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Abstract 

In this paper we discuss the utility of approximate string 
matching procedures in the automation of various aspects 
of word game construction and solution. These procedures 
are then related to the underlying issues in computational 
linguistics. 

Introduction 

Word games may be enjoyed at a number of different 
levels. The neophyte may derive satisfaction from an 
incomplete attempt at solving a crossword puzzle. The 
serious practitioner may find pleasure at a loftier plateau, 
perhaps quickly solving a very difficult cryptogram or a 
lengthy anagram. Possibly some are attracted by the 
attendant silent soliloquy or the individuality of the effort. 
For whatever reasons, word games in the twentieth century 
are enormously popular and, for some, have come to be 
associated with intelligence and erudition. 

However, word games are also interesting because they 
illustrate classes of problems which are of pressing concern 
to the computational linguist. In the automation of various 
aspects of word games, one deals with such issues as 
efficient lexical organization and processing, exact and 
approximate string matching techniques, search strategies 
and heuristics, problem representation, knowledge 
representation, rule based expert systems, and so forth. In 
this paper, we describe the interrelationships between these 
issues and illustrate how they impact current approaches 
toward automating word games. 

The Crux of Cruciverbalism 

Modern crossword puzzles are as old as this century. They 
are typically defined upon an mxn matrix where most, if 
not all, of the cells are place holders for characters. 
Consecutive characters make up words along the horizontal 
and vertical axes. These words are semantically related to 
a ‘clue’ which is usually associated with the ID of the first 
cell in the word slot. 
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Of course there are numerous variations on this theme. 
Some puzzles, like those commonly found in British 
newspapers, are more sparse (i.e., have a lower density or 
percentage of unfilled or open cells) than others. Some 
theme puzzles are defined over non-rectangular shapes 
(perhaps a heart shape for Valentine’s Day, or a tree shape 
for Christmas). Others may require that all open cells 
interlock horizontal and vertical word slots which include 
them (as in the typical American puzzle). Though the 
format of crossword puzzles may differ, they all can be 
described in terms of these three characteristics: the 
geometry of the puzzle, the density of the puzzle and the 
degree of interlocking. 

Crossword puzzles are created in stages. To use the 
terminology of Smith and Steen [24], we refer to the 
creation as ‘crossword compilation’. The following 
operations are involved in crossword compilation: 1) 
creation of host matrix, 2) determination of overall design, 
3) specification of word slots, 4) identification of 
occurrences of cell sharing, 5 )  construction of solution 
set(s), and 6) composition of clue set(s) for the solution 
set(s). 

We note that the typical solution of the puzzle involves 
stages 5 )  and 6) in reverse order. Stages 1) through 4) are 
given consideration in the construction of the puzzle. 
Although the end-user normally does not give a great deal 
of thought to these initial stages, they very much affect the 
aesthetics and recreational value of the puzzle. 

Each of these stages have some interest to the 
computational linguist as well. Without question, most of 
the literature involves stage 5). Although the algorithms 
are of only historical interest now, Mazlack’s pioneering 
work on the generation of solution sets [15,16,17] remain 
useful references for they first defined the problem and first 
called attention to the fact that crossword compilation 
characterized several interesting issues in computational 
linguistics. It was Smith and Steen [24] who first came to 
understand and address the computationally problematic 
aspects of compilation. Further, they set many of the 
standards against which current work is measured. In 
addition, much of the current nomenclature derives from 
their work. 

In recent years, several efficient solution algorithms have 
been developed [3,14,24,28], based upon a wide variety of 
computational paradigms. In addition, significant work has 
been done on the automation of clue set construction [23], 
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the technical aspects of automating the early stages of 
crossword compilation [9], the human factors aspect 
[25,27], search heuristics [9,15,161, performance analysis 
[5] and estimation of the size of the solution set [12,13]. 

However, it is stage 5 )  which continues to receive the 
greatest attention. Specifically, most investigators have 
been concerned with 1) the development of efficient search 
strategies for lexical look-up and 2) with heuristics which 
narrow the search space and/or reduce the complexity of 
the problem (see, e.g., [3,14,241 for recent illustrations). It 
is easy to see why this is the case by referring to Figure 1. 

Figure 1: Typical American Crossword Puzzle 

Suppose that we wish to compile this puzzle. This entails 
the construction of a solution set where all of the words 
interlock appropriately (we note that there are different 
conventions which are employed in different ‘crossword 
cultures’) according to the geometry and density of the 
particular puzzle. Lexical insertion becomes more 
complicated as we move progressively through the sub- 
regions of the puzzle. The reason for this is that there are 
increasingly many constraints placed on inserted words. 
To illustrate, suppose that we have completely filled out the 
top-left region. We note that 23-across carries into the top- 
middle region. Thus, the insertion of 21-down is 
constrained from the start by an ‘inherited’ character in 
position 2. Denoting this character by the variable, X, 

Of 
course, this compounds our lexical look-up procedures: 
sublinear algorithms are no longer appropriate and we lose 
our entry point into the lexicon without the first character. 

Of course, we could organize the lexicon by word length, 
but this would only solve part of the problem for it alone 
would require sequential searches of the partitions. In 
general, most such searches will fail because of the non- 
uniform distribution of characters within word positions. A 
better approach would be to test within the constraints 
imposed by the very insertion, itself. In other words, we 
will filter our database look-ups in advance. One common 
filtration technique is n-gram analysis (cf., [4,11,19]). 

An n-gram of a string of characters is any segment of 
length n within the string. Thus, the digrams of ‘ABC’ are 

we’re looking for a word of the form ‘- X - - - ’. 

‘AB’ and ‘BC’. Typically, for computational linguistics 
purposes, strings are padded with n-1 spaces for n-gram 
analysis, so that each character appears in exactly n n- 
grams, but we’ll ignore this variation for the sake of 
simplicity. 

N-gram analysis is useful precisely because of the non- 
uniform distribution of characters within the word 
positions, the phenomena which created the problems for 
us. A list of legitimate n-grams is extracted from the 
lexicon (we can even increase the accuracy by relating n- 
grams to positions within words). We note that in the case 
of our c y e n t  example, the failure to produce trigrams of 
the form - X -’ and ‘X - -’ means that there is no way for 
the string ‘- X - - -’ to be matched with any lexical entry. 
Since this happens more often than not, efficiency is 
achieved through reduced lexical look-ups (see refs. [4,19] 
for details). 

Thus, n-gram analysis is one of a number of filtration 
techniques which increase the efficiency of the lexical 
processing. Equally important, however, are the heuristics 
which are used to reduce the complexity of the puzzle. 
These heuristics frcquently arise at several different levels 
in the compilers design. To illustrate, let’s return again to 
Figure 1. Were we to insert words in the sequence 1- 
across, 14-across, 17-across, 20-across, 23-across, 1-down, 
2-down, 3-down, 4-down, we would have no ‘fail points’ 
prior to the sixth insertion. However, efficient compilation 
will rule out impossible combinations of the interlocking 
words as soon as possible so as to narrow the search space. 
Were we to proceed 1-across, 1-down, 14-across, 2-down, 
etc., we would have one fail point after the second 
insertion, two after the third, etc. It is plain to see that 
since most of the possible word combinations will not 
conform to the rules of the puzzle, it is to our advantage to 
proliferate fail points as high in the search trce as possible. 

A refinement of the strategy of failing as early as possible 
applies to migration between sub-regions of the puzzle. 
Again, in the top-left region of our puzzle there are 2 words 
of length 3 ,3  of length 4 , 2  of length 5 , l  of 7 and 1 of 10. 
Since there are considerably fewer words of length 3 and 
10 than there are of lengths 4, 5 and 7, these slots will be 
harder to fill. Thus, we may adapt our strategy to the more 
general case by beginning with the toughest word slots 
prior to alternating between horizontal and vertical 
insertions. In the literature, this is called ‘neighborhood 
prioritization’. (For additional details on compilation/ 
solution strategies, see references [3,9]). 

As we shall see below, the quest for efficient lexical 
searching (usually involving some sort of filtration) and the 
development of sophisticated heuristics are the dominant 
computational linguistic themes in the automation of word 
games. 

Anagrams 

Anagrams are transpositions of words. ‘OGD’ is 
anagrammatic for ‘GOD’ and ‘DOG’; ‘DLSE’ and ‘EDSL’ 
for ‘SLED’, and so forth. Faulk [ 101 classifies anagrams as 
strings with material identity, meaning that both the 
anagram and the related word have the same character 
composition. 

Anagrams are a pleasantly different type of word game. 
Unlike crossword puzzles, the character content of an 
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anagram is given in advance; it is simply a matter of 
finding the transposition(s) of the characters which are 
legitimate words. Like crossword compilation, filtration 
has been found to be an important component of efficient 
anagrammatic processing. And once again, n-gram 
analysis has been found to be useful. The procedure is 
similar to those described in the previous section, but the 
tested n-grams are variable-free. 

For an anagram of length n, the worst case obviously 
involves n! transpositions to check. A straightforward 
algorithm might work like this. First, one transposes the 
anagram into one of the n! materially similar tokens. For 
each one, we check the constituent n-grams within the 
token, left to right, to determine whether they are legitimate 
with respect to the lexicon in use. If an n-gram is found to 
be illegitimate, the entire transposition is rejected. When 
all n-grams are legitimate, the transposition is compared 
with the lexicon. Upon failure, the next transposition is 
tried, etc. 

Unlike the case with crossword compilation, n-gram 
analysis has been found to be sub-optimal for the filtration 
of anagram transpositions [6]. The reason is that n-gram 
analysis ignores the additional information which a 
complete transposition provides. Since there is certainty 
concerning the character composition of the actual word(s), 
this information can be advantageous. One way of doing 
this is by basing the filtration upon the distribution of 
vowel and consonant pattems found in words of that 
length. 

For present purposes, we will assume that a,e,i,o,u and y 
are vowels and the remaining characters of the alphabet are 
consonants. The theoretical distribution of vowel to 
consonant ratios for words of length 6 would be: 

V-C Ratio N 

6-0 1 
5-1 6 
4-2 15 
3-3 20 
2-4 15 
1-5 6 
0-6 1 

while the actual distribution for a particular lexicon might 
be 

V-C Ratio 

6-0 
5-1 
4-2 
3-3 
2-4 
1-5 
0-6 

N 

0 
0 
10 
17 
15 
5 
0. 

We may put this knowledge to work for us in filtering the 
anagram transpositions. For example, suppose that we 
have an anagram with a 4-2pattern. We know from the 
data above that of the 15 possible patterns, only 10 are to 
be found in the lexicon. Thus, 33% of the possible 
comparisons may be eliminated. While the a priori 
advantage of v-c pattern filtration has yet to be determined, 
there is empirical evidence which suggests that for smaller 

lexicons at least it offers a better average-case behavior 
than trigramanalysis [6]. 

As with crossword compilation, increased efficiency for 
lexical matching is the dominant theme in anagram 
unraveling. So far, no one has suggested the need for 
heuristics. 

Palindromes 

Palindromes are strings of symbols which are symmetrical 
about the center. The most basic form of palindromes are 
orthonraphical palindromes, meaning that they have no 
meaning above and beyond their symmetry (e.g, 
‘ABCBA’). Lexical palindromes are at the next level. A 
lexical palindrome is an orthographical palindrome for 
which there exists some partitioning into 1eFitimate words 
(e.g., ‘REFER’, ‘TEN NE PEN NET’, REVEST AH 
THAT SEVER’). Phrasal palindromes are next (e.g., 
‘DIARY RAID’); and finally, at the pinnacle, sentential 
palindromes (‘ABLE WAS I ERE I SAW ELBA’, ‘A 
MAN A PLAN A CANAL PANAMA’). The beauty of his 
last type is that the sentence is formed with an 
orthographical ‘joint’. The interesting question for the 
computational linguist is whether an efficient procedure 
may be found to generate these sentential palindromes. 
While we know of no success at this writing, lexical 
palindromes have been assaulted, if not conquered [20]. 

Just as there are an infinitude of orthographical 
palindromes, there are an infinitude of lexical palindromes: 
simply by adding a palindromic word (e.g., ‘ANNA’) to 
each end of a lexical palindrome generates another lexical 
palindrome. However, there are only a finite number of 
lexical palindromes of a fixcd length with respect to any 
given lexicon. This provides an attract research 
environment for lexical palindrome study. 

As far as we can determine, there has been only one 
attempt to develop an effective means for the generation of 
lexical palindromes [20]. The simplest strategy would be 
to generate palindromes from the Roman Alphabet, and 
then to test to see if they are also lexical palindromes. The 
main difficulty with this approach derives from the fact that 
the generation is at the orthographical level where the 
testing is at the lexical level. This means that there will be 
an enormous amount of time spent by the system 
partitioning and checking mostly unrecognizable output 
thereby applying a factorial process to an exponential 
output culminating in a combinatorial explosion. 

To ameliorate the problem, one might attempt a word- 
based approach. This would ensure that the segments 
inserted are already lexically correct. For example, we 
might insert words, from left to right, until we reach the 
middle position, and then append the reversed input to 
complete the string. The problem here is that the earliest 
lexical insertions may create reversed patterns which defy 
lexical partitioning. That is, we will spend too much time 
working with unworkable lexical combinations. 

One way to avoid this difficulty is to restrict lexical 
insertions to those words whose reversals conform to some 
acceptable lexical partition. For example, it would be 
pointless to insert ‘SEEK’ in the first position of an eight 
character palindrome for ‘KEES’ cannot be partitioned in 
any lexically meaningful way. This approach may be 
further improved if we continuously check the reversed 
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strings for acceptability rather than defemng the judgment 
until the entire orthographical palindrome has been 
generated. 

An even more selective strategy is outlined in [203. In this 
case, two lists are maintained in processing, the 
concatenation of which contains a palindrome. After each 
word is inserted, the resulting reversed string is analyzed 
and the constraints are determined for the subsequent word. 
One of three conditions must obtain: 1) either the reversed 
list can be partitioned in such a way that all parts are 
already words (even length palindrome), or 2) the reversed 
list together with the last character in the forward list can 
be so partitioned (odd length palindrome), or 3) the 
reversed list can be partitioned so that all parts except the 
left-most part are words, and that left-most part is the 
ending of some word or other which fits the remaining slot. 
This ending is then used to index further search. 

Perhaps an example will clarify the procedure. Suppose 
that our forward list contains 'AS'. The reversed list will 
contain 'SA'. 'SA' is not in the lexicon, but 'A' is. So the 
left most part, 'S', is used as an index to select another 
word for insertion from the backwards dictionary (perhaps, 
'POTS'). Since the lexical insertions are bi-directional the 
fail points are driven higher in the search tree than would 
be the case with uni-direction insertion. Of course, this 
technique works best with two lexicons: a standard lexicon 
and one which has all of the words spelled backwards. 
However, the resulting efficiencies have at least made the 
goal of generating lexical palindromes tractable. 

Conclusion 

The discussion above has outlined how approximate string 
matching may be involved in the automation of various 
aspects of word game construction or solution. In the 
discussion, we have tried to identify and explicate the 
underlying issues in computational linguistics, and suggest 
techniques which have been used to address these issues. 
As we can see, the two main issues which arise in this 
context have to do with lexical processing and heuristics, 
issues which arise in a more practical contexts as well 
[1,2,4,18]. For an excellent introduction to these topics, 
especially as they relate to text processing, see reference 
1263. 
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