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Abstract – Given two character images, we would like to mea-
sure their similarity or difference. Such a similarity or difference
measure facilitates the solution to character recognition and hand-
writing analysis problems. There is, however, no universal defini-
tion for similarity measure satisfying wide range of characteristics
such as the slant, deformation or other invariant constraints. For
this reason, we propose a new definition for the character similarity
measure. First, the proposed method converts a two-dimensional
image into a one-dimensional string. Next, it computes the edit dis-
tance by the modified approximate string matching algorithm. We
describe how to extract the string information and compute the dis-
tance and then present the details of applications in handwriting
analysis and both on-line and off-line character recognitions.

Keywords – Approximate String Matching, Chain-code, Char-
acter Recognition, Handwriting Analysis, Pattern Matching

1 Introduction

“Find all letters that look like this letter.” Such a query has
received a great deal of attention in handwriting identifica-
tion and optical character recognition (OCR). Unfortunately,
there is no universal definition for the term “Looks like”. Al-
though various measures have been proposed based on math-
ematical transforms, contour analysis, structural decompo-
sitions, etc, similarity and difference between two letters
are very subjective. The Manhattan, Euclidean and Ham-
ming distances that are broadly and traditionally used in tem-
plate matching problems, could be the ones for differencing
method. However, they have limitations such that they are
not suitable for character images with various deformations
in shape, size and rotation.

Another common method involves finding essential fea-
tures to the human visual system, putting them in feature
vector space and measuring the feature vectors. There have
been numerous significant features used successfully to rec-
ognize digits and characters [1]: Gradient, Structural, Con-
cavity, Histogram, Chain-code, etc. Also, several simi-
larity measures are encountered in various fields [2]: Eu-
clidean, Minkowski, cosine, dot product, Tanimoto distance,
etc. Carefully selected features and measures provides an
excellent character recognizer, yet it is a moot point whether
this approach is truly compatible with people’s decision. To
induce an answer to this, one may attempt to reconstruct two
dissimilar images from two similar vectors that have been
classified as a same character. In all, it is a non-trivial prob-
lem to find adequate features and measures to answer the pre-
ceding query comprehensively.

Motivated from the above discussion, we propose a unique
definition for the character similarity in terms of its shape. It
is called Approximate Stroke Sequence String Matching. We
convert two-dimensional image data into one-dimensional
data consisting of Stroke Sequence Strings. Next, we per-
form a modified approximate string matching technique to
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Figure 1: Applications of the similarity measure

measure the edit distance between them. Earlier definition
and solution for the traditional approximate string matching
problem are found in the literature [3] and extensive sur-
veys on various techniques are shown in [4]. Landau and
Vishkin showed an O(kn) algorithm using dynamic pro-
gramming technique for the k-approximate string matching
problem [5]. After building suffix trees in O(n), the Lowest
Common Ancestor (LCA O(n)) algorithm is applied k times.

In this paper using a newly defined edit distance based on
the proposed measure, we show that the smaller the edit dis-
tance is, the more similar they look like to each other. There
are three applications for which the measure is suitable as
shown in Fig. 1. In Fig. 1 (a) Handwriting Analysis case,
one would like to find out whether the given letters are sim-
ilar or different or whether they were written by the same
author. Among many features being currently used by the
handwriting analysis practitioners or the document examin-
ers, the form or shape is an important one for characteriz-
ing individual handwriting as it is quite consistent with most
writers in normal undisguised handwriting [6]. The form can
be described by a sequence of strokes and the similarity mea-
sure can be a key feature in handwriting analysis.

In addition, the suggested matching technique is applica-
ble to solve the character recognition problem. As a stroke
sequence signifies the shape of the individual letters, a letter
“a” is distinguished from a letter “b” by its different stroke
sequences. After extracting the stroke sequence string, we
perform the nearest neighbor searching to identify what let-
ter the given sequence string is. For the on-line character
recognition problem, the stroke sequence string is obtained
from the movements of a mouse or a pen-based device. The
system is capable of enumerating all retrieved letters by in-
creasing similarity values. Both applications as shown in
Fig. 1 (a) and (b) are discussed in section 2 as they involve
the manual stroke sequence string extraction.

Unlike in the on-line OCR problem, it is difficult to extract
the character stroke sequence string in the off-line charac-
ter recognition problem. It involves the automatic extraction
of approximate stroke sequence string, which is not trivial.



In this paper, we use the contour sequence derived from a
chain-code as a string instead of the stroke sequence. We
achieve high accuracy rate for handwritten digit recognition
experimentally. Similar recognition techniques using the dif-
ferently defined edit distance on chain-codes have been pro-
posed [7]. A method for word recognition utilizing chain-
codes appears in the literature [8]. They use a statistical-style
contour-based feature extraction. Our approach is contrast-
ing as it is a syntactic-style contour-based feature extraction
and matching. The detailed description of the algorithm and
its problems are discussed in section 3.

2 On-line Character Similarity Measure

In this section, we discuss the details of handwriting anal-
ysis and on-line character recognition problems. In both of
applications, it is assumed that the stroke sequence is readily
available as it is extracted manually or obtained from the in-
put device. There are two stages in computing the distance
between two letters: feature extraction and matching stages.

2.1 Extracting stroke sequence strings

The first step involves extracting stroke sequence strings for
both letters to be compared. In the on-line character recog-
nition case, stroke sequence strings are readily available in
the on-line character acquisition process. In the handwriting
analysis case, a trained human, known as a document exam-
iner, is involved during the examination. Albeit impossible
to extract the exact stroke sequence of the author of the letter,
it is fairly easy for a human, especially for document exam-
iners, to extract the pseudo on-line information. We utilize
the pen based system rather than a mouse, to allow an exam-
iner to extract the author’s pseudo on-line information while
he or she is tracing the strokes on screen. We define a stroke
as a directional arrow whose length is 7 pixels long. There
are 8 types of strokes: f!;%; ";-; ;.; #;&g, and con-
tiguous strokes are represented in a pair of parentheses. Each
stroke has its corresponding integer value:0

@ - " %
 !
. # &

1
A =

0
@ 3 2 1

4 0
5 6 7

1
A

Fig. 2 illustrates a sample character stroke sequence for a
character “A”.

( % % % % % . . # . . )( ! ! )

Figure 2: Manually obtained stroke sequence strings

2.2 Stroke Sequence String Matching

The next step is the comparison step that uses the modified
approximate string matching algorithm. The stroke string
matching problem defined below is quite different from the
traditional string matching problem in terms of the type of
elements in a string. The type of elements in the traditional
string matching problem is either bounded or unbounded al-
phabets. No relation is defined among the alphabets, hence,

it is called nominal. In our case, the type of element is not
nominal, rather it is directional. The individual distance di;j

between the i’th stroke in letter a1 and the j’th stroke in letter
a2 is defined as follows:

Definition 1 distance between two individual strokes
(turn):

di;j =

�
ja1(i)� a2(j)j; if ja1(i)� a2(j)j � 4
8� ja1(i)� a2(j)j; otherwise

One can edit a stroke to make the other stroke by turning it
to the clockwise or counter-clockwise whichever is shorter.
For example, the distance between the strokes " and ! is
2 as one can turn " two steps to the right to make !. The
term di;j denotes the minimum number of necessary steps in
turning. If the number of stroke types increases or decreases,
Def. 1 of edit distance changes accordingly. This operation,
turn is another important difference between the traditional
and our modified string matchings. While the former allows
the substitution with the cost of 1 , the later allows the turn
with various costs.

The approximate stroke sequence string matching prob-
lem is that given two stroke sequence strings, find the
minimum edit distance between them by allowing turn,
insertion and deletion. Consider two sample “A” letters, a1
and a2:
a1 : (" % " % ! & # & #)

(2 1 2 1 0 7 6 7 6)
(& %)
(7 1)

a2 : (% % % % % . . # . .)
(1 1 1 1 1 5 5 6 5 5)

(! !)
(0 0)

We are allowed to insert, delete strokes or turn an individual
stroke. The cost of turn is di;j . The costs of insertion and
deletion are c = 2. Fig. 3 illustrates the distance computing
table for the first parts of sample letters. First, put one string

2 1 2 1 0 7 6 7 6

0 2 4 6 8 10 12 14 16 18

1 2 1 2 4 6 8 10 12 14 16
1 4 3 1 3 4 6 8 10 12 14

1 6 5 3 2 3 5 7 9 11 13
1 8 7 5 4 2 4 6 8 10 12
1 10 9 7 6 4 3 5 7 9 11

5 12 11 9 8 6 5 5 6 8 10
5 14 13 11 10 8 7 7 6 8 9

6 16 15 13 12 10 9 8 7 7 8
5 18 17 15 14 12 11 10 9 9 8
5 20 19 17 16 14 13 12 11 11 10

Figure 3: Computing distance table

on the top of the table, and the other in the left side of the
table. The individual strokes on the top and left side of the
table are denoted as ti’s and lj’s, respectively. The initial
values are assigned in the first row and column of the table
with T [0; j] = c � j and T [i; 0] = c � i. Now T [i; j] is
computed by taking the minimum value of these three:

T [i; j] = min

(
T [i� 1; j � 1] + di;j , turn

T [i� 1; j] + c , ti is missing

T [i; j � 1] + c , lj is missing

The distance between two stroke sequences is achieved from
the table in Fig. 3 where the edit distance is 10.

Many English characters consist of more than one stroke
sequences. This leads a problem of finding the closest pair of



strings. To solve this, we consider the length and the starting
position of each string and then the final distance is computed
by adding all distances of closest pairs of strings.

2.3 Example

Some sample letters from bd testing set [9] are shown in
Fig. 4 as examples (see [10] for description of this charac-
ter set in detail). Fig. 5 shows the stroke sequence strings for

1         2             3          4         5           6           7          8             9              10

11        12          13        14       15          16           17           18         19           20

Figure 4: Sample A’s

the examples. They are obtained after the size normalization

1st part 2nd part

1 "%"%!&#&# &%

2 %%%%%..#.. !!

3 %""%!&##. !%

4 %""%!&##. !%

5 %%"%%&#&## !!%

6 ###"""%%&##&# %!

7 ###""%%%&#### !!

8 %%%%%%###. !!!

9 %%%%%%##.#. !!!

10 %%%%%#.### !!!

11 ....%%%%%%#.#.. !!!

12 .....%%%%%%#.... !!%

13 ....%%%%%#.... !%

14 ....%%%%%#... !%

15 %%%%%&###. !%

16 %%%%%##### %!

17 #.#.%"%"%&#### %%

18 #..%%%%&#### !!!

19 #..%%"%%####& !%

20 ..#.%%"%%##### !%

Figure 5: Stroke Sequence Strings for “A”’s

process. Fig. 6 shows the distance matrix obtained from the
stroke sequence string matching algorithm for the example.
Elements of the resulting matrix M have properties of iden-

1   0 

2  12  0 

3   5  9  0 

4   5  9  0  0 

5   7  9  7  7  0 

6  13 16 13 13 13  0 

7  14 13 13 13 12  3  0 

8  12  8  9  9  6 16 13  0 

9  14  8 11 11  8 17 14  2  0 

10  11  5 10 10  5 15 12  5  5  0 

11  23 13 20 20 17 18 15 11 11 12  0 

12  25 16 22 22 19 21 18 15 13 16  4  0 

13  19 11 16 16 17 16 13 17 15 14  6  6  0

14  17 12 14 14 17 16 13 15 16 15  7  8  2  0

15   7  5  5  5  5 13 10  5  7  6 16 18 12 12  0

16  10  5  9  9  6 11 10  7  7  4 16 19 14 15  4  0

17  15 17 14 14 15  8  7 17 18 16 14 16 10 10 12 12  0

18  15 14 14 14 10 10  7 10 12  9 11 15 13 11 11 11  9  0

19  13 13 12 12 11  9  8 14 14 12 13 15  9  9 10 10  8  7  0

20  15 14 14 14 12 10  9 16 15 13 10 12  6  7 11 11  6  9  4  0

1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

Figure 6: Distance matrix between sample A’s

tity, non-negativity, commutative law and triangle inequality.

2.4 On-line Character Recognition

A simple On-line Character Recognizer with the supervised
training ability is also implemented. One can draw a char-
acter and provides a truth information about the character to
train the system. Training means adding the stroke sequence
strings in the library with its truth. Later one can draw a
character and ask the system to recognize it. The system will
perform the nearest neighbor search in the reference set and
returns the class of the string whose distance is the minimum.

There are two additional operations for the on-line charac-
ter recognition. They are merging two sequence strings and
reversing a string. One or several breaks may occur in draw-
ing a single line, curve or circle. This must be considered as
a single string rather than multiple strings. To obviate this
inadequacy, the merge operation is necessary. If the starting
position of a certain string and the ending position of another
string are matched or close, they are merged. The reverse
operation is also needed because people may write a letter in
the reverse order.

3 Off-line Character Matching

In this section, we discuss the implementation of the new
similarity measure for the off-line character matching prob-
lem. An off-line character/digit recognizer takes a character
or digit image as an input and classifies its class as shown in
Fig. 1 (c).

3.1 Contour Sequence String Extraction

To obtain pseudo stroke sequence strings from off-line char-
acter images, a contour sequence is defined using the idea
of the chain-code. Like a chain-code, a contour sequence is
a representation of boundaries of objects in the image. We
distinguish the outer and inner contour sequence; the former
is the outer boundary due to a blob of black pixels and the
later is due to a lake of white pixels inside of a blob of black
pixels. Fig. 7 shows the contour sequence representation of
a character “A”. There are one outer contour sequence and

Figure 7: A contour sequence representation for “A”

one inner contour sequence. We define the abstract data type
of a contour sequence string as follows: inner or outer type,
its length, a list of strokes and the centroid. A centroid is the
center of a contour sequence:

(�x; �y) =

 P
x

P
y xB(x; y)P

x

P
y B(x; y)

;

P
x

P
y yB(x; y)P

x

P
y B(x; y)

!

B(x; y) = 1 if the pixel is labeled as an element of the seg-
ment and B(x; y) = 0 otherwise. Note that the centroid is
computed after the character image is resized by adjusting
the height to a fixed size. Both type and centroid are impor-
tant because a character image has multiple contour sequence
strings and the decision for selecting a corresponding contour
sequence string must be made. There are 8 directional types
of stroke in a chain-code. The size of each stroke is 7 pixels
long.



To extract contour sequence strings, several procedures are
preceded such as noise removal, connected component anal-
ysis and chain-code generation. Although we expect the in-
put character or digit image to be a single clean image, there
are many undesired noises. Some broken or smeared charac-
ter images occur due to the degradation of document images.
Moreover, poor segmentation and improper background re-
moval create certain noises.While the image restoration is be-
yond the scope of this paper, we use simple unary and binary
filters that handle salt and pepper noises. The i-dots in i and
j are preserved.

Second, perform a connected component analysis and find
the centroid of every connected component. Next, generate
chain-codes by following component outer most boundaries.
Finally, starting from the top of each chain-code, generate
the contour sequence by fitting strokes to the chain-code. A
stroke is 7 pixel long. Geometrically best fitting strokes are
selected to replace pixel-based strokes in the chain-code.

3.2 Contour Sequence String Matching

The algorithm is very similar to the one stated earlier in sub-
section 2. The major difference is the source of strings. We
provide a succinct description of the algorithm. First, we
find the closest pair of contour sequence strings. We consider
the type, centroid and length of a string as criteria. The dis-
tance between the centroids and difference in lengths must
be small. Furthermore, we consider the number of contour
sequence strings as well. If the difference in the number of
strings is too big, we eliminate it from consideration. For ex-
ample, a digit “1” typically has one string whereas a digit “8”
has 3 strings. When “1” is a query, we limit our search tem-
plates whose number of strings is less than 3. This enables
to expedite searching.

After finding all corresponding contour sequence strings,
compute each edit distance and accumulate all distances. If
there is a string without a corresponding one, add the length
of the string times the penalty value 2 to the total edit dis-
tance. Finally, select top 5 similar templates whose edit dis-
tances are smallest. The class of a query image is determined
from a vote of these 5 templates.

4 Experiments

Handwriting Analysis: To show the compatibility of the
new similarity measure with the human decision, we asked
25 professional scientists and graduate students at CEDAR
to select similar pairs from the list in Fig. 4. It is noted that
similar letters in human eyes tend to have small edit distance
values between them. The pairs f(3; 4); (11; 12); (8; 9)g are
chosen to be similar by more than 15 people and their edit
distances in Fig. 6 are 0; 4; 2, respectively. Interestingly, 12
people responded (1; 6) as a match while the edit distance is
13. This is due to the leading ligature in the letter number
6. Considering the leading ligature, the other 13 people’s
decision is more appealing.

Off-line Digit Recognition: We consider 18; 465 digit
images from br testing set [9]. 1,000 out of these images
are chosen as query images and the rest of them are used
as the reference or prototype images. Several number of
selecting queries were performed and the average accuracy
is about 96:08%. From the error analysis, we find an in-
teresting consistency that the majority of errors are due to
the broken characters resulting unexpected discontinuity in

the contour sequence string. It is expected that provision on
the broken characters will improve the performance signif-
icantly. Note that the performance of GSC is 98:87% [11]
and many other methods with the above 97% performance
are also known [1].

We tested several different penalty values, c for insertion
and deletion and we observe that the best performance oc-
curs when c = 2. We also performed the experiments with
and without the pepper and salt filters. The former per-
forms 2% better than the later. There are two parameters
that affect the performance. They are the number of types
of stroke(directions) and the size of each stroke. We used 8
directional strokes with a size of 7. In a later study, further
testing with more than 8 directions with various size will be
carried out and a better performance is expected as an anal-
ysis on errors has indicated that a new strategy in handling
noisy images (broken characters) can correct the errors prop-
erly.

5 Conclusion

We proposed the approximate stroke or contour sequence
string matching algorithm. It is approximate matching be-
cause the retrieval is based on similarity rather than the exact
matching. Thus, it is useful to retrieve the similar style of
handwritings with a certain degree of variations since the re-
sults are quite comparable with human subjective decision.
The new similarity measure has a plethora of potential and
important roles in character recognition and analysis.
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