
APPROXIMATE STRING MATCHING:
A SIMPLER FASTER ALGORITHM∗

RICHARD COLE† AND RAMESH HARIHARAN‡

SIAM J. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 31, No. 6, pp. 1761–1782

Abstract. We give two algorithms for finding all approximate matches of a pattern in a text,
where the edit distance between the pattern and the matching text substring is at most k. The first

algorithm, which is quite simple, runs in time O(nk3

m
+n+m) on all patterns except k-break periodic

strings (defined later). The second algorithm runs in time O(nk4

m
+ n + m) on k-break periodic

patterns. The two classes of patterns are easily distinguished in O(m) time.

Key words. algorithms, string matching, edit distance

AMS subject classification. 68W40

PII. S0097539700370527

1. Introduction. The approximate string matching problem is to find all of
those positions in a given text which are the left endpoints of substrings whose edit
distance to a given pattern is at most a given number k. Here, the edit distance
between two strings is the minimum number of insertions, deletions, and substitutions
needed to convert one string to the other. It is convenient to say that such a substring
matches the pattern.

This problem is of significant importance, especially in the context of identifying
sequences similar to a query sequence in a protein or nucleic acid database. In this
case, however, the insertions, deletions, and substitutions need to be appropriately
weighted. This variant of the problem is touched on only briefly in this paper for
there are other issues to resolve.

Let n be the length of the text and m the length of the pattern. Then an O(nm)
algorithm is easy to obtain. This algorithm is a dynamic programming algorithm
that finds the edit distance between every prefix of the pattern and every prefix of
the text, not counting any cost for characters in the text which are to the left of the
pattern. (We will refer to this as the local edit distance.) The number of text-pattern
prefix pairs is O(nm), and each pair can be processed in constant time, provided the
pairs are processed in a certain natural order. The way to think about this order is
to consider an array with columns associated with text prefixes of increasing length
ordered toward the right and rows associated with pattern prefixes of increasing length
ordered downward. Each entry in this array represents the local edit distance of a
text-pattern prefix pair. These entries are computed in an order such that all entries
in rows 1 . . . i are computed before row i + 1 is computed, and the entries within a
row are processed in order from left to right.

Landau and Vishkin [LV89] obtained an O(nk) algorithm for this problem. This
algorithm was based on the above dynamic programming paradigm as well. However,

∗Received by the editors April 5, 2000; accepted for publication (in revised form) December 18,
2000; published electronically September 12, 2002. This work was supported by NSF grants CCR-
9503309 and CCR-9800085. An abstract of this work appeared in the Proceedings of the ACM–SIAM
Symposium on Discrete Algorithms, SIAM, Philadelphia, 1998.

http://www.siam.org/journals/sicomp/31-6/37052.html
†Courant Institute, New York University, 251 Mercer Street, New York, NY 10012 (cole@cs.nyu.

edu).
‡Department of Computer Science, Indian Institute of Science, Bangalore, 560012, India (ramesh@

csa.iisc.ernet.in). This work was done in part while the author was visiting New York University.

1761

1762 RICHARD COLE AND RAMESH HARIHARAN

their order of computing the array entries was a clever one. They observed that,
in each 45-degree top-left to bottom-right diagonal, the entries are nondecreasing
downward and that one need compute only k entries in each diagonal, namely, those
entries whose value is different from the value of the preceding entry in the same
diagonal. They show how these entries can be computed in constant time per entry,
using a suffix tree of the pattern and the text.

Some other early work on this problem is described in [LV85, LV86, LV88, GG88,
GP90].

The question that then arose was whether an O(n + m) time algorithm was
possible, at least for the case when k is small, e.g., O(mε), for some ε between 0 and 1.
The intuition which suggests that this would be possible is that most of the pattern
must match exactly when k is small.

An algorithm with an average case performance of O(nk logm
m) time on random

strings when k < m
logm+O(1) was given by Chang and Lawler [CL90]. While linear

(sublinear, actually) on the average, the worst case performance of this algorithm was
still Θ(nk). The assumption of the text being random is a strong one as random
strings do not match with very high probability, but this algorithm may work well
even on somewhat less random strings.

Baeza-Yates and Navarro [BN96] gave an algorithm with a running time of O(n)
for the case whenmk = O(log n). In addition, they obtained another algorithm whose
performance in the average case is O(n) for medium k/m ratios. They also report
finding this algorithm to be faster than previous algorithms experimentally, especially
in the case when the pattern has moderate size, the error ratio k/m is not too high,
and the alphabet size is not too small.

Recently, the above question was answered positively by Sahinalp and Vishkin
[SV97], who obtained an algorithm with the following performance. Their algorithm

takes O(nk3+ 1
log 3 (log∗ n

m)
1

log 3 + n+m) time when there is no periodicity anywhere in
the text or the pattern. Here, “no periodicity” means that even very local periodicity,
e.g., two repeated characters, is not allowed. When there exists any periodicity in

the text, the time taken by their algorithm is O(nk8+ 1
log 3 (log∗ n

m)
1

log 3 + n+m). Their
algorithm uses the technique of deterministic coin tossing in order to sparsify the
set of diagonals which need to be processed in the above array and then processes
only these diagonals using the Landau–Vishkin algorithm. This technique and the
associated proofs of complexity and correctness, especially when there is periodicity
present, are fairly involved.

Our contribution in the paper is twofold.
1. We give a very simple way of sparsifying the set of diagonals which need to be

processed in the above matrix. This method is completely different from the Sahinalp–
Vishkin algorithm and does not use deterministic coin tossing. All it requires is finding
all occurrences of a number of aperiodic pattern substrings1 of suitable length in the

text. This immediately gives us an O(nk
3

m + n+m) time algorithm, except when the
pattern and the text are k-break periodic. By k-break periodic, we mean that there
are O(k) substrings of size k2, each such that the portions of the text and the pattern
between these substrings (or breaks, as we call them) are all periodic. We believe
that k-break periodic is a rather strict property and k-break periodic strings would
be quite rare in practice.

1“Aperiodic,” here and throughout, refers to the usual notion of periodicity; i.e., the largest
proper suffix of the substring which is also a prefix has a length of less than half that of the substring.
This notion of aperiodicity is much weaker than that required by the Sahinalp–Vishkin algorithm.

APPROXIMATE STRING MATCHING 1763

2. We show how to process k-break periodic texts and patterns in O(nk
4

m +n+m)

time. While processing such strings in O(nk
6

m + n +m) and even O(nk
5

m + n +m) is

quite easy, the O(nk
4

m +n+m) time algorithm is nontrivial. The technical difficulties
we face in obtaining this algorithm include the fact that the various periodic stretches
between breaks need not have the same period and that periodic stretches in the
pattern and the text need not align in a match of the pattern. Of course, there
cannot be too many misalignments since only k mismatches are allowed.

Thus this paper gives an algorithm for approximate string matching which is
not only faster and simpler than the Sahinalp–Vishkin algorithm but also helps us
understand what kinds of text and patterns are hard to handle for this problem and

why. We conjecture that the right bound is O(nk
3

m + n + m) even for the k-break
periodic case but have been unable to obtain an algorithm with this performance. We

also believe that obtaining an algorithm which takes o(nk
3

m +n+m) time will be hard.
The rest of this paper is organized as follows. Section 2 gives some necessary

definitions. Section 3 gives an overview of our algorithm, and section 4 describes our

sparsification algorithm and how it gives an O(nk
3

m + n +m) time algorithm for the
case when either the text or the pattern is not k-break periodic. One of the tools used
in this algorithm is a simple modification of the Landau–Vishkin algorithm [LV89]
and is described in section 5. (This modification is also used in [SV97].) Section 6
describes how to process the text when the pattern is k-break periodic but the text
is not. Section 7 describes the first attempt at handling k-break periodic patterns

and texts and obtains an O(nk
6

m + n +m) time algorithm. Section 8 gives our more

sophisticated scheme to handle such patterns and texts in O(nk
4

m + n + m) time.
Section 9 gives some intuition regarding the difficulties to be overcome in obtaining

an O(nk
3

m + n+m) time algorithm. Section 10 briefly discusses the weighted version
of the problem.

2. Definitions and preliminaries. We assume that suffix trees for the pattern
and the text can be constructed in linear time [CR94, F98].

We will assume that m, the pattern length, is at least 5k3. The Landau–Vishkin

O(nk +m) = O(nk
4

m + n+m) time algorithm is used for shorter patterns.
We will also assume that the text has length 2m−2k and the pattern has lengthm.

If the text is longer, then it is partitioned into pieces of length 2m−2k, with adjacent
pieces overlapping inm+k−1 characters. The reason this suffices is that any substring
of the text which matches the pattern has length in the range [m − k,m + k]. Thus
all matches of the pattern are completely contained within some piece.

Periodicity. The period length of a string is defined to be the smallest i such
that two instances of the string, one shifted i to the right of the other, match wherever
they overlap. A string is said to be aperiodic if its period length is more than half
the string length and periodic otherwise. A string is cyclic if it can be written as ui,
i ≥ 2. A periodic string can be written as uiv, where u is acyclic, i ≥ 2, and v is a
prefix of u. The following properties of periodic strings are well known (see [CR94])
and will be used implicitly throughout this paper.

1. The period length of a string can be determined in linear time, and so can
its lexicographically least cyclic shift.

2. An acyclic string is not identical to any of its cyclic shifts. Therefore, a string
s cannot be written as uiv and as u′iv′, where u �= u′, u, u′ are acyclic, v is a
prefix of u, v′ is a prefix of u′, and |u|+ |u′| ≤ |s|.

3. If u is acyclic, then every cyclic shift of u is acyclic as well.

1764 RICHARD COLE AND RAMESH HARIHARAN

w

not a prefix of u
not a prefix of v

not a prefix of w

u u u u u u v v v v vv w w w w w w

s

Fig. 1. A k-break periodic string. Thick regions correspond to aperiodic substrings of length k2.
u, v, w are all at most k2/2 in length.

4. If string s has period length u but string sa (a is a single character) does not
have period length u, then any suffix of sa of length at least 2u is aperiodic.

k-break periodic strings. The pattern is said to be k-break periodic if it
contains at most 2k − 1 disjoint aperiodic substrings of length k2. The text is said
to be k-break periodic if it contains at most 10k − 2 disjoint aperiodic substrings of
length k2.

Lemma 2.1. It can be determined in O(m) time if the text and the pattern are
k-break periodic. Further, if the pattern is not k-break periodic, then 2k disjoint
aperiodic substrings of the pattern of length k2 each can be found in O(m) time.
Similarly, if the text is not k-break periodic, then 10k−1 disjoint aperiodic substrings
of the text of length k2 each can be found in O(m) time.

Proof. We consider only the pattern here. The text is processed similarly.

We process the pattern from left to right, performing various rounds. In each
round, a new aperiodic length k2 substring disjoint from all previously found sub-
strings is determined. The stretches between any two consecutive substrings deter-
mined above will have period length at most k2/2. Finally, if the collection of aperiodic
strings constructed above has size less than 2k, then the pattern is k-break periodic.
The time taken by all rounds together will be O(m).

A round is performed as follows. The portion of the pattern to the right of
the last aperiodic length k2 substring determined earlier is considered in this round.
(If this is the first round, then the pattern is considered starting from its leftmost
character.) The shortest prefix s of this portion (see Figure 1) of the pattern with the
following properties is determined: |s| ≥ k2, and the length k2 suffix of s is aperiodic.
This computation will take O(|s|) time and is described in the next paragraph. The
length k2 suffix of s is added to the collection of disjoint aperiodic strings being
constructed. The total time taken over all rounds is clearly O(m).

It remains to show how s is determined in O(|s|) time. Let s′ denote the length k2

prefix of the above portion of the pattern. First, the period length δ of s′ is determined
in O(k2) time (see property 1 above). If δ > k2/2, then s = s′. Otherwise, the
leftmost pattern character p[i] to the right of s′ with the property that p[i] �= p[i− δ]
is determined; s is the extension of s′ up to and including p[i]. The time taken above is
clearly O(|s|). By property 4, the length k2 suffix of s is aperiodic, as required.

Canonical periods. Consider a periodic string uiv, where v is a prefix of u,
i ≥ 2, and u is not cyclic. Note that all cyclic shifts of u are distinct since u is
not cyclic. The canonical period of uiv is the string y which is the lexicographically
smallest circular shift of u. Note that uiv can be written in a unique way as xyjz,
where x is a suffix of y and z is a prefix of y. Also note that, given u, y can be
determined in O(n) time (see property 1 above) and that y is acyclic as well (see
property 3 above).

APPROXIMATE STRING MATCHING 1765

The following lemma about edit distance between periodic strings will be instru-
mental in the design of our algorithm.

Lemma 2.2. Consider two strings ui and xwjy of the same length, where x is
a suffix of w, y is a prefix of w, and u,w are canonical periods of their respective

strings. If |ui| = |xwjy| ≥ k3 + k2 and |u|, |w| ≤ k2

2 , then the edit distance between
these two strings is at least k + 1 unless u = w.

Proof. Suppose u �= w. Note that i ≥ 2(k + 1). There are two cases.
First, suppose |u| = |w|; u and w cannot be cyclic shifts of each other as they are

both canonical periods. It follows that each occurrence of u must incur at least one
mismatch. The lemma follows in this case.

Second, suppose |u| �= |w|. Partition ui into disjoint substrings of length |u|+ |w|.
There must be at least k + 1 such substrings. In addition, there must be at least
one insertion/deletion/substitution in each such substring by property 2 above. The
lemma follows.

3. Overview. The algorithm first determines if the pattern is k-break periodic.
More specifically, it determines whether there is a collection of 2k disjoint aperiodic
length k2 substrings in the pattern. Two cases are considered next, depending upon
whether or not such a collection of substrings exists.

The sparse case. If such a collection exists, then section 4 describes a sparsi-
fication procedure that determines O(m

k2) windows in the text, each of size k, which
are the only locations where pattern matches can possibly begin. The matches start-
ing in these windows are then found in O(m) time by a simple modification of the
Landau–Vishkin algorithm described in section 5.

The k-break periodic case. On the other hand, if no such collection exists, then
the pattern is k-break periodic. In this case, in section 6, we show that all matches of
the pattern in the text must occur in a portion of the text which is k-break periodic.
We also show how this portion can be found in O(m) time. In section 7, we show
how to find all occurrences of k-break periodic patterns in k-break periodic texts in
O(k6) time. This is improved to O(k4) time in section 8. This leads to an overall

complexity of O(nk
4

m + n+m) for this case.

4. Sparsification. In this section, we assume that the pattern has 2k disjoint
aperiodic length k2 substrings and that these substrings have been found. We call
these substrings breaks. We show how to determine O(m

k2) text windows, each of
size k, in which potential matches of the pattern can begin. This will take O(m)
time.

First, we find all exact occurrences of each of these 2k breaks in the text. Note
that these breaks have equal length. The time taken for this procedure is O(m), using
a standard multiple pattern matching algorithm [AC75].

Next, we partition the text into disjoint pieces of size k2. Consider a particular
piece t[i . . . j]. We partition it into disjoint windows of size k each. We will show how
to determine at most 12 windows such that any pattern match beginning in this piece
must begin in one of these windows.

Note that at least k of the breaks must match exactly in any match of the pattern.
Consider one particular break x. As x is aperiodic, any two occurrences of x in the

text are at least a distance of k2+1
2 apart. It is not hard to show that any pattern

match beginning in t[i . . . j] with x matching exactly must begin in one of six size k
windows in t[i . . . j] (see Figure 2). We can represent this fact by putting a mark
for x on each of these windows. For a match to begin in a particular window, it must

1766 RICHARD COLE AND RAMESH HARIHARAN

x
x

x

≥ k2+1
2

k2

Fig. 2. Windows which are marked for x. Filled circles indicate marks. Each instance of the
pattern shown has x matching exactly.

receive a mark from each of at least k breaks. Since each break marks at most six
windows, there are at most 12k marks in all and therefore at most 12 windows in
which matches can begin.

The verification of matches beginning in these windows is described next. It
shows how all pattern matches beginning in a particular text window of length l can
be found in time O(k(k+ l)). Thus all matches beginning in a particular text window
of length k can be found in O(k2) time. Then the time taken over all O(m

k2) windows
will be O(m).

5. The Landau–Vishkin algorithm and sparse match verification. First,
we give an overview of the Landau–Vishkin algorithm. Subsequently, we show how
to find all pattern matches beginning in a particular text window of length l in
time O(k(k+ l)). We assume that the suffix tree of the pattern and the text combined
has been constructed and processed for least common ancestor queries [SV88] so that
the longest common prefix of any two suffixes in the text/pattern can be determined
in O(1) time.

5.1. The Landau–Vishkin algorithm. We review the Landau–Vishkin algo-
rithm in this section. The classical approach to solving approximate string matching
is to model it as a shortest paths problem on a graph defined on the entries of the
following matrix.

Consider a matrix A[0 . . .m, 0 . . . 2m − 2k]. A[i, j] will be the value of the best
match of p[1 . . . i] with any suffix of t[1 . . . j] for 1 ≤ i ≤ m, 1 ≤ j ≤ 2m − 2k. The
0th row and column are dummies put in for technical reasons which will become clear
shortly.

The dependency graph. To determine the entries of A, we define a dependency
graph G with weighted edges as follows. For each i ≥ 1 and j ≥ 1, there is a directed
edge from A[i, j] to each of A[i, j − 1], A[i − 1, j], A[i − 1, j − 1], with weights 1, 1, y,
respectively, where y is 0 if t[j] = p[i] and 1 otherwise. In addition, there is an edge
from A[i, 0] to A[i − 1, 0] with weight 1 and another from A[0, j] to A[0, j − 1] with
weight 0 for each i ≥ 1 and each j ≥ 1.

It is easy to see that the value of A[i, j] is the weight of the shortest path from
A[i, j] to A[0, 0].

The algorithm. This algorithm takesO(k) time for each diagonal in A. Consider
a diagonal A[0 + ∗, j + ∗] (here , ∗ takes values from 1 to m). For each l = 1 . . . k, it
computes the bottommost vertex on this diagonal whose shortest path has weight l.
This is done for each l in sequence, each point taking constant time to compute.

Suppose the above has been done for a particular value of l for all diagonals.
Consider l + 1 now and the diagonal A[0 + ∗, j + ∗]. The bottommost vertex with
shortest path l + 1 on this diagonal is computed in constant time as follows. Let
A[0 + a, j − 1 + a], A[0 + b, j + b], A[0 + c, j + 1 + c] be the bottommost vertices on
their respective diagonals whose shortest paths have weight l (see Figure 3).

APPROXIMATE STRING MATCHING 1767

1

1

1

0

0

1

A[0, j]

A[0 + c, j + 1 + c]

A[0 + b, j + b]

A[0 + e, j + e]

A[0 + a, j − 1 + a]

Fig. 3. Finding the bottommost point on A[0 + ∗, j + ∗] with shortest path value l + 1.

Consider the three points A[0+a, j+a], A[0+b+1, j+b+1], A[0+c+1, j+c+1], and
take the bottommost of these three points; call this bottommost point A[0+ d, j+ d].
Next, find the bottommost point A[0 + e, j + e] such that all the edges on the path
from A[0+e, j+e] to A[0+d, j+d] have weight 0. A[0+e, j+e] is the required point.
The longest 0 weight path along a diagonal starting at any particular point on the
diagonal can be found in constant time using a longest common prefix computation.

5.2. Sparse match verification. We show how to find all pattern matches
beginning in a particular text window t[i . . . i+ l− 1] of length l in time O(k(k + l)).
In fact, our description will show how to find pattern matches ending in a particular
text window t[i . . . i+ l−1] of length l in time O(k(k+ l)). Pattern matches beginning
in the above window can be found using an analogous procedure. (Imagine reversing
the pattern and the text.)

Note that in order to determine pattern matches ending in the above text window,
it suffices to determine the bottommost points whose shortest paths have weight k
on each of the diagonals A[0 + ∗, i − m + ∗] . . . A[0 + ∗, i − m + l − 1 + ∗]. Let B
denote the band formed by these diagonals. Let B′ denote the band formed by the
diagonals A[1 + ∗, i−m− k + ∗] . . . A[1 + ∗, i−m+ l − 1 + k + ∗]. The algorithm is
based on the following simple observation.

Observation. If the shortest path of a point in B has weight at most k, then this
shortest path stays entirely within B′. This is true because horizontal and vertical
edges have weight 1 in G. The shortest path of a point in B′ − B might leave B′.
However, to compute shortest paths for points in B, it is not necessary to compute
shortest paths of points in B′ − B correctly; rather, it suffices to compute shortest
paths using only edges in B′.

There are O(k+ l) diagonals in B′. Running the Landau–Vishkin procedure takes
O(k) time per diagonal, giving O(k(k + l)) time overall.

Remark. Suppose we are given two strings s1, s2, which are substrings of the
pattern/text. Then note that the above procedure can easily be generalized to find
the edit distances of s2 with each of the Θ(k) longest suffixes of s1 in time O(k2).
Each such distance is determined correctly only if it is at most k. If it exceeds k, then
the fact that it exceeds k is determined as well.

1768 RICHARD COLE AND RAMESH HARIHARAN

Further, note that the above procedure can also be generalized to find, for each of
the Θ(k) longest suffixes of s2, the edit distances with each of the Θ(k) longest suffixes
of s1 in time O(k2). As in the previous paragraph, each such distance is determined
correctly if it is at most k; otherwise, the fact that it exceeds k is determined.

6. Text processing for k-break periodic patterns. We assume that the
pattern has at most 2k− 1 breaks, i.e., disjoint substrings of length k2, such that the
stretches in between these breaks are periodic with period at most k2/2. We show
how to obtain a substring z of the text such that z is k-break periodic (i.e., has at
most 10k−2 breaks) and all potential matches of the pattern lie completely within z.
This is done in O(m) time.

Let x be the shortest text substring with its right end coinciding with the middle
of the text and having 2(2k − 1) + k + 1 = 5k − 1 disjoint aperiodic substrings of
length k2. If no such x exists, then x is just the first half of the text. Let y be
the shortest substring beginning in the middle of the text and having 5k − 1 disjoint
aperiodic substrings of length k2. If no such y exists, then y is just the second half of
the text. We claim that all pattern matches must lie within z = xy.

Suppose a match of the pattern has its left end to the left of x. Recall that the
text has length 2m − 2k. Then this pattern occurrence must touch or overlap the
boundary of x and y, and, therefore, it must overlap the whole of x. (Otherwise,
more than k insertions/deletions would be required.) However, x has 5k − 1 disjoint
aperiodic substrings of length k2, and at most 2(2k−1) of them can overlap breaks in
the pattern; the remaining k+1 (or more) aperiodic text substrings of length k2 must
incur at least one mismatch each (because an aperiodic substring of length k2 when
aligned with a periodic stretch with period length at most k2/2 must incur at least
one mismatch; see also Figure 1). Therefore, the pattern cannot match in the above
configuration, which is a contradiction. Similarly, it can be shown that the pattern
cannot match with its right end to the right of y.

Determining x, y. This is done in O(m) time using an algorithm similar to the
algorithm in Lemma 2.1.

7. Finding matches of k-break periodic patterns. In this section, we as-
sume that both the text and the pattern are k-break periodic. Recall that there are
at most 2k − 1 (10k − 2, respectively) disjoint aperiodic length k2 substrings in the
pattern (text, respectively) such that the stretches between them are periodic with

period length at most k2

2 . Recall that these substrings are called breaks.

7.1. The O(k6) algorithm. First, we classify all potential matches into two
categories. The first category contains potential matches in which some break in the
pattern or some endpoint in the pattern is within distance 2(k3 + k2) + k2 from the
beginning or end of some break or endpoint in the text. The remaining potential
matches are in the second category.

7.1.1. The first category. Note that matches in the first category must begin
in one of O(k2) windows, each of size O(k3). All matches in these windows can be
found using the algorithm in section 5 in O(k6) time. It remains to find matches in
the second category.

7.1.2. The second category. Note that all potential matches in the second
category also begin in one of O(k2) windows. Within each window, the order in
which the various text and pattern intervals appear from left to right remains the
same. The problem is that these windows could be long. Consider one such window.

APPROXIMATE STRING MATCHING 1769

vu w

breaks

Fig. 4. An interval.

a break

an interval

Fig. 5. Placement of a portion of the pattern in the second category.

Definitions. We need to form intervals in the text and the pattern before pro-
ceeding. First, we form groups of breaks in the pattern and the text. A group is a
maximal sequence of breaks such that the periodic stretch between neighboring breaks
has length less than 2(k3 + k2) + k2. An interval is a substring which includes all
breaks in a group and extends on either side by a further distance described below.
Let u denote the canonical period of the stretch to the left, and let w denote the
canonical period of the stretch to the right. On the left side, the interval extends to

the least distance between k3 + k2 and k3 + k2 + k2

2 so as to have an integral number
of occurrences of u (see Figure 4). On the right side, the interval extends to the

least distance between k3 + k2 and k3 + k2 + k2

2 so as to have an integral number of
occurrences of w. Note that there are at least 2(k + 1) occurrences of the canonical
period on either side. Thus each interval can be written in canonical form as uivwj ,
where |ui|, |wj | ≥ k3 + k2, i, j ≥ 2(k + 1), and u,w are not cyclic. We call u the left
canonical period (lcp) of this interval and w the right canonical period (rcp).

Note that there are potentially two exceptions to the rules above, namely, the first
and the last intervals in the pattern/text. The leftmost interval may be terminated by
the left end of the pattern/text and therefore may not satisfy |ui| ≥ k3+k2. Similarly,
the rightmost interval may be terminated by the right end of the pattern/text and
therefore may not satisfy |wj | ≥ k3 + k2. Prematurely terminated intervals are called
incomplete; others are called complete.

The case when the pattern has only one interval which is incomplete on both the
left and the right needs to be treated as a special case. We will address this case later.
Until then, assume that each interval in the pattern is complete either on the right or
on the left.

Properties of second category matches. Note that in all matches in this
category, an interval or endpoint in the pattern (text, respectively) cannot overlap or
touch an interval in the text (pattern, respectively). (See Figure 5.) This is because

the period length of any periodic stretch is at most k2

2 , and, if such an overlap occurs,

1770 RICHARD COLE AND RAMESH HARIHARAN

t

p

AnInterval

u

Fig. 6. Locked intervals.

then some break or endpoint in the text would be distance at most 2(k3+k2)+k2 from
some break or endpoint in the pattern. Further, in all matches in this category, the
endpoints of an interval will be locked, i.e., in alignment with the canonical periods in
the overlapping periodic stretch (see Figure 6), as is proved in the following lemmas.
This property enables us to process this category efficiently.

Lemma 7.1. The pattern has a second category match only if the lcps and rcps of
all pattern intervals (except possibly the lcp of the first interval, in case it is incomplete
on the left, and the rcp of the last interval, in case it is incomplete on the right)
and of all text intervals overlapping the pattern are identical (denoted by, say, u).
In addition, in any second category match of the pattern, all periodic stretches in
the text (pattern, respectively) overlapping intervals in the pattern (text, respectively)
must have canonical period u.

Proof. First, consider the first part of the lemma. Order the intervals involved in
this match (i.e., all pattern intervals and all text intervals overlapping the pattern)
from left to right in order of occurrence. We show that the rcp of one interval s1 in
this sequence is identical to the lcp of the next interval s2 in this sequence. Further,
if interval s in this sequence is either complete or in the text, we show that the lcp
and rcp of s are identical. The first part of the lemma follows.

Let u denote the rcp of s1 and w denote the lcp of s2. Note that |u|, |w| ≤ k2

2 .
Further, the suffix of s1 which is cyclic in u has length at least k3 + k2 and likewise
for the prefix of s2 which is cyclic in w.

There are two cases for showing that the rcp of s1 is identical to the lcp of s2.
First, suppose both intervals are in the pattern. Then they are both overlapped by
a periodic stretch in the text with canonical period, say, x. However, by Lemma 2.2,
x = u and x = w. Therefore, u = w, as required. Second, suppose that s1 is in the
text and s2 is in the pattern. (The case when s1 is in the pattern and s2 is in the
text is symmetric.) Then s1 is overlapped in the pattern by a stretch with canonical
period w. By Lemma 2.2, u = w, as required.

Next, suppose s is in the text or is complete. We show that its lcp and rcp are
identical. First, note that s will be complete in either case (i.e., if the pattern overlaps
the first/last text interval and this interval is incomplete, then this match is in the
first category). Assume that s is a complete interval in the text. (The case when s
is a complete interval in the pattern is similar.) Let u be the lcp of s and v the rcp.
Since s is complete, the prefix of s which is cyclic in u has length at least k3 + k2 as

does the suffix of s which is cyclic in v. Note that |u|, |v| ≤ k2

2 . The portion of the
pattern overlapping s is periodic with canonical period, say, x. Then, by Lemma 2.2,
x = v = u, as required.

Now consider the second part of the lemma. Consider a periodic stretch in the
text having canonical period, say, w, which overlaps an interval s in the pattern.
Assume that s is complete on the right. (A similar proof holds for the case when s
is complete on the left; any interval must be complete either on the right or on the

left, by our assumption above.) Note that |u|, |w| ≤ k2

2 . Further, the suffix of s which

APPROXIMATE STRING MATCHING 1771

is cyclic in u has length at least k3 + k2. It follows from Lemma 2.2 that u = w. A
similar proof holds for the case of a periodic stretch with canonical period w in the
pattern overlapping an interval s in the text. (As stated earlier in this proof, s is
necessarily complete in this case.)

Lemma 7.2. Consider a match of the pattern in the second category. Consider
any interval s involved in this match (i.e., all pattern intervals and all text intervals
overlapping the pattern). If s is complete on the left and has lcp u, then the portions
of the text and pattern between s and the next interval (text or pattern; if there is no
such interval, then consider the endpoint) to the left have suffix u and incur no cost
for edits. If s is complete on the right and has rcp u, then the portions of the text and
pattern between s and the next interval (text or pattern; if there is no such interval,
then consider the endpoint) to the right have prefix u and incur no cost for edits.

Proof. We show that, if s is complete on the left and has lcp u, then the portions
of the text and pattern between s and the next interval (text or pattern; if there is no
such interval, then consider the endpoint) to the left have suffix u and incur no cost
for edits. The other case is symmetric. We assume that s occurs in the pattern. The
case when it occurs in the text is similar.

Recall from the definition of intervals that there are at least 2(k+1) occurrences
of u at the beginning of s. Some instance of u in s amongst the rightmost k + 1
instances must match the text exactly. There are two cases now.

First, suppose there are no intervals to the left of s involved in the above second
category match. Then the portion of the pattern to the left of (and including) the
above exact match of u has the form vui, where v is a suffix of u. Therefore, the
portion of the text which overlaps the above portion of the pattern is also periodic
with canonical period u (for an exact match of u occurs within s, and the portion
of the text overlapping s is part of a periodic stretch with canonical period u by
Lemma 7.1). The lemma follows from the fact that u is a prefix of s.

Next, suppose there is an interval to the left of s involved in the above second
category match. Let s′ be the rightmost such interval. By Lemma 7.1, the rcp of s′

must also be u. As before, some instance of u in s amongst the rightmost k + 1
instances must match the pattern exactly. Similarly, some instance of u in s′ amongst
the leftmost k + 1 instances must match the pattern exactly. The portions of the
pattern and the text between the above two exact matches of u are both cyclic in u.
The number of edit operations in these portions is at least the difference in their
lengths and is at most k. This number only reduces if all of these edits are transferred
so that they occur at the right end of these portions. Since there are at most k
such edits, all of them will now appear either within s or within the portion of the
text overlapping s. It follows that the portion of the text starting from the above
matching instance of u in s′ and extending up to (but not including) the location
aligned with the starting character of s matches the pattern exactly and is cyclic in u,
as required.

Definition. For each interval of length l, define its locked edit distance to be the
minimum over all g, h′ ≤ g ≤ h, of the edit distance between this interval and ug.
Here h is the number such that |u|(h− 1) < l + k ≤ |u|h, and h′ is the number such
that |u|(h′− 1) < l−k ≤ |u|h′. We compute the locked edit distance for each interval
in the text and the pattern. Here, note that this distance is needed only if it is at
most k. So we will only compute this distance if it is at most k. This computation
takes O(k3) time as there are O(k) intervals, and, for each interval, the algorithm
given in section 5 will take O(k2) time. (Essentially, the shortest paths from certain

1772 RICHARD COLE AND RAMESH HARIHARAN

points lying on some of at most 2k+1 diagonals need to be determined if these paths
have cost at most k.)

We need special handling for incomplete intervals. Note that incomplete intervals
in the text do not play a role in second category matches (i.e., if the pattern overlaps
the first/last text interval and this interval is incomplete, then this match is in the
first category). For the up to two incomplete intervals in the pattern, we need to
redefine locked edit distance as follows.

If the rightmost interval in the pattern is incomplete on the right, its locked edit
distance is the minimum edit distance between this interval and some prefix of uh,
where h is the number such that |u|(h − 1) < l + k ≤ |u|h. If the leftmost interval
in the pattern is incomplete on the left, its locked edit distance is the minimum edit
distance between this interval and some suffix of uh, where h is the number such that
|u|(h− 1) < l+ k ≤ |u|h. As before, these locked edit distances need to be computed
only if they do not exceed k. This can be done in O(k2) time using the algorithm in
section 5 (see the remarks at the end of that section).

Corollary 7.3. The edit distance between the pattern and the text for a second
category match is just the sum of the locked edit distances over all pattern intervals
and all text intervals overlapped by the pattern.

Proof. Consider any second category match. By Lemma 7.1, each interval in the
pattern is aligned with a periodic stretch in the text which is cyclic in u. Similarly,
each interval in the text overlapped by the pattern is aligned with a periodic stretch
in the pattern which is cyclic in u. From Lemma 7.2, it follows that each complete
interval in the pattern (text, respectively) is aligned with a string in the text (pattern,
respectively) which is cyclic in u. Further, an incomplete interval in the pattern which
is complete on the right (left, respectively) is aligned with a string in the text which
is periodic with period u and has suffix (prefix, respectively) u. (Note that if the
endpoint of the text were closer, preventing a suffix of u, this would be a first category
match.) The corollary follows from the definition of locked edit distance.

Remark. Our aim is to determine all locations in the text where matches of the
pattern begin. Consider any second category match. Recall from the last paragraph
of the proof of Lemma 7.2 that edits in this match can be transferred to within
pattern and text intervals (or to within portions in the text and pattern, respectively,
overlapping these intervals) without increasing the edit distance. This transfer will not
change the starting point of the match in the text except when the edits transferred are
to the left of the leftmost interval (pattern or text, whichever is first). Therefore, edits
to the left of the leftmost interval will have to be treated differently while determining
the starting points of the various matches. Next, we show how these starting points
can be determined in time O(k4) plus the number of matches.

Algorithm for second category matches. All locked edit distances are com-
puted in O(k3) time as above. Recall from the beginning of this section that all second
category matches begin in one of O(k2) windows. Consider one such window. The
pattern occurs in this window if and only if the sum of the locked edit distances of the
relevant intervals is at most k. The precise necessary and sufficient conditions for the
pattern to occur starting at a particular text location i in this window are described
next.

Note that fixing the window under consideration also fixes the left to right se-
quence of text and pattern intervals involved in matches in this window. Consider the
leftmost interval (pattern or text, whichever is first). There are two cases, depending
upon whether this interval is in the pattern or in the text. We consider each case in

APPROXIMATE STRING MATCHING 1773

turn. In each case, we show that the total time taken to output all matches in this
window is O(k2) plus the number of matches.

Case 1. First, consider the case when this interval is in the pattern. Let x be
the prefix of the pattern up to and including the right end of this interval. Recall
from Lemma 7.2 that x must be aligned with a text substring with period u and
having suffix u, in any match in this window. Let u′ be a proper suffix of u such that
the substring of the text beginning at location i has the form u′ followed by several
occurrences of u. Let leftval be defined as the minimum edit distance between x and
some string y with the following property: y begins with u′, ends with u, and has
canonical period u, and |x| − k ≤ |y| ≤ |x| + k. The pattern occurs starting at text
location i if and only if leftval plus the locked edit distance of all other pattern and
text intervals involved in matches in this window sum to at most k.

It remains to describe how leftval is determined in this case. We compute the
edit distances of x and each of the 2k + 1 longest suffixes of the unique string having
canonical period u, suffix u, and length |x| + k. This takes O(k2) time using the
algorithm in section 5 (see the remarks at the end of that section). For any relevant
location i, leftval is easily determined in constant time from this information.

Case 2. Second, consider the case when the leftmost interval is a text interval.
Let x be the substring of the text starting from location i and extending up to and
including the right end of this interval. Recall from Lemma 7.2 that x must be
aligned with a pattern substring with period u and having suffix u, in any match
in this window. Let u′ be a proper suffix of u such that the pattern begins with u′

followed by several occurrences of u. Let leftval be defined as the minimum edit
distance between x and some string y with the following properties: y begins with u′,
ends with u, and has canonical period u, and |x| − k ≤ |y| ≤ |x| + k. The pattern
occurs starting at text location i if and only if leftval plus the locked edit distance
of all other pattern and text intervals involved in matches in this window sum to at
most k.

leftval is determined as follows for this case. Note that x depends on the value
of i and that there are too many values of i which need to be considered. The key
to fast computation of leftval in this case is that the i’s can be partitioned into
O(k) equivalence classes based on their offsets with respect to the canonical period u.
Specifically, if the left end of the pattern is shifted by distance k, then the edit distance,
if no more than k, is unchanged (so long as the left end of the pattern remains in the
window in question). For the left end of I has at least 2(k + 1) disjoint occurrences
of u; one of them is aligned with a copy of u in the pattern. A shift of the pattern
left end by k units to the right can be thought of as removing this copy of u from the
text, thereby leaving the edit distance unchanged.

We perform the following computation. Let z denote the suffix of u of length
|u′|+k if |u| ≥ |u′|+k and the string u otherwise. Let x′ be formed by concatenating
z with the leftmost interval (which is a text interval in this case). Let y′ denote the
string with canonical period u, suffix u, and length |x′|+ k. For each of the k longest
suffixes of x′, we find the edit distances with each of the 3k longest suffixes of y′.
This takes O(k2) time using the algorithm in section 5. (In fact, we are really only
interested in suffixes of y′ with prefix u′.) For any relevant text location i, leftval is
easily determined in constant time from this information.

Let u′′ be that proper suffix of u such that the text substring starting at location i
has prefix u′′ followed by several occurrences of u. From Lemma 7.2, we note that, if
|u| ≥ |u′| + k and leftval is at most k, then |u′′| ≤ |u′| + k. Consider that suffix x′′

1774 RICHARD COLE AND RAMESH HARIHARAN

of x′ having the form u′′ followed by the leftmost interval. We claim that, if leftval
is at most k, then it equals the minimum edit distance of x′′ with a suffix y′′ of y′

whose size is within k of x′′ and which begins with u′. To see this, the following three
observations suffice. First, x can be obtained from x′′ and y from y′′ by inserting
strings cyclic in u. Second, the leftmost interval is a suffix of both x, x′′ and has at
least 2(k + 1) disjoint occurrences of u at its left end. Third, in any approximate
match of x and y of value at most k, all but k of the various disjoint occurrences of u
must match exactly; the same is true of any approximate match of x′′, y′′ of value at
most k.

The special case. We consider the case when there is only one interval in the
pattern, and it is incomplete in both directions. Thus the whole pattern is a single
interval. In a second category match, the entire pattern is overlapped by a single

periodic stretch in the text with canonical period, say, w, of length at most k2

2 . Clearly,
in this situation, it suffices to find matches beginning in any window of length |w|; all
second category matches in which the pattern is completely aligned with the periodic
stretch with canonical period w can be interpreted from this information as in the

previous paragraph. All matches beginning in a window of length |w| ≤ k2

2 can be
found in O(k3) time using the algorithm in section 5.

8. The O(k4) algorithm. Recall that the pattern is k-break periodic. However,
the periods of the periodic stretches between various pairs of consecutive breaks could
be different. Suppose the pattern has at most 2k−1 and the text has at most 10k−2
bad segments of length at most 4|u| each such that the stretches between two adjacent
bad segments are cyclic with canonical period u for some string u. Such texts and
patterns are called even more periodic. First, we will show how to handle patterns
and texts which are not even more periodic in O(k4) time. The even more periodic
case is the hardest and is handled in section 8.1.

The following steps are performed to determine whether or not the pattern is
even more periodic and to process it in case it is not.

Step 1. Recall that the periodic stretches in the pattern could have distinct
periods. We choose a multiset U of disjoint substrings u2

1, . . . , u
2
2k+1 of the pattern as

follows. The periodic stretches in the pattern are considered in nonincreasing order of
period length. For a particular stretch with canonical period, say, v, all (or as many
as necessary to achieve the desired cardinality of 2k+1) disjoint occurrences of v2 in
it are added to U . This procedure continues until U has exactly 2k+1 substrings in it.
Since the pattern is assumed to have length at least 5k3 (see beginning of section 2),
2k+1 such substrings always exist. (Recall that all periods have length at most k2/2,
and the total length of breaks is at most 2k3.) Let w denote u2k+1.

There are two cases now. If |w| ≤ k, then nothing is done in this step. Suppose
|w| > k. Then we show how to obtain O(m

|w|) windows, each of size k, in which pattern

matches can begin. In fact, we show something stronger, namely, in any window of
size |w| in the text, there are only a constant number of the above windows of size k
in which pattern matches can begin.

All occurrences of the u2
i ’s in the text are found in linear time using a standard

multiple pattern matching algorithm [AC75]. Next, the text is partitioned into disjoint
windows of size k each. Note that two occurrences of u2

i in the text occur at least
a distance |ui| apart (since ui is a canonical period and therefore not cyclic; see
property 2 in section 2 as well). Pattern matches in which u2

i matches exactly must
therefore begin in O(m

|ui|) = O(m
|w|) windows; this is represented by putting a mark

APPROXIMATE STRING MATCHING 1775

for u2
i on each such window. Over all strings in U , the total number of marks put is

at most (2k + 1) ∗ 2m−2k
|w| (the size of the text is 2m − 2k), and only windows with

at least k + 1 marks can have pattern matches beginning in them. It follows that
pattern matches can begin in only O(m

|w|) windows of size k each. In addition, any

two windows which are more than a distance k apart and which receive k + 1 marks
each must both receive a mark for some u2

i . Since any two occurrences of u2
i occur at

least a distance |ui| ≥ |w| apart, any two windows which are more than a distance k
apart and which receive k+1 marks each must actually be a distance at least w− 2k
apart. It follows that, in any window of size |w| in the text, there is only a constant
number of the above windows of size k in which pattern matches can begin. The total
time taken is O(m).

We now include all occurrences of all ui’s which are not identical to w as breaks
in the pattern. The number of breaks in the pattern is still O(k), each break being
O(k2) in length. In addition, all periodic stretches have period lengths of at most |w|.
In the text, all periodic stretches with period lengths of more than |w| are partitioned
into disjoint substrings of length k2; these substrings are also included as breaks. Note
that one substring in each stretch could have a length less than k2; this substring is
just merged with the next break to the right. So the text has several breaks now,
each of length between k2 and 2k2. Now, as in section 6, the text is trimmed so that
it has only O(k) breaks. The key property used in this trimming is that any break,
when aligned with a periodic stretch in the pattern (which now has period length of
at most |w|), must incur at least one mismatch. Thus both the pattern and the text
now have O(k) breaks of length O(k2) each, with all intervening periodic stretches
having period length at most |w|.

Step 2. We partition p into disjoint pieces of length 2|w|. A piece-substring is
a substring beginning and ending at piece boundaries. A piece-substring is homoge-
neous if at least three-fourths of the pieces in it have the same canonical period; it is
heterogeneous otherwise.

Step 2: Case 1. If there exists a heterogeneous piece-substring of length 2|w| ∗
(4k + 1) in the pattern, then this piece-substring must overlap a break in the text in
any match of the pattern. This is because any alignment of this piece-substring with
a periodic stretch (which now has period length of at most |w|) is guaranteed to give
at least k+1 mismatches. (At least k+1 pieces will have a canonical period different
from the canonical period of the periodic stretch.)

A heterogeneous piece-substring, if one exists, can be found in O(m) time. In
addition, if such a piece-substring exists, then all matches of the pattern must begin
in O(k) windows, each of size O(k2 + k|w|). If |w| ≤ k, then the total size of these
windows is O(k3), and all matches beginning in these windows can be found in O(k4)
time using the algorithm in section 5. If |w| > k, then these windows can be further
refined by taking intersections with the windows obtained in Step 1 (recall that pattern
matches begin in only O(1) length k windows in any length |w| window) to give O(k2)
windows each of size O(k). Thus the total time taken to find all matches using the
algorithm in section 5 is O(k ∗ k2 ∗ k) = O(k4) in this case as well.

Step 2: Case 2. Suppose there is no heterogeneous piece-substring of length
2|w|∗(4k+1) in the pattern. Then three-fourths of the pieces in every piece-substring
of length 2|w| ∗ (4k + 1) have the same canonical period, u, say, |u| ≤ |w|. Any
periodic stretch which has a canonical period different from u has a length less than
2|w|(k + 1) + 4|w| = 2|w|(k + 3); otherwise, there would be at least k + 1 complete
pieces occurring contiguously within this periodic stretch, each having a canonical

1776 RICHARD COLE AND RAMESH HARIHARAN

period different from u; any piece-substring of length 2|w| ∗ (4k+ 1) containing these
pieces would then be heterogeneous.

We now make each periodic stretch in the pattern which has a canonical period
different from u and a length at least 2|w| a break. (This is in addition to the existing
breaks.) Periodic stretches in the pattern with canonical periods different from u and
length less than 2|w| are appended to the next breaks to the right. Thus the pattern
now has O(k) breaks, each of length O(|w|k+k2), and all intervening periodic stretches
have period u.

In the text, we redefine the breaks as follows. All existing breaks continue to
be breaks. Recall that each of these has length between k2 and 2k2. Call these
breaks class 1 breaks. All periodic stretches with canonical period different from u
also become breaks now; call these breaks class 2 breaks. Next, both classes of breaks
are together reorganized into a new set of breaks so that each resulting break has
length at least 4|w|k + 2k2 and at most 2(4|w|k + 2k2); this reorganization involves
clubbing together existing breaks to form new breaks by including intervening strings
and extending at the ends, or alternatively, partitioning a break into smaller breaks,
if necessary. The length restrictions on the resulting breaks imply that the above
reorganization allows for each class 1 break to be contained completely inside some
resulting break; further, if a class 2 break is broken down and distributed over several
resulting breaks, then each substring into which it is broken down has length at
least 2|w|. Then each resulting break contains one of the following (below, the first
two cases relate to those resulting breaks which include a class 1 break, and the third
relates to those resulting breaks which are derived from class 2 breaks):

1. A length k2 aperiodic substring (these were the original breaks).
2. A substring with period length more than |w| and having at least two con-

secutive occurrences of the canonical period (see the new breaks defined just

before Step 2; also recall that |w| ≤ k2

2). Clearly, this canonical period will
be different from u.

3. A substring of length 2|w| with period length at most |w| and canonical period
different from u, |u| ≤ |w|.

Now, as in section 6, the text is trimmed so that the total number of breaks in
each half of the text is O(k). The key property used in this trimming is that any text
break, when aligned with a periodic stretch with canonical period u in the pattern,
must incur at least one mismatch. This holds because of the properties listed above.
Thus both the pattern and the text now have O(k) breaks of length O(k2 + |w|k)
each, with all intervening periodic stretches having canonical period u.

Now consider those substrings of the pattern of length 2|u| which do not have
canonical period u. There are two subcases now.

First, suppose there are at least 2k such disjoint substrings. Then at least k of
these substrings must match exactly in any match of the pattern. For such a substring
to match exactly, it must be aligned with a text substring which is not a periodic
stretch of u’s. Recall that the text has O(k) breaks and that all intervening periodic
stretches have canonical period u. It follows that there are O(k) windows in which
possible matches of the pattern can begin, each window having length O(|w|k + k2).
If |w| ≤ k, then all these matches can be found in O(k ∗ k2 ∗ k) = O(k4) time using
the algorithm in section 5. And, if |w| > k, then each of the above windows of
size O(|w|k + k2) can be further refined by taking intersections with the windows
obtained in Step 1 to get O(k2) windows of size O(k) each; the O(k4) time bound
follows in this case as well.

APPROXIMATE STRING MATCHING 1777

The second subcase arises when there are fewer than 2k disjoint substrings of
length 2|u| with canonical period different from u in the pattern. As in section 6,
the text can now be trimmed so that it has at most 10k − 2 of these. Clearly, all
stretches in the text and in the pattern between the above substrings are periodic with
canonical period u. (This follows from the fact that if two substrings, both having
length 2|u| and canonical period u, overlap in |u| locations, then their union also has
canonical period u by definition.) Next, by extending each substring of length 2|u|
with canonical period different from u on either side, the intervening stretches can
be made cyclic in u (earlier they were just periodic with canonical period u but not
necessarily cyclic); the length of each such substring can go up to 4|u| in the process.
Our text and pattern are now both even more periodic (defined at the beginning of
this section).

8.1. The O(k4) algorithm for the even more periodic case. To get a
faster algorithm, we have to define intervals which have stronger properties than those
defined in section 7. We define an interval in the pattern (text, respectively) to be a set
of disjoint substrings of the pattern (text, respectively). Roughly speaking, intervals
are formed by extending bad segments (substrings of length between 2|u| and 4|u|
which do not have canonical period u) at either end while skipping over other intervals.
Intervals will always have the property that they end in at least one, possibly more,
occurrences of the period u at each end. The span of an interval is the substring
between and including the leftmost and the rightmost characters in the interval. In
contrast to the intervals defined in section 7, spans of intervals defined here could be
nested one inside the other.

Recall the definition of locking from Figure 6. We say that an interval in the
pattern (text, respectively) locks in a particular alignment if the portion of the text
(pattern, respectively), if any, with which this interval is aligned is a cyclic repetition
of u.

Our strategy will be to identify intervals in the pattern and the text with total
length O(k|u|), with each interval having length at least 2|u|. These intervals will
have the following property: in any match of the pattern, either some pattern interval
overlaps some text interval, or all of the pattern and text intervals are locked.

All matches in the first category clearly occur in at most O(k2) windows, each of
length max{k, |u|}. If |u| ≤ k, then the total length of all of these windows is O(k3),
and all matches in these windows can be found in O(k4) time using the algorithm
in section 5. If |u| > k, then recall that |u| ≤ |w|, that potential matches of the
pattern have been determined in Step 1, and that there is only a constant number of
windows of length k within any length |w| window in which these matches can begin.
It follows that all matches must again begin in O(k2) windows, each of length O(k);
these matches can again be found in O(k4) time.

Matches in the second category will also occur in O(k2) windows but of larger
size. Whether or not the pattern matches in one such window will depend upon the
locked edit distance of some of the intervals defined. These matches will be easy to
find. In particular, if the pattern matches at a particular position in this window,
then it will match at all positions which are shifts of multiples of |u| from this position
in this window.

8.2. Defining intervals. We show how the pattern is processed. The text is
processed similarly.

We define intervals to contain all sufficiently small strings that are not repetitions
of string u. More specifically, an interval I will be a string with a 2i-fold repetition of

1778 RICHARD COLE AND RAMESH HARIHARAN

string u at either end for a suitable i. The best match of I with a string uk, |uk| ≥ |I|,
for suitable k will be in locked alignment. Intervals are chosen to minimize i in a sense
made precise below. Further, the intervals are chosen so that, in any match in which
the intervals in the text and pattern do not overlap, the intervals are all in locked
alignment.

We define intervals as follows in O(log k) rounds. In each round, a set of partially
formed intervals inherited from the previous round is processed. These intervals will
be disjoint from each other. Some of the intervals being processed in the current round
will be fully formed at the end of this round; these will not be processed in subsequent
rounds. The remaining intervals will be processed further in the subsequent rounds.

The first round begins with a minimal collection of disjoint intervals, called initial
intervals, where each initial interval is just a bad segment (defined at the beginning
of section 8.1). Recall that the portions of the string between the initial intervals are
cyclic in u. The following procedure is performed in each round i, i ≥ 1.

2i-extending interval I. For each partially formed interval I being processed
in the current round i, a 2i-extension is determined as below. Starting from the
left end of I, walk to the left, skipping over any substrings in fully formed intervals,
until either another partially formed interval is reached or 2i instances of u have been
encountered. The same procedure is repeated at the right end. The substrings walked
over in this process (ignore the substrings skipped over) along with the substrings in I
together constitute the 2i-extension of I.

An interval I processed in round i is said to be successful in this round if, after
extension, it does not overlap or touch another extended interval on both the left and
on the right.

Finally, we form new intervals by taking a union of the various extended intervals.
Each new interval comprises maximal collections of extended intervals above such that
consecutive extended intervals in each collection overlap or touch each other. Thus, if
two extended intervals overlap or touch, then they become part of the same interval
now. Each new interval comprises exactly those pattern positions which belong to
one of the extended intervals in the corresponding maximal collection of extended
intervals. Of these new intervals, some will be fully formed, as described in the next
paragraph. Those which are not fully formed will be carried over to the next round.

Condition for full-formedness. Each interval will have an i-nested cost to be
defined below. Those intervals I whose span has locked edit distance (with respect
to u) at most 2i plus the i-nested cost of I will be fully formed at the end of this
round; the remaining intervals will be processed again in the next round.

Definitions. The i-current cost of an interval I which is processed in round i is
the locked edit distance of the span of I with respect to u if it is fully formed by the
end of round i and 2i plus its i-nested cost if it is not yet fully formed at the end of
round i. The final cost of an interval is its current cost at the end of the last round
or its locked edit distance (with respect to u) if it is fully formed. The i-nested cost
of I is the sum of the final costs of the fully formed intervals which were skipped over
while forming I and the (i−1)-current costs of those partially formed intervals which
are nested within I and were unsuccessful in round i. As the base case, we define the
0-current cost of an initial interval to be 1. Lemma 8.1 describes the motivation for
the above definitions.

Lemma 8.1. For all i ≥ 0, the i-current cost of an interval I processed in round i
is a lower bound on the cost of aligning the span s of I with a periodic stretch of u’s.

Proof. Consider a least cost match of s in a periodic stretch of u’s. If i = 0, then

APPROXIMATE STRING MATCHING 1779

the lemma follows from the fact that initial intervals have canonical periods different
from u and therefore incur at least one mismatch. So assume that i > 0.

Note that s has 2i occurrences of u at either end, possibly interspersed with
intervals fully formed before round i. Some or all of these occurrences of u in s could
be out of alignment with u’s in text. If all of these occurrences of u at the left end or
at the right end are out of alignment, then the cost of aligning s is at least 2i plus,
inductively, the i-nested cost. On the other hand, if at least one occurrence of u on
either side aligns, then we claim that all occurrences of u further from the extremes
of s from these two occurrences align as well. This is because the portions of s outside
these two occurrences of u consist only of u’s and other fully formed intervals, and
fully formed intervals, by induction, cost at least (and, of course, at most) their locked
edit distance. Therefore, the cost of the best match of s is the same as its locked edit
distance with respect to u. The claim now follows from the fact that the i-current
cost of I is the smaller of this distance and 2i plus the i-nested cost.

Termination conditions for the rounds. The ith round is the last round if the
sum of the i-current costs of those intervals which are obtained in round i and are not
nested inside other intervals and the sum of the final costs of those intervals that are
fully formed earlier and not nested inside other intervals (we call both of these kinds of
intervals together final intervals) exceeds k, or if all intervals are fully formed. When
the sum of the above costs is more than k, all matches of the pattern must have some
interval in the text overlapping or touching some interval in the pattern. Clearly,
the number of rounds is O(log k). The cost of processing a round, i.e., extending
and computing the costs, is O(k3). (Each of up to O(k) intervals requires a locked
edit distance calculation, and each calculation is performed in O(k2) time using the
algorithm described in section 5.) This can be reduced to O(k2) time by performing
the edit distance calculations more carefully, keeping in mind that the collective error
that can be tolerated over all edit distance calculations is k. However, the bound of
O(k3) per round suffices to achieve our final bound of O(k4).

Remark on the text. A similar formation of intervals is done in the text, except
that interval formation continues until either each interval is fully formed or log k+1
rounds are done, whichever is sooner.

Special cases. The above interval formation algorithm needs to be suitably
modified to account for the endpoints of the text and the pattern. We will very briefly
sketch the special handling of intervals which encounter premature termination at
either the left or the right end. Consider an interval which is prematurely terminated
on the left. Intervals prematurely terminated on the right are handled similarly. In
future rounds, this interval will be extended only to the right until it is fully formed.
Recall that full-formedness is related to the locked edit distance of the span of the
interval (with respect to u). The locked edit distance for such intervals is defined as
in section 7 (i.e., the span of this interval need not be aligned with a cyclic string
of u’s but with a string whose canonical period is u and which has suffix u).

Interval lengths. We need the following lemma before describing the remainder
of the algorithm.

Lemma 8.2. The length of the span s of an interval I obtained in round i is at
most 8|u|∗i-current cost of I.

Proof. Consider the various initial intervals J in s. For each such initial interval J ,
consider the interval intj(J) which is the unique interval processed in round j whose
span contains J . There may not be such an interval, of course. J is said to be alive in
round j if it is the leftmost (rightmost, respectively) initial interval in intj(J) at the

1780 RICHARD COLE AND RAMESH HARIHARAN

beginning of round j and intj(J) hasn’t yet reached the left endpoint (right endpoint,
respectively). Let the last round in which J is alive be denoted by last(J). The
contribution of J to s is defined to be the sum of the lengths of all of the strings
involved in extending the intervals int1(J), . . . , intlast(J)(J) plus the length of J itself.
Clearly, the length of s is at most the sum of the lengths of the contributions of the
various initial intervals in s.

The contribution of J is at most 2∗ (
∑last(J)

l=1 2l)∗ |u|+ |J | ≤ 2(2last(J)+1−2)|u|+
4|u| ≤ 2 ∗ 2last(J)+1 ∗ |u| if last(J) �= 0 and |J | ≤ 4|u| otherwise. The (last(J) − 1)-
current cost of intlast(J)−1(J) is at least 2last(J)−1 plus its (last(J) − 1)-nested cost

if last(J) ≥ 1. We call the quantity 2last(J)−1 the capacity of J (unless last(J) = 0,
in which case the capacity is defined to be 1). It is easy to see that the capacities of
the various initial intervals in s sum to at most the i-current cost of I. The lemma
follows.

The algorithm. First, intervals are formed as above. Next, two minimal sets
of final text intervals, one on either side of the middle of the text, each with total
final cost exceeding k, are chosen. (If either of these two sets does not have final cost
exceeding k, then all of the text intervals in the corresponding half are taken.) By
Lemma 8.2, the total lengths of the spans of these final text intervals and the final
pattern intervals will be O(k|u|). Ignore the remaining text intervals for the moment.
Each match in the span of one of these text intervals that overlaps or touches the span
of one of the final pattern intervals is found. In addition, matches in which one of the
endpoints of the pattern is aligned with one of these text intervals is found. These
matches occur in O(k2) windows, each of size O(max{k, |u|}). If |u| > k, then each
of the above windows can be further refined by taking intersections with the windows
obtained in Step 1 to get O(k2) windows of size O(k) each. All such matches can then
be found in O(k4) time using the algorithm in section 5.

Next, we consider the remaining matches of the pattern. Note that the spans
of the final intervals in the pattern cannot overlap with the spans of the above final
intervals chosen in the text. In addition, the text can be trimmed so as to contain
only the above final intervals, by an argument similar to the one used in section 6.
The reason for this is that, by Lemma 8.1, the above final intervals in the left half
of the text will incur more than k mismatches if all of them are overlapped by the
pattern (note that they must all be aligned with periodic stretches having canonical
period u in the matches being considered) and likewise for the above final intervals
in the right half. It follows that the spans of the final intervals in the pattern cannot
overlap with the spans of any of the final intervals in the text in any of the remaining
matches.

The remaining matches occur in O(k2) windows as well. Consider one such win-
dow. Consider the final costs of the final intervals in the pattern and the final costs
of those final intervals in the text which overlap the pattern. If any one of these text
intervals is partially formed, then the pattern cannot match the text because the final
cost of this text interval is more than k, and Lemma 8.1 implies that the span of this
interval must incur more than k edit operations when aligned with a periodic stretch
of u’s. Similarly, if any of the pattern intervals is partially formed, then, again, the
sum of the final costs of these pattern intervals exceeds k, and the pattern cannot
match. So suppose that all of these text and pattern intervals are fully formed. Then
the final cost of each such interval is its locked edit distance. If the sum of these
final costs is at most k, then the pattern matches at intervals of |u| in this window
with all of these final intervals locked, and otherwise it does not match anywhere in
this window. The precise locations where matches occur can be determined as in the

APPROXIMATE STRING MATCHING 1781

algorithm for second category matches described toward the end of section 7.1.2.

9. Is O(nk3

m
+n+m) running time possible? The following text and pattern

appear to form a hard case for our problem. They are defined in terms of an acyclic
string u. Apart from Θ(k) substrings, each of length equal to |u| = Θ(k), the text
and the pattern are periodic with period u. Suppose these bad substrings appear at
intervals of Θ(k2) in the text and at intervals of Θ(k) in a length Θ(k2) prefix of
the pattern. There are Θ(k2) windows, each of size k, in which one of these pattern
substrings overlaps some text substring. Exactly one bad pattern substring overlaps
a bad text substring in any of the pattern placements in these windows. Our current
O(k4) algorithm will take Θ(k2) time to determine matches, if any, in each window,
giving an Θ(k4) time algorithm for this case. However, it is conceivable that an
algorithm which takes O(k) amortized time per window can be obtained by observing
that the average edit distance between pairs of text-pattern substrings must be O(1);
otherwise, there can be few matches. The difficulty we face is that the occurrences
of u among the bad substrings of the pattern need not align with occurrences of u in
the text.

10. The weighted case. In the weighted case, deletions of different characters
and the various substitutions may have differing costs, but, by way of normalization,
all will be required to have cost at least 1.

The approximate matches with cost ≤ k can be found using essentially the same
algorithm; the only change needed is to the Landau–Vishkin algorithm to take into
account the differing costs. The details are left to the reader.

A important application in the weighted case is to match a pattern against a
database of strings. We would like to apply the above algorithm. For efficiency, one
approach would be to have a precomputed suffix tree for the database of strings. This
suffix tree would then need to be incremented to incorporate the pattern string so
as to enable the above algorithm to be used. Following the match calculation, the
modification to the suffix tree would need to be undone. It would also be useful to
support both insertions and deletions to the database. We leave this topic as an open
problem.

REFERENCES

[AC75] A. V. Aho and M. J. Corasick, Efficient string matching: An aid to bibliographic search,
Comm. ACM, 18 (1975), pp. 333–340.

[BN96] R. Baeza-Yates and G. Navarro, A faster algorithm for approximate string matching, in
Combinatorial Pattern Matching, Lecture Notes in Comput. Sci. 1075, Springer-Verlag,
Berlin, 1996, pp. 1–23.

[CL90] W. I. Chang and E. Lawler, Approximate string matching in sublinear expected time,
in Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Los Alamitos, CA, 1990, pp. 116–125.

[CR94] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York,
1994, pp. 27–31.

[F98] M. Farach, Optimal suffix tree construction with large alphabets, in Proceedings of the
38th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 1997, pp. 137–143.

[GG88] Z. Galil and R. Giancarlo, Data structures and algorithm for approximate string match-
ing, J. Complexity, 4 (1988), pp. 33–72.

[GP90] Z. Galil and K. Park, An improved algorithm for approximate string matching, SIAM
J. Comput., 19 (1990), pp. 989–999.

[LV85] G. Landau and U. Vishkin, Efficient string matching in the presence of errors, in Pro-
ceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Los Alamitos, CA, 1985, pp. 126–136.

1782 RICHARD COLE AND RAMESH HARIHARAN

[LV86] G. Landau and U. Vishkin, Introducing efficient parallelism into approximate string
matching and a new serial algorithm, in Proceedings of the 18th Annual ACM Sym-
posium on Theory of Computing, ACM, New York, 1986, pp. 220–230.

[LV88] G. Landau and U. Vishkin, Fast string matching with k differences, J. Comput. System
Sci., 37 (1988), pp. 63–78.

[LV89] G. Landau and U. Vishkin, Fast parallel and serial approximate string matching, J.
Algorithms, 10 (1989), pp. 158–169.

[SV97] S. Sahinalp and U. Vishkin, Approximate Pattern Matching Using Locally Consistent
Parsing, manuscript. Abstract appeared in Proceedings of the 37th IEEE Symposium
on Foundations of Computer Science, Burlington, VT, IEEE Computer Society, Los
Alamitos, CA, 1996, pp. 320–328.

[SV88] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and
parallelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

