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Abstract

Approximate string matching on large DNA sequences
data is very important in bioinformatics. Some studies have
shown that suffix tree is an efficient data structure for ap-
proximate string matching. It performs better than suffix
array if the data structure can be stored entirely in the mem-
ory. However, our study find that suffix array is much bet-
ter than suffix tree for indexing the DNA sequences since
the data structure has to be created and stored on the disk
due to its size. We propose a novel auxiliary data structure
which greatly improves the efficiency of suffix array in the
approximate string matching problem in the external mem-
ory model. The second problem we have tackled is the par-
allel approximate matching in DNA sequence. We propose
2 novel parallel algorithms for this problem and implement
them on a PC cluster. The result shows that when the error
allowed is small, a direct partitioning of the array over the
machines in the cluster is a more efficient approach. On the
other hand, when the error allowed is large, partitioning
the data over the machines is a better approach.

1. Introduction

DNA sequences, holding the code of life of every living
organism, can be considered as strings over an alphabet of
four characters, {A, T, C, G}, called bases. Mammalian
DNA sequences can be very long. For example, a human
genome (DNA) contains around 3Gbp. Searching patterns
in the DNA sequences databases is usually the first and a
crucial step in DNA related research.

Besides the human genome, researchers are also inter-
ested in DNA sequences of other species. There are a lot
of other DNA sequencing projects that are being carried out
in different laboratories to determine the DNA sequences
of different species. In Jun 2002, according to GenBank 1,
one of the largest public DNA sequences database, the to-
tal number of bases stored is over 20Tbp. So, an efficient
searching tool which is flexible enough to allow users to

1http://www.ncbi.nlm.nih.gov/Database/index.html

locate patterns in different genomes is desired.

Currently, biologists mainly use BLAST [1], a popu-
lar DNA pattern searching engine, to locate patterns in
DNA sequences. Basically, BLAST searches a pattern
by scanning the sequences sequentially with the help of
heuristics and filtering technique to speed up the search-
ing. FASTA [10, 20] is another popular utility that also
uses sequential searching with heuristics technique. In [26],
Williams proposed a new genomic databases system named
CAFE and show that CAFE is faster and more accurate than
FASTA and BLAST. Since these approaches are heuristics,
all of them cannot guarantee that all significant matches are
found. We call this case, missing some matches, as match-
miss.

In addition to using heuristics, there are some works
which are without match-miss for approximate pattern
searching. E. Hunt [8] proposed to partition suffix tree of
the DNA sequence into different sub-trees, such that each
sub-tree can be built in main memory only. In section 4.1,
we will show the experiments which compare Hunt’s suffix
tree and suffix array and we found that suffix array performs
much better than Hunt’s suffix tree.

In this paper, we focus on a practical solution for index-
ing and approximate pattern searching without match-miss
in huge size of DNA sequences data. The following is the
summary of our contributions:

1. We show that suffix array is much more efficient than
suffix tree in external memory model (i.e. that the main
memory is not large enough to store the whole index-
ing structure)

2. We propose a novel auxillary indexing structure named
quick lookup table which can improve the searching
efficiency of suffix array.

3. We propose two novel approaches of parallel comput-
ing for indexing and searching DNA sequences in PC
clusters which can reduce the index construction time
and querying time.



2. Background and Related Work

Searching patterns in DNA sequences can be considered
as the traditional approximate string matching (ASM) prob-
lem:

Given a character string S, a string q, and an error
bound k.
Find all substrings, s, in S such that ed(s;q) � k,
where ed(s,q) is the edit distance between s and q.
Edit distance is defined as “the minimal number
of inserations, deletions and substitutions to make
two strings equal”

In the context of bioinformatics, S can be human DNA se-
quences consisting 4 types of characters and the length of S
can be 3Gbp. The length q can be several thousands. The
error bound k can be 10% of the length of q.

2.1. Linear Scanning Algorithms

For the ASM problem, there are many works have been
done before. [14] provides a very good survey of ASM algo-
rithms and indexing structures. A simple O(jSjjqj Dynamic
programming algorithm [22] can solve the problem. How-
ever, in the context of searching the human DNA with |S| =
3G, the performance of the algorithm is unsatisfactory. On
the other hand, the ASM problem can be mapped to the non-
deterministic automaton model and it gives the worst-case
time algorithm O(|S|) (for details, refer to [23, 27]). [28] im-
proves the cost automaton simulation to O(djqj=wejSj) by
bit-parallelism technique where w is the number of bits to
represents a word in CPU. However, it is only suitable for
short queries.

2.2. Candidate Selection Techniques

Candidate Selection Technique is quite efficient practi-
cally. Instead of performing a dynamic programming over
S, a set of potential candidates are selected. Then, each
candidate will be verified to see if it is a matched string.
For example, [2, 13] proposed to partition a query into j
pieces. Based on the observation that at least one of these
pieces appear with at most bk= jc errors in any occurrence of
the matching region, the problem can be solved as follows.
We partition q into q1q2::::q j. For each qi, we search for
matches sub-strings in jSj with at most bk= jcerrors. The
matched sub-strings are our candidates. We call this as
candidate selection phase. After that, for each candidate,
we verify with the neighborhood to check whether it match
with q within k error and this called verification phase.

BLAST [1] and FASTA [10, 20] also use this technique.
They use heuristics to purge out candidates that will not pos-
sibly be match strings for the query. However, the heuristics
may purge regions that cover matches. So, both methods are
not 100% accurate.

2.3. Index Structures for ASM

One special property of DNA sequences is that it cannot
be broken into words, unlike normal text. So, inverted files
[6], String B-trees [5] and prefix index [9] may not be good
choices. Moreover, q-grams [15, 19] are not very suitable
for low similarity [14]. However, suffix trees [24, 25] and
suffix arrays [11] have been shown to be useful and efficient
in solving ASM problems in [16].

2.3.1. Suffix Tree. A suffix tree is a compact representation
of a trie corresponding to the suffixes of a given string where
all nodes with one child are merged with their parents. For
an extensive description of suffix tree and its applications in
biological problems, please refer to [7].

A straightforward approach to construct a suffix tree
from S is to insert the suffixes one by one into the suffix tree
which takes O(jSj2) time. To speed up the construction pro-
cess, we can make use of suffix links [12, 24]. With the help
of suffix links, the complexity of construction time can be
reduced to O(jSj). Interested readers can refer to [7, 12, 24]
for the details.

Unfortunately, the size of suffix tree can be very large if
S is very long. For the human DNA, |S| is 3Gbp and the size
of suffix tree is more than 48 GBytes. So, main memory
algorithms for constructing suffix tree are impractical.

2.3.2. Hunt’s Version of Suffix Tree. D. R. Clark et al. [3]
proposed an algorithm for maintaining a modified suffix
tree construction, called Partitioned Compact Pat Tree, on
secondary storage such that the number of disk access for
searching and updating is minimized, and the Partitioned
Compact Pat Tree is converted from Compact Pat Tree.
However, how to build a Compat Pat Tree for very large
sequence with limited memory is not mentioned.

Recently, Hunt et al proposed a method that makes use of
external memory for constructing suffix trees [8]. The idea
of Hunt’s algorithm is to partition the suffix tree into sub-
trees, such that each sub-tree can be constructed in main
memory to eliminate the IO. Basically, they group the suf-
fices according to their prefixes. Roughly speaking, they fix
a length k, suffices with the same prefix of length k go to the
same sub-tree.

The drawback of the tree partition forces them to aban-
don the use of suffix links. Thus, the construction time is
O(jSj2) in worse case and O(jSj lg jSj) in average case.

2.3.3. Suffix Array. Suffix Array [11] is basically a sorted
list of all the suffices in S in lexicographical order. One ad-
vantage of suffix array over suffix tree is that the size of a
suffix array is much smaller than that of a suffix tree. Suffix
array is highly related to suffix tree. We can use a suffix ar-
ray to simulate a suffix tree [16]. Basically, nodes of suffix
tree correspond to intervals in suffix array. So, each time



the suffix tree algorithm is at a given node, its suffix array
simulation is at a given interval. In suffix tree, given a node
v, we just need to follow the pointer from v to find v’s chil-
dren. This takes O(1) time. However, in suffix array, given
a node v, we need to take O(lgn) time to find v’s children by
binary search, where n is the size of interval representing
node v.

2.3.4. ASM Algorithms on Suffix Tree/Suffix Array.
ASM algorithm over suffix trees or suffix arrays have been
studied in [16, 18]. For simplicity, we name this algorithm
as “ASMDFS” (Approximate String Matching with DFS).
We will describe the algorithm roughly. For a given query
q and error k, we want to find all substrings s in S with
ed(q,s)�k. The algorithm starts from the root node. We
descend recursively by every branch of the suffix tree in a
DFS manner up to a limited depth, q+ k. For every visited
node, we get the path-label 2 x. If ed(q,x) �k, report all the
leaves of the current subtree as answers. For the details of
the algorithm, please refer to [16, 18].

2.3.5. Candidate Selection Technique on ASMDFS
(CSTASMDFS). However, we do not apply the ASMDFS
on suffix tree or suffix array directly because it involves
many number of node accesses and greatly degrades the
performance. As suggested in [16], a candidate selection
approach, discussed in Section 2.2, should be used. We
call this method as Candidate Selection Technique on AS-
MDFS (CSTASMDFS). All the algorithms in section 3 will
be based on this algorithm.

CSTASMDFS algorithm is divided into two phases:
Candidate Selection Phase and Verification Phase. For a
given query q and error k, we partition q into j pieces. [16]
have discussed how to choose the optimal value of j. In
candidate selection phase, we apply ASMDFS on each qi

with error bk= jc and find certain numbers of candidates. In
verification phase, we verify all the candidates found in pre-
vious phase and determinate whether it is a match.

In [16], it shows that suffix array and suffix tree perform
very well in ASM problem with the CSTASMDFS algo-
rithm and also shows that suffix array performs better than
suffix tree in some cases. However, the study only concen-
trated on main memory model. In this paper, we are focus
on external memory model index structures for DNA.

3. Our Approach

In order to be more precisely to express our idea, we first
define some notations and functions:
� For a given DNA sequence S, define S[i] as the ith char-

acter of S and |S| is the length of S.

2Path-label of node x is the string concatenating all the label of the
edges travelling from root node to x.

� to convert a DNA sequence S into an integer value, we
define the val(S) function:

val(S) = ∑jSj
i=1 val(S[i])�4jsj�i;

val(”a”) = 0, val(”c”) = 1, val(”g”) = 2, val(”t”) = 3
� to convert an integer value back to a DNA sequence S,

we define the strm(x) function:
strm(x) = S if val(S) = x and jSj= m

� given a DNA sequence S, we define su f ( j;S) as the j th

suffix of S.
� given a suffix array A of a DNA sequence S, define A[i]

is an integer of the ith element and represents the suffix
su f (A[i];S).

� given a sequence S, we define pre(m;S) which returns
the prefix of S with length m. (i.e. the first m characters
of S)

3.1. Indexing Large DNA sequences for External
Memory

Suffix tree and suffix array have been shown to be good
for ASM problem [16]. So, our research focuses on the
two indexing structures. There are not many related works
about suffix array index on external memory model. Be-
sides Hunt’s suffix tree, [4] studies the construction of suf-
fix arrays in external memory. It assumed that the sequence
data S is also stored in external memory. However, in our
situation, we assume the DNA sequence S is stored in the
main memory and the suffix array is stored in external mem-
ory. The algorithms proposed in [4] are not optimized for
our situation and involve too many IOs, e.g. external sort.
So, in section 3.1.1, we propose a new algorithm without
external sort to avoid IOs. One may argue that the assump-
tion is not valid if S is too large and cannot fit into main
memory. So, in section 3.3, we propose the DP parallel
computing approach to solve this problem.

3.1.1. Suffix Array Construction in External Memory.
Since the main memory is not enough to store the whole
suffix array, we build it part by part. Assuming the main
memory can only support sorting M suffices. Logically, we
divide the suffix array into k parts (p1, p2,..., pk) and ensure
the size of each part is not more than M. In order to actually
divide the suffix array into k parts, we first need to build a
statistical information array B which stores some statistical
information about the prefixes of suffices of the DNA se-
quence S. We choose a number m, the length of prefix in
every suffices we want to investigate (the appropriate value
of m is around 8 to 12). The size of B is 4m. B[i] stores the
number of suffices with prefix equals strm(i) in the DNA
sequence S . To build B[i], scanning S once, for each suffix
s, we increase B[val(pre(m;s))] by 1.

For pi, it only contains suffices with certain prefixes.
(i.e. suffices with same prefix of length m go to same part.)
Specifically, for any s in pi, ai�1 � val(pre(m;s)) < ai



where a0 = 0, ai�1 < ai and ak = 4m. To ensure size of
pi � M, we need to ensure ∑ai�1

j=ai�1
B[ j] � M. The function

of ai is to define the range and size of the parts. To find ai,
we can use Algorithm 1.
Algorithm 1 Find_ai(B,M,m)

1. a0=0; i=0
2. while ai < 4m

3. sum = 0; i++; ai=ai�1
4. while sum + B[ai] < M and ai < 4m

5. sum = sum + B[ai]
6. ai++
7. return {a0,a1,...,ak}

After found all the ais for the parts, we can build the
suffix array of S(Algorithm 2) . The for-loop at lines 2-4 is
to find all the indexes of the suffices that belong to pi and
store to the array A. Then, sort the suffices representing in
A (line 5) and store this part to hard-disk appending on the
previous part, if any (line 6). Then, go back to line 1 for
next part until all parts have been sorted and stored.

3.1.2. Suffix Tree VS Suffix Array. In this section we
will compare the suffix tree and suffix array data struc-
tures. Since our goal is to solve the ASM problem on DNA
sequences, we will focus on the performance of CSTAS-
MDFS algorithm, mentioned in section 2.3.5. The algo-
rithm involves DFS traversing on suffix tree. Since suffix
array can simulate suffix tree, the algorithm can also be ap-
plied on suffix array by simulation . One may think that
DFS on suffix tree must be faster than the simulation on
suffix array. However, it is not the case for external mem-
ory model of suffix tree and suffix array. It is mainly due to
the following reasons:

1. Nearly every node access causes a random IO on hard-
disk in suffix tree. In suffix tree, the nodes are randomly
distributed. In other words, the parent node is normally not
located with it’s children within same disk block. So, when
the algorithm traces the pointer from parent node to it’s chil-
dren, it often requires to load a new disk block from the
hard-disk. However, in the situation of suffix array, the ran-
dom IO only occurs at the simulation of top level nodes with
binary searching. When the simulation is down to deeper
nodes, the interval to represent the nodes are smaller and
normally within a disk block. So, no random IO is required.

2. The system cache can help to improve the perfor-
mance for external memory index structure. Since the size
of suffix array is smaller than suffix tree, suffix array can
utilitize more effectively the system cache. So, less cache
miss in suffix array can improve the overall performance.

In our experiment, it shows that suffix array is 10-30
times more efficient than suffix tree in CSTASMDFS algo-
rithm. For more details, please refer to section 4.1.

Algorithm 2 SA_Ext_Build (S,m,a0,a1,...,ak)

1. For i=1 to k
2. for j=1 to jSj�m
3. if ai�1 � val(pre(m;su f ( j;S))) < ai
4. append j in A
5. sort A in the order of the suffices for each element it represented
6. write out A to hard-disk and append on previous part if any
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Figure 1. Example of Quick Lookup Table

3.2. Quick Lookup Table (QLT)

As analyzed in section 3.1.2, suffix array performs bet-
ter than suffix tree on CSTASMDFS algorithm in external
memory model. However, there are still some room for im-
provement. During the simulation of suffix tree at top level
nodes, it induces random IO due to the binary searching
on large intervals. So, we introduce the quick lookup ta-
ble (QLT) such that binary searching is not required for top
level nodes simulation.

A QLT, T, is an integer array with size 4m and T [i] stores
a position, j, for the suffix array A, such that starting from
A[ j] up to A[T [i+1]�1], all the suffices in the range must
have prefix equal to strm(i). For a chosen value m (normally
between 8 and 12), it can avoid binary searching for the
simulation of nodes with depth up to m.

In Figure 1, it shows an example of a QLT, T, used to ac-
celerate the suffix tree simulation in a suffix array A. In the
example, the value of m is 4. T [0] corresponds the prefix
“aaaa” pointing to A[1] and T [1] corresponds “aaac” point-
ing to A[5]. So, we can deduce that the suffices in the first
4 entries, A[1::4] ,must start with “aaaa”. For simulating the
suffix tree, the root node is represented by the interval of the
whole suffix array (Figure 1). Then, for the DFS algorithm,
we need to find the interval representing the first child of the
root node. Without the QLT, we need to use binary search to
find the entry, A[i], in the suffix array, such that the suffix in
A[i] starting with “a” and the suffix in A[i+1] starting with
“c”. However, with the help of QLT, we can just follow the
pointer of the “caaa” entry in the QLT to find the interval.
So, we can use the same technique to find the children of



other nodes in the simulation of nodes with depth up to m.
So, with the help of QLT, we can greatly reduce the ran-

dom IO of the suffix tree simulation in suffix array. The-
oretically, the larger m is, the better performance can be
achieved. However, larger m means larger table and larger
main memory requirement. For, the construction of the
QLT, it can be directly converted from the statistical in-
formation array B (discussed in section 3.1.1) by assigning
T [i+1] as the value of B[i].

3.3. Parallel Computing Approaches

Although suffix array with QLT provides a very good
way to solve the ASM problem, the response time for ASM
problem in a very large DNA sequence (e.g. 3Gbp in Hu-
man) may not be acceptable. So, parallel algorithms should
be considered. In this section, we will propose two parallel
computing approaches for PC clusters – Index Partitioning
(IP) and Data Partitioning (DP). In order to distinguish be-
tween nodes in suffix tree and nodes in PC Clusters, we call
the nodes in suffix tree be treenodes and the nodes in PC
clusters be PCnodes.

3.3.1. Index Partitioning (IP) Algorithm. The idea of IP
comes from Hunt’s tree partition algorithm [8]. However,
we partition the suffix array rather than partition the suf-
fix tree. In IP algorithm, we partition the suffix array into
sub-arrays and each PCnode in the cluster is responsible
for building one of the sub-arrays. For searching a query,
each PCnode applies the CSTASMDFS algorithm to find
the matching results and report back to the users.

Specifically, assuming that there are N PCnodes in the
cluster, we partition the suffix array into N approximately
equal sized sub-arrays, SA1,SA2...SAN. For SAi, it only con-
tains suffices with certain prefixes, similar to the parts pi in
Section 3.1.1 (i.e. suffices with same prefix of length m go
to same sub-array). To be more precise, for any suffices s in
SAi, bi�1 � val(pre(m;s))< bi where b0 = 0, bi�1 < bi and
bN = 4m and ∑bi�1

j=bi�1
B[ j] � jSj=N. The array B is the sta-

tistical information array mentioned in Section 3.1.1. The
function of bi is to define the range and size of SAi. To find
bi, we can use Algorithm 3 which is very similar to Algo-
rithm 1.
Algorithm 3 Find_bi(B,S,N)

1. b0=0;bN = 4m; sum = 0
2. for i = 1 to N-1 do
3. bi=bi�1
4. while sum + B[bi] > i�jSj=N and bi < 4m

5. sum = sum + B[bi]
6. bi++
7. return {b0,b1,...,bN}

For the sub-array construction, the SAi will be assigned
to the PCnodei and we apply similar technique mentioned

in section 3.1.1 to build the SAi in external memory model.
Specifically, in PCnodei, SAi is further divided into ki

parts, pi1 , pi2 , ...,piki
. For any suffix s in pi j , ai j�1 �

val(pre f (m;s)) < ai j where ai0 = bi�1, ai j�1 < ai j and
aiki

= bi. To ensure the size of pi j � M, we need to en-

sure ∑
ai j�1

k=ai j�1
B[k]�M. The usage of ai j is to define the the

range and size of the parts. To find the ai j , it is similar to
algorithm 1 but we need to change “0” in line 1 to “b i�1” ,
and the 4m in lines 3 and 4 to “bi”.

After building the sub-arrays in each PCnode, it is ready
for answering query. For a given query q and error k, both q
and k will be boardcasted to every PCnodes. For every PC-
node, the PCnodei carries out the CSTASMDFS algorithm,
mentioned in section 2.3.5, on its own sub-array SA i and
return the results back to user.

You may notice that there will be some duplicated re-
sults, since the same match may be found on more than one
PCnodes. We explain this by an example. Assume that there
are two PCnodes in the PC cluster and the suffix array A is
divided into two sub-arrays: SA1 and SA2. SA1 contains the
suffices starting with “aaaaa” and SA2 contains the suffices
starting with “ttttt”. Moreover, the DNA sequence S con-
tains the sequence “aaaaattttt” at position p. The query q is
“aaaaattttt” with k = 1 and is divided into two subqueries:
q1 = aaaaa and q2 = ttttt. PCnode1 contains SA1, it finds
a match of q1 at position p in S in candidate selection phase
and will locate the candidate at region [p� 1:::p+ 11]. In
the verification phase, PCnode1 will report that there is a
match at p. Similarly, PCnode2 contains SA2, it will also
find the same candidate at region [p� 1:::p+ 11] using q 2

in candidate selection phase. So, PCnode2 will also report
that there is a match at p after verification phase.

3.3.2. Data Partitioning (DP) Algorithm. Besides parti-
tioning the index, we can also partition the data (the long
DNA sequence) S. The idea of Data Partitioning (DP) algo-
rithm is every simple. Assume that there are N PCnodes in
the cluster, we divide S into N sub-sequences, S1, S2, ... SN .
Each PCnode is responsible for one of the sub-sequences,
i.e. the PCnodei get the Si and builds the suffix array Ai for
Si by directly applying the algorithm described in Section
3.1.1. Then, Ai will be stored in PCnodei.

To answer a query, we directly apply the CSTASMDFS
algorithm to solve the problem. Given a query q and an
error k, at PCnodei, we apply the CSTASMDFS algorithm
to search the pattern q with error k on its local suffix array
Ai. The results will be reported to the users.

However, there may be some matches locating across the
two sub-sequences. We called this case the cross boundary
case. So, for each cross boundary, between sub-sequences
Si and Si+1, we pick the sequence s contains the last jqj+
k�1 of Si and concatenate with first jqj+k�1 of Si+1. We



use the dynamic programming algorithm to verify whether
there exists a match in s.

4. Experiments

In this section, we will describe the experiments related
to the algorithms mentioned in section 3. In all the experi-
ments, the DNA sequences are human genome downloaded
from DNA Data Bank Japan (DDBJ) and the queries used
in all the experiments are randomly picked from the DNA
sequences.

4.1. Suffix Tree vs Suffix Array

In this part, we evaluate the performance of Hunt’s suf-
fix tree [8], suffix array without QLT and suffix array with
QLT (m=12) based on the external memory model. In the
experiment, the size of the DNA sequence is 350Mbp, and
we use a PC with P4 2GHz CPU and 512M RAM. The
OS is Mandrake Linux 8.2 with kernel 2.4.19. The index
size of the Hunt’s suffix tree and suffix arrays is 7.8G and
1.4G respectively, and the index building time is 3.5hr and
0.89hr respectively. Then, we tested different query lengths
(100, 250, 1000) and two error rates (10%, 5%). For each
query type, we got the statistics by issuing a batch of 20
queries. The algorithm for ASM problem used in this ex-
periment is the CSTASMDFS (referring to section 2.3.5).
To investigate the performance for external memory model,
the indexes are located in the hard-disk and the algorithm
only load the blocks of the indexes if necessary . In the
case of Hunt’s suffix trees, there are total 30 sub-trees. We
run CSTASMDFS on the sub-trees one by one and collect
all the results. The performance of the indexes is shown in
Figure 2(a). We found that suffix array with QLT performs
the best. It is faster than Hunt’s suffix tree 10 to 30 times
and faster than suffix array about 100%. It is because the
random IO effect discussed in section 3.1.2. This can be
verified in Figure 2(b), which shows the percentage of IO
time for each index structure. We found that Hunt’s suffix
tree requires much more IO time than others.

4.2. Performance of Quick Lookup Table (QLT)

In this section, we will investigate the performance of
QLT. In this experiment, we use a suffix array with different
size of QLT for 350Mbp DNA sequence on same machine
used in the previous experiment. We tested the suffix array
with different size of QLT (m=0, 4, 6, 8, 12) and different
type of queries – two different query lengths (100, 1000)
and two different error rates (10%, 5%). Referring to Figure
3, we found that the QLT can improve the performance of
suffix array by around 100%. Moreover, it is good enough
for m between 8 and 12. We probably cannot further reduce
the random IO for simulation of treenodes with m > 8.
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Figure 2. Performance of Hunt’s Suffix Tree and
Suffix Array (with and without QLT)
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4.3. IP vs DP

In this section, we will present the experimental results
about the two parallel computing approaches for DNA in-
dexing – IP (Index Partitioning) and DP (Data partitioning).
The experiment was carried out in a PC Cluster with 5 PC-
nodes, 1 PCnode for master PCnode and the remaining 4
PCnodes for indexing and answering the queries. Each PC-



node contains a dual PIII 800MHz CPU with 1G RAM and
the OS is RedHat Linux 7.2 with kernel 2.4.7.

In this experiment, we first build the index structures
with QLT (m = 12) for the two parallel approaches and both
of them required around 1.5 hour to construct the indexes.
We tested different query lengths – 100, 250 and 1000 and
different error rates – 5%, 7.5% and 10%. For each type of
queries, we get the statistics by issuing a batch of 50 queries.
Figure 4(a) shows the performance for candidate selection
phase, the average time for each PCnode required to finish
the candidate selection phase for one query. We found that
DP is always slower than IP in candidate selection phase.
The reason is due to the number of treenode access for the
DFS in the candidate selection phase and this can be verified
in Figure 4(b) which shows the average number of treenode
access for DFS in candidate selection phase. We found that
the more number of treenode access, the more time required
in the candidate selection phase.
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Figure 4. Candidate Selection Phase
Figure 5(a) shows the average time required for each PC-

node in verification phase. We found that DP performs bet-
ter than IP because the length of candidate regions of DP is
shorter. Figure 5(b) shows the average total length of candi-
date regions for each PCnode per query and we found that
the length of candidate regions is related to the time for ver-
ification phase.

Figure 6 shows the average response time for different
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Figure 5. Verification Phase
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Figure 6. The average response time of the two
parallel computing approach

query types on the two parallel computing approaches. We
found that, DP performs better than IP when the error rate
is high (10%). However, the IP performs better than DP
in low error rate (5%). Roughly speaking, at higher error
rate, verfication phase dominates the overall performance
(comparing Figure 4(a) and Figure 5(a)). IP generates more
candidates than DP in each PCnode and causes IP requiring
more verification time in verification phase.



5. Conclusion and Future Works

In bioinformatics, researchers often want to do approx-
imate string matching on huge DNA sequences. In this
paper, we want to solve the approximate string matching
(ASM) problem in a practical way. So, we consider the use
of a suffix array or suffix tree index which are suggested to
be very good for ASM problem in [16]. In the experiment,
it shows that suffix array performs much better than suffix
tree for external memory model. Moreover, we introduce
the quick lookup table (QLT) which can greatly improve
the performance of suffix array. Besides, due to the fact
that DNA sequences are very long, it may not be practical
to use a single machine for solving the problem. So, we
propose two parallel approaches which are IP (Index par-
titioning) and DP (data partitioning). Generally speaking,
DP is better than IP if the error k of ASM problem is large.
Moreover, DP is more scaliable in terms of the length of
DNA sequence data.

From the experiments, we found that the bottleneck is
at verification phase when the error value, k, is high. We
may consider some better candidate selection or verification
techniques to reduce the number of candidates or verifica-
tion time. One method may be the Hierarchical Verification
Algorithm suggested in [17].

In IP, there is duplication of work in verifying candidates
because same candidates may be found in more than one
PCnodes in the cluster. So, it is possible to develop methods
to reduce the duplication of work.

In bioinformatics, people may use other metrics (e.g. a
score matrix) to measure the similariry of patterns in the
ASM problem. It may be feasible to extend our CSTAS-
MDFS algorithm to support some of these metrics such as
scoring matrix for the ASM problem by applying the idea
in [21].
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