2X - 1]1/2) exp [-ix(2\ - 1)1/2]

i\

+

(2X - 1)1/2

a2 - 1
a2 + 2X - 1

|/_(-[2X - 1]1/2) - a2+^x_ J exp [ts(2X - 1),/2]

If D 0, the above expressions for /+([2X — 1]1/2) and /_(—[2X — 1]1/2) may be sub-
stituted into this equation for fix), which after rearranging gives the final result

" {,(2X - P - 1 <*>> I»(2X - + <2> - V" + 1

exp [—ix(2\ — 1) ] f 1 + «  \-ia(2\ — lV/2lD{o? + 2X - 1) + U(2X - 1)1/2 + i exp L *a(2X l) j

, 1 ~ a -.1 exp [ixj2X - 1)'/2] a - I „
+ »■(2X - 1)1/2 - 1 J D(a + 2X - 1) + a2 + 2X - 1 *

This simple example is typical of the application of the present method to equations
for which K(w) is a rational fraction. For other functions K(w), the procedure is com-
pletely analogous, but has the same difficulty as with the usual Wiener-Hopf method
that the functions x+iw) and x~(w) are in general not evaluable analytically but must
be treated either numerically or approximately.

8. Example:

fix) = ,^1/2 J dy exp [-\{x - y)2]fiy).
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For the case of the Gaussian kernel, the present method has been applied to the deter-
mination of the lowest eigenvalue. Previous consideration [3] of this problem has led
to the calculation of upper and lower bounds for this eigenvalue. The present calculation,
while illustrating the above method and indicating its accuracy and limitations, provides
an extension of the earlier work on this problem by obtaining an accurate estimate of
the eigenvalue in the region where the bounding values differ significantly.

Taking the transform of k(x) = 1/(2t)1/2 exp (—x2/2), we find

\K(w) — 1 = X exp (—Jw>2) — 1.

The roots of this expression occur at
w„ = ± [2 In X + 4irm']1/2,

where n is a positive or negative integer or zero and it is known [3] that X > 1. For the
approximation described below, we limit X so that only the two roots with n = 0 lie
within the strip | Im w | < 1. This requires that X 20. With this restriction, we may
write

[\K(w) - 1] = [~w - (2 In X)1/2][u> - (2 In X),/2].

From ([I], p. 339) it follows that
= exp [~t-(«0]

w — i
and

1
**« = ■

where
1 ra+" dw' , /M , , , ,2N1 w'2 + 1 \

t-(w) = r—: / — In i 1 — X exp ( — fu> ) ~ii n ■ Jw 2n m — w [L w 2 In XJ

and the contour lies in the strip 0 < Im w < 1.
From (11) and (12), it is found that

f-(w) /+([2 In X]1/2) 1
f(w)x-(w) x-([2 In X] 1/2 (2 In X)1/2 - w '

. , , x+(w) _<a„ /_(- [2 In Xl1/2)x+(- [2 In XlI/2) exp \ia{2 In X),/2]
/+(U)7JMe = (2 In X)1'2 + w '

where residues at the roots wn, n ^ 0, of \K(w) — 1 have been neglected. These terms,
as argued at the end of Sec. 4, are of the order of exp[ — a | Im (2 In X ± 4iri)l/2\. For
a ~ 1, it may be shown from [3] that X ~ 2.5 so that | Im (2 In X ± 4«'),/2 | ~ 2.3.
The error is then of order e~2'3 ~ 1/10 and decreases rapidly as a increases.

The linear system for determining /+([2 In X]1/2) and /_( — [2 In X]I/2) may now be
written

/-( — [2 In X]1/2) _ /+(f2 In X]1/2)
X-( — [2 In X]1/2) x-([2 In X]1/2) U'

/_(-[2 In X]1/2)x+(— [2 In X]1/2) exp [ia{2 In X)1/2]

+ /+([2 In X]1/2)x+([2 In X]1/2) exp [-ia(2 In X)I/2] = 0.
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The eigenvalues are determined by the solubility of this linear system which leads to
the vanishing of the determinant of the system, namely,

xS-ptol?') exp [-'o(2 ta x)"'1 - exp [i0(210 X>'"' " °-
From the definitions of x+(w) and x~(w), we may re-express this equation as

exp [i2a(2 In X)1/2] = ^ + *)' exp [-2{r_([2 In X]1/2) - r_(-[2 In X]l/2)}].

As a further simplification the expression for r_([2 In X]1/2) may be written

r-([2 In X]1/2) = -i In 21nX2+ 1 + ± J([2 In X]1/2),

where

x2 4- 1 \ dxJ([2 In X],/2) = P J In |[1 - X exp {-\x*)] ^ 2 In XJ x — (2 In X)

and the integration is along the real axis, P standing for "principal value." Then the
above expression becomes

r- ,u/», /(2 In X)1/2 + i\2 -4J([2 1nXl1/2)exp M2 In X) ] = exp  

A simple argument shows that this yields

2 tan_1 (^TnV7" + x J([2 ln X]l/2) + ™
a = (2ln Xp

where n is a positive or negative integer or zero. It may be shown that as X—>1,
J([2 In X]1/2) —» 0 as 2 ln X. Thus, since for the lowest eigenvalue a —> oo as X —> 1, it is
easily seen that n = 0. The larger eigenvalues correspond to n > 0.

An evaluation of /([2 ln X]1/2) was carried out numerically so as to exhibit the values
of X as a function of a. The results are contained in the following table.

a X II la

6.03 1.10 1.00 1.15
4.03 1.20 1.05 1.25
2.65 1.40 1.23 1.43
2.05 1.60 1.44 1.62
1.70 1.80 1.65 1.81
1.46 2.00 1.87 2.01
1.10 2.50 2.39 2.50

.891 3.00 2.91 3.00

.747 3.50 3.43 3.51

.641 4.00 3.98 4.04

.559 4.50 4.54 4.60

.492 5.00 5.14 5.19

.390 6.00 6.47 6.51

.253 8.00 9.93 9.93
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The quantities IL and Iv are

2
II =

Iv =

(2tt)1/2

2
(2tt)1/2

-a/2 ^ |-1

J exp (—jx2) dzj ,

Jo exp (-K) dx - a^y/2 [1 - exp (-^a2)]

and correspond to the lower and upper bounds of the eigenvalue deduced in [3]. It is
observed that to three figures the eigenvalue obtained above lies within the bounds
IL and Iu for a 0.6 which is consistent with the earlier error estimate. For smaller
values of a the present approximation begins to break down as expected.
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