
Approximate String Matching for Detecting

Keywords in Scanned Business Documents

Thi Hien Ha

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a 602 00 Brno, Czech Republic

462259@mail.muni.cz

Abstract. Optical Character Recognition (OCR) is achieving higher ac-
curacy. However, to decrease error rate down to zero is still a human
desire. This paper presents an approximate string matching method using
weighted edit distance for searching keywords in OCR-ed business docu-
ments. The evaluation on a Czech invoice dataset shows that the method
can detect a significant part of erroneous keywords.

Keywords: approximate string matching, Levenshtein distance, weighted
edit distance, OCR, invoice

1 Introduction

Business documents, different from other types of documents, are obligation to
have a predefined set of data which is usually specified by keywords. Therefore,
localization of keywords in the document plays an important role in document
processing. However, scanned business documents potentially involve OCR
errors which exact match cannot solve.

A deep statistical analysis of OCR errors covering five aspects, based on
four different English document collections was described in [7]. They find out
that among three most common edit operation types in OCR errors (insertion,
deletion, and substitution), substitution is much more frequent than the others
with average of 51.6%, and most of OCR errors can be corrected just by single
operation types (total percentage of three single operations is 77.02%). The
analysis also results in detailed statistics of standard mapping and non standard
mapping, which is valuable to create character confusion matrix, one of the most
important sources for generating and ranking candidates in error correction.

OCR post-processing aiming at fixing the residual errors in OCR-ed text.
The approaches for this problem can be categorized into dictionary-based and
context-based types. Dictionary and character n-gram are often used in the
former to detect and correct isolated word errors whereas the latter consider
grammatical and semantics context of the errors. This usually relies on word
n-grams and language modeling [3,2].

However, business documents such as invoices has different characteristics
in comparison with data using in those methods. Firstly, invoices are written

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2019, pp. 49–54, 2019. © Tribun EU 2019



50 T. H. Ha

in short chunk instead of fully grammatical text. Secondly, non-words are
frequent in invoices, involving entities names, and almost all of data fields
such as invoice/order number, item codes, account number. Approximate string
matching is string matching of a pattern in a text that allows errors in one or both
of them [6]. It very soon became a basic tool for correcting misspelling words
in written text, and then, in text retrieval since exact string matching was not
enough due to large text collection, more heterogeneous, and more error-prone.

In this paper, we use approximate string matching based on a weighted edit
distance to search for keywords in scanned business documents. The method is
evaluated on a Czech invoice dataset.

2 Method

2.1 Problem definition

The problem of approximate string matching is defined as follow:
Let Σ be a finite alphabet; |Σ| = σ; Σ

∗ is the set of all strings over Σ

Let T ∈ Σ
∗ be a text of length n; |T| = n

Let P ∈ Σ
∗ be a pattern of length m; |P| = m

Let d: Σ
∗ × Σ

∗ → ℜ be a distance function.
Let k ∈ ℜ be the maximum number of error allowed.
The problem is given T, P, k and d(.), return the set of all the substrings of T: Ti..j

such that d(Ti..j, P) ≤ k.
The distance d(x, y) between two strings x and y is the minimal cost of a

sequence of operations that transform x into y. The operations are a finite set of
rules (δ(z, w)). In most of applications, the set of operations is limited to:

– Insertion: δ(ε, a): inserting the letter a
– Deletion: δ(a, ε): deleting the letter a
– Substitution: δ(a, b); a 6= b: substituting a by b
– Transposition: δ(ab, ba); a 6= b: swap the adjacent letters a and b.

One of the most commonly used distance function is Levenshtein [1], also
called edit distance. Edit distance d(x, y) between two strings x, y is the minimal
number of insertions, deletions, and substitutions to transform x into y. The
distance is symmetric, i.e. d(x, y) = d(y, x). In the simplified definition, all the
operations cost 1. Therefore, 0 ≤ d(x, y) ≤ max(|x|, |y|).

2.2 Weighted edit distance

Detecting keywords from OCRed documents faces at least two problems. The
first problem to take into account is OCR errors. There are both standard
mapping 1:1 (one character is mis-recognized into another character, e.g "email"
and "emall") and non-standard mapping 1:n or n: 1 (e.g "rn" and "m"). However,
the dominant portion of OCR errors is standard mapping. More example of
common errors can be seen in Table 1. Another type of OCR errors is incorrect



Detecting Keywords in Scanned Business Documents 51

word boundary, including incorrect split (i.e wrongly splitting one word into
two or more strings) and run-on error (i.e inaccurately putting two or more
words together).

Table 1: Common pairs of OCR errors
Character 1 Character 2 Character 1 Character 2

b h n r

c o O 0

c e r i

C ( r t

f t s 5

f l v y

i l z 2

l | z s

l 1 y g

l ť m n

Beside OCR errors, the other problem comes from the language character-
istics. Modern Czech orthographic system is diacritical. The acute accent and
háček are added to Latin letters, such as "á", "í", "ě", "č". Moreover, grammatically,
Czech is inflectional, like other Slavic languages. The missing or excessive dia-
critics, using different endings, either by typing errors or OCR errors make the
problem worse.

Being aware of those problems, we set different costs for operations. For
those substitutions of common OCR errors, or substitutions between pairs of
short and long vowels, with or without háček (from now on, they are mentioned
as common OCR errors), we set a much cheaper cost (e.g 0.1) than the normal
one (i.e 1). The lower cost is also set for inserting or deleting of spaces and
punctuation. We call this as a weighted edit distance function.

δ(a, b) =























0 if a = b

0.1 if





(a = ε and b is punctuation)
or (b = ε and a is punctuation)
or (a, b) is a common pair of OCR errors

1 otherwise

Because insertion and deletion have the same weight, the distance function is
still symmetric.

2.3 Algorithms

We call α = k/m the error ratio. Since we can make the pattern match at any
position in the text by performing m substitutions, 0 ≤ k ≤ m (reminding
m = |P|). Therefore, 0 ≤ α ≤ 1.



52 T. H. Ha

In the problem of searching for keywords in the text allowing an error ratio
α, P is the keyword. We propose a filtering algorithm involving following steps:

– Get the longest consecutive common substring of the keyword and the text.
If the ratio between length of the substring and length of the keyword is less
than a third, then return no approximate match found.

– Extend the substring in the text to get the longest substring with smallest
edit distance.

– If the ratio between weighted edit distance of the keyword and new substring
and length of the keyword does not exceed α, then return the substring.
Otherwise, return no approximate match found.

Weighted edit distance function using dynamic programming:

function Weighted_distance ( s1 [ 0 . .m−1] , s2 [ 0 . . n−1 ] ) :
f l o a t prev_row [ 0 . . n ]
f l o a t cur_row [ 0 . . n ]
prev_row [ 0 ] = 0
for i from 1 to n :

prev_row [ i ] = prev_row [ 0 ] + δ ( ε , s2 [ i −1])
for i from 1 to m:

cur_row [ 0 ] = prev_row [ 0 ] + δ ( s1 [ i −1] ,ε )
for j from 1 to n :

i n s e r t i o n s = prev_row [ j ] + δ ( ε , s2 [ j −1])
d e l e t i o n s = cur_row [ j −1] + δ ( s1 [ i −1] , ε )
s u b s t i t u t i o n s = prev_row [ j −1] +

δ ( s1 [ i −1] , s2 [ j −1])
cur_row [ j ] = min ( i n s e r t i o n s , d e le t i o ns ,

s u b s t i t u t i o n s )
prev_row = cur_row

return prev_row[−1]

For Levenshtein or edit distance function, we just need to replace δ function by
1. Because weighted edit distance function is slower than normal edit distance,
in the the second step, we use original edit distance and only calculate weighted
edit distance at the final step.

There has been a significant number of research in implementation of
approximate string matching to reduce time and space complexities. Methods
based on finite state automation promise to be much faster than dynamic
programming and can be computed in linear time [8,4,5].

3 Experiments

The dataset contains 50 Czech scanned invoices. After using an open source OCR
to get the text, we run two different modules to detect a set of given keywords.
The former is exact matching using regular expression. The latter uses proposed



Detecting Keywords in Scanned Business Documents 53

Table 2: Analysis of kewords detected by approximate string matching but
missed by exact matching

Types of error Number of keywords in %

OCR errors 52 30.4%
Diacritics 32 18.7%
Inflection 44 25.7%

False possitive 43 25.1%

Total 171 100%

approximate string matching. Then, we compare to see how many keywords
the approximate string matching detected that exact matching did not.

Keywords for 36 fields are detected, including invoice number, invoice date,
order number, order date, due date, payment date, and so on. The length of
keywords varies from 1 (e.g invoice number: "č") to 43 (e.g payment date: "datum
uskutečnění zdanitelného plnění").

The threshold for the error rate is set to 0.15 in the experiment. This means,
for example with a keyword of length 6, the distance allowed is 6×0.15 = 0.9, i.e
it allows only common OCR errors.

The result is summarized in Table 2. In total 171 keywords detected by
approximate string matching but missing by exact match, 30.4% are because
of OCR errors in one characters (e.g "C’Slo" instead of "Cislo", "Odběrate!"
instead of "Odběratel", "e-mall" instead of "e-mail"), 18.7% caused by missing
or excess of diacritics (e.g in "č", "ě", "í"). The different endings by inflection,
for instance "objednávka" and "objednávky", are the reason for 25.7%. The last
25.1% are caused by close keywords. Let take the title "invoice" and the field
"invoice number" as an example. One of keywords for this field is "Daňový
doklad č" which has only a space and one character ("č", abbreviation of "číslo",
means "number") differ from the title "Daňový doklad". Therefore, the distance
(d = 1.1/15≈0.07) is less than the threshold (0.15), resulting title is marked as
keyword. This error can be filtered out by checking if the annotated substring
is also marked as title. In fact, in many invoices, there is an invoice number on
the same line of title without the word "number" accompanied. Therefore, title
in these cases is the signpost to extract the invoice number, the same role as a
keyword.

Besides, we notice that there are 20 keywords containing OCR errors are still
missing by approximate string matching. These errors are not in the given OCR
common errors. Almost half of them are standard mapping, e.g "o" becomes "g",
"I" becomes "’", or "ft" becomes "||". The other half are caused by non standard
mapping, such as "čt" becomes "d", or "j" becomes "f’".

4 Conclusion

In this paper, we have described approximate string matching approach based on
a weighted edit distance for detecting keywords in scanned business documents.



54 T. H. Ha

The experiment shows that this method adapts pretty well to erroneous text and
inflectional languages. The future work will focus on a complete list of common
errors and implementation using finite state automation.

Acknowledgements This work has been partly supported by Konica Minolta
Business Solution Czech within the OCR Miner project. This publication was
written with the support of the Specific University Research provided by the
Ministry of Education, Youth and Sports of the Czech Republic.

References

1. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

2. Llobet, R., Cerdan-Navarro, J., Perez-Cortes, J., Arlandis, J.: Ocr post-processing using
weighted finite-state transducers. In: 2010 20th International Conference on Pattern
Recognition. pp. 2021–2024 (Aug 2010). https://doi.org/10.1109/ICPR.2010.498

3. Mei, J., Islam, A., Moh’d, A., Wu, Y., Milios, E.: Statistical learning for ocr error
correction. Information Processing & Management 54(6), 874–887 (2018)

4. Mihov, S., Schulz, K.U.: Fast approximate search in large dictionaries. Computational
Linguistics 30(4), 451–477 (2004)

5. Mitankin, P.: Universal levenshtein automata. building and properties. Sofia University
St. Kliment Ohridski (2005)

6. Navarro, G.: A guided tour to approximate string matching. ACM computing surveys
(CSUR) 33(1), 31–88 (2001)

7. Nguyen, T., Jatowt, A., Coustaty, M., Nguyen, N., Doucet, A.: Deep sta-
tistical analysis of ocr errors for effective post-ocr processing. In: 2019
ACM/IEEE Joint Conference on Digital Libraries (JCDL). pp. 29–38 (June 2019).
https://doi.org/10.1109/JCDL.2019.00015

8. Schulz, K.U., Mihov, S.: Fast string correction with levenshtein automata.
International Journal on Document Analysis and Recognition 5(1), 67–85
(Nov 2002). https://doi.org/10.1007/s10032-002-0082-8, https://doi.org/10.1007/
s10032-002-0082-8


