
Approximate SU(4) spin models on triangular and honeycomb lattices in twisted
AB-Stacked WSe2 homobilayer

Shuchen Zhang,1, 2, ∗ Boran Zhou,1, † and Ya-Hui Zhang1, ‡

1William H. Miller III Department of Physics and Astronomy,
Johns Hopkins University, Baltimore, Maryland, 21218, USA

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
(Dated: February 16, 2023)

In this paper, we derive lattice models for the narrow moiré bands of the AB-stacked twisted
WSe2 homobilayer through continuum model and Wannier orbital construction. Previous work has
shown that an approximate SU(4) Hubbard model may be realized by combining spin and layer
because inter-layer tunneling is suppressed due to spin Sz conservation. However, Rashba spin-
orbit coupling (SOC) was ignored in the previous analysis. Here, we show that a Rashba SOC
of reasonable magnitude can induce a finite but very small inter-layer hopping in the final lattice
Hubbard model. At total filling n = 1, we derive a spin-layer model on a triangular lattice in the
large-U limit where the inter-layer tunneling contributes as a sublattice-dependent transverse Ising
field for the layer pseudospin. We then show that the n = 2 Mott insulator is also captured by an
approximate SU(4) spin model, but now on honeycomb lattice. We comment on the possibility of a
Dirac spin liquid (DSL) and competing phases due to SU(4) anisotropy terms.

I. INTRODUCTION

Recent experimental progresses in moiré superlattices[1–
22] make it possible to study spin physics in a Hubbard
model on a moiré superlattice[23–31]. With these highly
tunable systems, it is natural to ask whether we can real-
ize unconventional spin phases which are not magnetically
ordered. One route to disordering magnetic order is through
adding frustration[32–40] or charge fluctuation[41, 42] to a
spin 1/2 model. Another route is to consider an SU(N)
spin model with N > 2, where the magnetic order is gen-
erally suppressed and a spin liquid phase may be stabilized
even in the simplest Heisenberg model[43, 44]. However, it
is challenging to realize an SU(N) spin model in real sys-
tems. Graphene moiré system may simulate an SU(4) spin
model[45]. We also note a recent proposal of SU(8) model
in twisted bilayer graphene[46]. One issue for the graphene
moiré systems is that there is generically a large valley con-
trasting flux[47]. In this paper, we focus on the moiré super-
lattices formed by transition metal dichalcogenides(TMDs),
where the valley contrasting flux is usually negligible[23], ex-
cept in twisted AA stacked TMD homo-bilayer with a large
displacement field[26].

With TMD layers, one can realize a moiré bilayer to sim-
ulate an SU(4) Hubbard model by combining the spin and
layer degree of freedom[48]. If the inter-layer tunneling is
suppressed and inter-layer distance is much smaller than
the moiré lattice constant, there is an approximate SU(4)
symmetry. There are two different ways to suppress the
inter-layer tunneling to realize a moiré bilayer. The first
one is to insert an insulating barrier such as a hexagon
boron nitride(hBN) layer in the middle. However, a thick
hBN will lead to a smaller inter-layer repulsion compared
to the intra-layer repulsion and reduces the U(4) symmetry
to U(2) × U(2)[49]. Although interesting phases can still
arise in this less symmetric case[49], in this paper we are
interested in improving the SU(4) symmetry. The second
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realization of a moiré bilayer is the twisted AB-stacked tran-
sition metal dichalcogenide (TMD) homo-bilayer[48], which
was recently realized in an experiment[50]. AB stacking is
generated from the standard AA stacking through rotating
one TMD layer by 180◦ relative to the other layer. Therefore,
the two TMD layers at the same valley now have opposite
spin splittings. The highest valence bands have opposite spin
Sz in the two layers at the same valley (see Fig.1(a)). As a
result, the inter-layer tunneling is forbidden due to the spin
Sz conservation[51].

However, in the analysis above, we ignore the Rashba spin-
orbit coupling (SOC). With a Rashba SOC, spin Sz is not a
good quantum number anymore and one may imagine a fi-
nite inter-layer tunneling, similar to what is happening in the
AB-stacked TMD hetero-bilayer[52, 53]. In this paper we an-
alyze the effect of the Rashba SOC in the AB stacked TMD
homo-bilayer. It is known that Rashba SOC usually arises
in hetero-structures with a finite vertical electric field[54].
This is indeed expected for TMD hetero-bilayer. However,
for TMD homo-bilayer, there is no vertical electric field if
the displacement field D is zero. Hence, the Rashba SOC
may be suppressed. When D = 0, there is indeed a sym-
metry C2x which exchanges the two layers and forbids the
layer symmetric Rashba SOC. The only allowed Rashba SOC
term must be opposite in the two layers. It is unclear to us
how this layer-opposite Rashba SOC can arise microscopi-
cally. We conjecture its value is negligible. But to obtain
an upper bound of the inter-layer tunneling, we simply add
layer-opposite Rashba SOC of a large magnitude (compara-
ble to the value in a hetero-bilayer) to the continuum model
and then extract an on-site inter-layer hopping term in low-
energy lattice Hubbard model through Wannier orbital con-
struction. The inter-layer hopping turns out to be quite small
(at order of 0.001t − 0.01t) even with large layer-opposite
Rashba SOC.

At total filling n = 1, the Mott insulator in the large-
U limit is described by an approximate SU(4) model. The
small inter-layer hopping results in a sublattice dependent
transverse Ising field in the layer pseudospin space in a con-
venient gauge. At zero magnetic field, previous work showed
that the ground state of the SU(4) Heisenberg mdoel on a
triangular lattice has a plaquette-ordered ground state[51].
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(a) (b)

(c) (d)

FIG. 1: (a) Illustration of spin-valley locking of the low-energy valence bands in AB stacking. (b) Illustration of spin-valley
locking of the low-energy valence bands in AA stacking. (c) Schematics of the moiré pattern formed by AB-stacked twisted
bilayer TMD MX2. High symmetry regions are highlighted with circles. ‘MX’ means the metal atoms in the top layer are

aligned with the chalcogen atoms in the bottom layer, and other areas are defined similarly. There is a C2x symmetry which
rotates the system by 180◦ around the x axis. (d) Moiré pattern of AA-stacked twisted bilayer MX2. There is a C2y

symmetry now.

We expect that the plaquette-ordered phase is stable with
a small transverse Ising field. We can polarize the real spin
with a large magnetic field in the z-direction and get a spin-
1/2 XXZ model for the layer pseudospin[55]. We analyze the
phase diagram with an additional displacement field and a
small sublattice dependent transverse Ising field originating
from the inter-layer tunneling. We find a 1/3 plateau in layer
polarization when varying the displacement field D, which is
stable against the small transverse Ising field.

We then turn to the total filling n = 2. Naively, one may
expect a Mott insulator on a triangular lattice where each
site is occupied by two particles, resulting in a SO(6) repre-
sentation of the approximate SU(4) symmetry[45]. However,
a careful analysis shows that the two particles in a unit cell
prefer to stay in A, B sublattice of a honeycomb lattice to
reduce the on-site Hubbard U[25]. An appropriate lattice
model for n > 1 turns out to be an approximate U(4) Hub-
bard model on a honeycomb lattice, which we derive through
Wannier orbital construction of the lowest two moiré bands
(each band consists of four flavors coming from valleys and
layers). Then the Mott insulator at n = 2 is described by
an approximate SU(4) spin model on a honeycomb lattice,
which may host a Dirac spin liquid as indicated by previous

calculations[56–58] and theory[59]. We discuss the effect of
anisotropy terms and possible competing phases.

II. CONTINUUM MODEL WITH RASHBA SOC

A. Continuum model and symmetry

We consider a twisted TMD homo-bilayer with a small
twist angle θ. Due to the lack of inversion symmetry within
each TMD layer, there are two inequivalent stacking patterns
at zero twist angle. In the AA stacking, each atom of one
TMD layer aligns with the corresponding one in the other
layer. In the AB stacking, one rotates one of the TMD layers
by 180◦ relative to the other. In each TMD layer, it is known
that the valence bands from the two spins Sz =↑, ↓ have
opposite splittings in the two valleys K,K ′ of the hexagon
Brillouin zone(BZ). In the AB stacking, the definition of the
valley in one layer is flipped compared to that in the AA
stacking due to the 180◦ rotation. Hence in the AB stack-
ing, the two layers have opposite spin Sz at the same valley
(see Fig.1(a)(b)) for the same band. As a consequence, the
inter-layer tunneling in the AB stacking is forbidden due to
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the spin Sz conservation. This property still holds at a small
twist angle θ relative to the AB stacking. Another differ-
ence between the twisted AB stacking and AA stacking TMD
homo-bilayer is in their symmetries. AA stacking has a C2y

symmetry at zero displacement field which rotates the sys-
tem by 180◦ around the y-axis and exchanges the two layers,
while AB stacking’s corresponding symmetry is C2x which
rotates the system by 180◦ around the x-axis and exchanges
the two layers(see Fig.1(c)(d)). As we will see, the differ-
ent symmetries in the two stacking patterns lead to different
Hamiltonians and properties.

Due to the twist, the valence bands from the valley K
and K ′ are folded into a mini moiré Brillouin zone(MBZ)
as shown in Fig.2. We construct a continuum model in-
cluding 8 bands from spin, valley and layer. We use
µa, τa, sa, a = 0, x, y, z to label the Pauli matrices in layer,
valley and spin subspace respectively. We define ψl(k) =
(cl;K;↑(k), cl;K;↓(k), cl;K′;↑(k), cl;K′;↓(k))T , where c is the an-
nihilation operator of a hole and l = t, b denotes the top
layer and the bottom layer. We can then define ψ(k) =
(ψTt (k), ψTb (k))T , where k is the absolute momentum relative
to the same origin for both layers and both valleys. It is also
convenient to define a relative momentum k̃l;τ = k −Kl;τ ,
where Kl;τ is the momentum of the valley τ at layer l. In

the following we use k̃ for simplicity.
The Hamiltonian for the continuum model in the hole pic-

ture is then:

H =H0 +HM ,

H0 =
∑
k

ψ†(k)

(
~2k̃2

2m∗
µ0 +

D

2
µz

)
⊗ τ0 ⊗ s0ψ(k)

+
∑
k

ψ†(k)βµz ⊗ τz ⊗ szψ(k)

+
∑
k

ψ†(k)µ0 ⊗ τ0 ⊗ α(D)(k̃xsy − k̃ysx)ψ(k)

+
∑
k

ψ†(k)µz ⊗ τ0 ⊗ α−(k̃xsy − k̃ysx)ψ(k),

HM =−
∑
k

∑
j=1,3,5

(
ψ†(k)V eiϕµ0 ⊗ τ0 ⊗ s0ψ(k + Gj) + H.c

)
−
∑
k

ψ†(k)wµx ⊗ τ0 ⊗ s0ψ(k)

−
∑
k

∑
j=3,4

(
ψ†(k)wµ+ ⊗ τ0 ⊗ s0ψ(k + Gj) + H.c

)
,

(1)

where m∗ is the effective hole mass, D is the voltage be-
tween the two layers, α(D) is the layer symmetric Rashba
SOC induced by an external electric field, α− is a layer-
opposite Rashba SOC (LORSOC) allowed by symmetry (ex-
plained below) at D = 0, which has been studied in bilayer
graphene[60], β is the Ising spin-orbit coupling constant. Gis
are the reciprocal vectors of the MBZ, and w is an inter-
layer tunneling strength parameter. We choose G2 to be
(− 4π√

3aM
, 0)T , where aM ≈ 0.328

θ nm (θ is the twist angle) is

the moiré superlattice constant, and all the other G vectors
are generated by 60-degree counterclockwise rotations of G2

(see Fig.2).
At D = 0, there is a C2x symmetry which acts as:

ψ(kx, ky)→ µx⊗ τ0⊗ (−isx)ψ(kx,−ky). It enforces α(D) =

𝑮𝟏

𝑮𝟐

𝜿#
𝜿𝒕

𝜿𝒃
(𝜿&)

𝜽

𝜿&'

𝚪

FIG. 2: The blue and orange hexagons are the Brillouin
zones of the top and bottom layer in the hole picture,

respectively. Twisting them with an angle θ creates the
moiré Brillouin zone depicted by the black hexagon.

−α(−D), so there is only the layer-opposite Rashba α− term
at D = 0. Also the moiré Hamiltonian HM is fully con-
strained by the C2x symmetry and another C3 rotation sym-
metry which acts as ψ(k̃) → ψ(C3k̃). C3 is defined relative
to the valleys K and K’ of the corresponding layer. We note
that the C2x symmetry guarantees that the moiré potentials
have the same phase ϕ in the two layers for the same Gj.
In contrast, for the AA stacking, the C2y symmetry requires
the phase ϕ to be opposite for the two layers at the same
Gj. This is crucial for the approximate SU(4) symmetry at
D = 0 for the twisted AB stacked homo-bilayer.

The LORSOC α− in Eq.1 is allowed at D = 0 by symmetry.
It is not clear that how it can arise microscopically, but it
should be quite small given that there is no vertical electric
field between the two TMD layers at D = 0. Typical Rashba
SOC in systems with strong mirror symmetry breaking is
around 30 meV·Å [61]. We believe α− in our system atD = 0
is significantly smaller. However, in the following we will use
a α− at the order of 10 meV ·Å to obtain an upper bound
of inter-layer hybridization. The layer isotropic Rashba SOC
α(D) should be proportional to D. Based on previous first-
principle calculations in bilayer MXY[62], we use α(meV ·
Å) = AD(V) as an estimation, where A = 14meV·Å·nm/V

0.7nm is
a proportionality constant and 0.7nm is the estimated inter-
layer distance.

We compute the band structure from Eq.1 with θ = 4
degrees, m∗ = 0.45m0[63], V = 7.9 meV, ϕ = 142◦, w = 18
meV[64], β = 230 meV[65], α− = 20meV · Å. We plot the
first two moiré bands in the valley K with several values of D
in Fig.3. Even when the LORSOC α− = is as large as 20meV
·Å, we can see that the bands from the two layers are almost
decoupled, indicating a very small inter-layer tunneling. We
note that the α− used here is overestimated. Thus, we expect
the inter-layer hybridization to be even weaker in realistic
system.

III. LATTICE MODEL AND INTER-LAYER
HOPPING WHEN n ≤ 1

From the band structure calculation, we can see that the
bands of the two layers are almost decoupled even with the
Rashba SOC included. If we construct a lattice model for
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FIG. 3: Dispersion relations of the first two moiré bands
from the same valley K at different displacement field D.

The colors of the bands indicate layer polarization

Pz(k) = 1
2 (c†t(k)ct(k)− c†b(k)cb(k)). (a) D = 0 mV,

α(D) = 0meV · Å (b) D = 5 mV, α(D) = 0.1meV · Å (c) D
= 10 mV, α(D) = 0.2meV · Å (d) D = 15 mV,

α(D) = 0.3meV · Å. In all of the plots we set ϕ = 142◦ and
include a layer-opposite Rashba SOC α− = 20meV · Å.

a band at one layer and one valley, it should be a simple
tight-binding model on a triangular lattice. The question
is how large the inter-layer tunneling is. To estimate it, we
construct Wannier orbitals for the lowest two bands(from the
two layers) at each valley on a triangular lattice. The two
valleys are related by the time reversal symmetry, so we can
only focus on one valley. We obtain an extended Hubbard
model (see Appendix A. for details):

H =− t
∑
〈ij〉

∑
τ=K,K′

(
(c†ibτe

iφτijcjbτ + c†itτe
−iφτijcjtτ ) + H.c

)
+ tz

∑
i

∑
τ

(c†itτ cibτ + H.c)

+
1

2

∑
i

∑
l=t,b

Unil(nil − 1) + U ′
∑
i

nitnib

+
∑
〈ij〉

∑
l

V nilnjl +
∑
〈ij〉

V ′(nitnjb + nibnjt),

(2)
where 〈ij〉 refers to the nearest neighbors, t is the real
nearest-neighbour intra-layer hopping, tz is the on-site inter-
layer tunneling. Because spin Sz is not a good quantum
number, we ignore the spin index. Sz should be locked to
valley, so one can view valley as the usual spin 1/2 in the
familiar Hubbard model. ni;l is the density at layer l = t, b

(summed over valleys), φKij = −φK′ij , φτij = ± 2π
3 so that the

flux through each triangle is ±2π as shown in Fig.4. U and
U ′ are the intra-layer and inter-layer on-site repulsion, V and
V ′ are the intra-layer and inter-layer repulsion among nearest

neighbours. We use a1 = (0, aM )T ,a2 = (
√

3
2 aM ,−

1
2aM )T to

be the triangular lattice primitive vectors, aM is the moiré

FIG. 4: Illustration of the hopping phase φτij for τ = K in

Eq.2. We have φKij = −φK′ij . Along the arrow we have

φij = 2π
3 . Neighbouring triangles have opposite flux

Φ = ±2π.

superlattice constant. Note that we are free to choose the
phase of tz. In this paper, we let it be real.

We plot t in Fig.5 (a) and tz
t in Fig.5 (b) at D = 0 with

several α− as functions of the twist angle θ. The on-site inter-
layer tunneling is smaller than 1% of the nearest neighbour
intra-layer hopping at D = 0 for α− ≤ 5 meV ·Å and θ > 3◦.
We can see that tz

t decreases with θ, mainly because t in-
creases with the twist angle. We also want to check whether
this result depends on the choice of ϕ in our model. We pro-
vide a plot of tz

t as a function of ϕ in Fig.6. One can see
that the choice of ϕ does not affect the order of magnitude
of tz

t .

A. A more convenient gauge

It is convenient to gauge away the phase of the
nearest neighbor hopping. Let us define Ψi =
(citK , citK′ , cibK , cibK′)

T . The flux Φ = ±2π in each tri-
angle can be gauged away by the transformation: Ψi →
Ψie

iµz⊗τzκ·ri , κ = ( 2π
3aM

,− 2π√
3aM

), κ · ri = ± 2π
3 . Note that

κ is a corner of the MBZ.
After the gauge transformation, we reach a new lattice

model:

H =− t
∑
〈ij〉

∑
τ=K,K′

∑
l=t,b

(c†ilτ cjlτ +H.c)

+ tz
∑
i

(Ψ†ibe
2κ·riiτzΨit +H.c)

+
1

2

∑
i

∑
a

Unil(nil − 1) + U ′
∑
i

nitnib

+
∑
〈ij〉

∑
l

V nilnjl +
∑
〈ij〉

V ′(nitnjb + nibnjt),

(3)

where Ψil(l = t, b) = (cilK , cilK′)
T .

If we ignore the tz term and set U = U ′, V = V ′, the
above model has a U(4) symmetry. The cost of the gauge
transformation is to add a position dependent phase on the
inter-layer on-site hopping. In the following we will use this
gauge so that the approximate SU(4) symmetry is explicit.
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(a)

(b)

FIG. 5: (a)Nearest-neighbour intra-layer hopping t vs the
twist angle θ at D = 0, ϕ = 142◦. t is independent of α−.

(b)Ratio of on-site inter-layer tunneling tz to
nearest-neighbour intra-layer hopping t vs the twist angle θ
at D = 0 with different LORSOC constants α−. ϕ = 142◦.

FIG. 6: Ratio of on-site inter-layer tunneling tz to
nearest-neighbour intra-layer hopping t vs ϕ at D = 0,

α− = 1, 5, 10meV · Å, θ = 4◦.

IV. APPROXIMATE SU(4) SPIN MODEL AND
THE EFFECT OF INTER-LAYER HOPPING AT

n = 1

A. Approximate SU(4) spin model

In a typical system, t
U is about 0.01 ∼ 0.1[66], so we can

obtain a spin model through a Schrieffer-Wolff transforma-
tion of Eq.3 in t/U [67] for the Mott insulating phase at total
filling n = 1. We define a layer pseudo-spin operator P = 1

2µ

and a spin-valley operator S = 1
2τ . The effective spin model

is:

HS =
J

4

∑
〈ij〉

(4Pi ·Pj + P 0
i P

0
j )(4Si · Sj + S0

i S
0
j )

+ δJ
∑
〈ij〉

(
(P xi P

x
j + P yi P

y
j )(4Si · Sj + S0

i S
0
j )
)

+ 2(δJ + δV )
∑
〈ij〉

P zi P
z
j

+ 2tz
∑
i

(P xi cos 2κ · ri − 2Szi P
y
i sin 2κ · ri),

(4)

where J = 2t2

U−V , δJ = 2t2

U ′−V ′ −
2t2

U−V , δV = V − V ′.
δJ, δV are anisotropy terms breaking SU(4) spin symme-

try due to the distance between the two layers. δJ
J ,

δV
J

are estimated to be 0.2 and 0.3 at θ = 3◦[48]. When
δJ = δV = tz = 0, the above model is an SU(4) Heisenberg
model of which the ground state was shown to be in a pla-
quette order[48]. It is interesting to note that the inter-layer
tunneling term tz acts as a sublattice-dependent transverse
Ising field in the layer pseudo-spin space.

B. Layer pseudo-spin magnetism and effect of
transverse Ising field

Now, we study the effect of the sublattice dependent trans-
verse Ising field. For simplicity, we apply a strong magnetic
field to polarize the valleys in order to neglect S in Eq. 4.
Then, we only need to consider an XXZ model with a trans-
verse Ising field coupled to the layer pseudospin P:

H =Jxy
∑
〈ij〉

(P xi P
x
j + P yi P

y
j ) + Jz

∑
〈ij〉

P zi P
z
j

−
∑
i

(Hx(ri)P
x
i −Hy(ri)P

y
i −DP

z
i ) ,

Jxy = 2(J + δJ),

Jz = 2(J + δJ + δV ),

Hx = −2tz cos 2κ · ri,
Hy = 2tz sin 2κ · ri,

(5)

One can see that the potential difference D now plays the
role of a Zeeman field in the layer pseudo-spin space. The
inter-layer tunneling tz acts as a sublattice dependent trans-
verse Ising field. Without the transverse Ising field, this is
an XXZ model with a Zeeman field, which has been studied
[68–70]. For example, it is known that there is a 2〈Pz〉 = 1

3
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FIG. 7: Ilustration of the sublattice-dependent effective
transverse Ising field from the inter-layer tunneling tz in the
Px, Py space. Here A,B,C label three sublattices. H labels

the direction of the transverse Ising field.

plateau in the magnetization when increasing the Zeeman
field D. For our system, this plateau will be manifested in
the layer polarization Pz. The effect of a uniform transverse
Ising field has been studied[71]. But there is no discussion on
the sublattice-dependent transverse Ising field in Eq. 5. We
plot the directions of the field’s projection in the x-y plane
in Fig.7.

We compute the polarization curves of Eq. 5 numerically
using the standard linear spin wave theory (see Appendix

B for details). We use
Jxy
Jz

= 0.1 because t2

U ′ ∼ O(0.01) −
O(0.1), δV ∼ O(1meV ). We show the polarization curves
with the transverse Ising field Hp = 2|tz| = 0.1Jz, 0.5Jz in
Fig. 8. The 1/3 plateau is clearly visible with HP = 0.1Jz.
We believe that Hp/Jz is smaller than 0.1 in typical systems
because the inter-layer tunneling tz is found to be of O(0.01t)
and Jz

t ∈ O(1). Therefore, we propose to search for the 1/3
plateau in layer polarization by increasing the displacement
field D under a strong magnetic field in experiments[50].

FIG. 8: Layer polarization 2〈Pz〉 vs displacement field D
Jz

at
different sublattice dependent transverse Ising field

Hp = 2tz. We fix
Jxy
Jz

= 0.1.

Then, we study the phase diagram of the above model by

varying D/Jz and Hp/Jz while fixing Jxy/Jz = 0.1. The
result is shown in Fig. 9 (see Appendix.B for details). We
find that the 1/3 plateau survives if Hp/Jz < 0.4. When
Hp is weak, the phases are similar to an XXZ model in a z-
direction magnetic field[70], but an umbrella phase replaces

the co-planar V-shape phase. When Hp is strong, the ~P
vectors form a 120-degree structure in the x-y plane. When

a displacement field D is applied, the ~P vectors form an
umbrella structure. In usual twisted bilayer TMDs, we only

realize the bottom part of the phase diagram because
Hp
Jz

is
small.

FIG. 9: Phase diagram of Eq.5 when
Jxy
Jz

= 0.1. Hp is the
effective sublattice dependent x-y plane magnetic field

originating from the inter-layer hopping tz. D is the voltage
between two layers and is an effective magnetic field in the

z-direction. The dashed lines mark first-order phase
transitions where 〈Pz〉 jumps and solid lines mark

second-order phase transitions. The Hp = 0 line was
studied in [70]. Note that the umbrella structure becomes

co-planar at Hp = 0 on the blue line. In experiments of the
twisted AB stacked TMD homo-bilayer[50], one only has

access to the bottom part where
Hp
Jz

is small.

V. HUBBARD MODEL ON A HONEYCOMB
LATTICE WHEN n > 1

The single orbital Hubbard model in the above is valid
only when n ≤ 1. When n > 1, the additional hole may
want to enter another orbital in a different position inside
the moiré unit cell to avoid the large Hubbard U due to
the double occupancy[25]. To capture this effect, we need to
keep at least another orbital from a higher band. As we have
demonstrated that the inter-layer tunneling is quite small, in
the following we ignore the Rashba SOC in Eq. 1. It is also
convenient to shift the valence band maximum of the two
layers to the Γ point of the MBZ for each valley. This is
equivalent to the gauge transformation we did to reach Eq.3
in the previous section. Then we have two degenerate bands
from the two layers at the same valley. In together we have
four fold degeneracy for each moiré band coming from the
combination of layer and valley.

In the hole picture, we use the two lowest bands (the
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FIG. 10: (a) The first four energy bands when θ = 2◦ and
α=0 in AB stacking case. (b) Illustration of a honeycomb

lattice. The red dots and the blue dots represent sublattice
A and B respectively.

blue and yellow bands in Fig.10(a)) to build a lattice model.
It turns out that the Wannier orbitals[72] of the these two
bands are on the two sublattices of a honeycomb lattice (see
Appendix C. for details). This leads to a four-flavor Hubbard
model:

H =−
∑
〈ij〉
µ,τ

(tc†i,µ,τ cj,µ,τ + H.c.)−
∑
〈〈〈ij〉〉〉
µ,τ

(t′c†i,µ,τ cj,µ,τ + H.c.)

−
∑
a

 ∑
〈〈iaja〉〉
µ,τ

(tac
†
ia,µ,τ

cja,µ,τ + H.c.)


+

∆

2

(∑
iA

niA −
∑
iB

niB

)

+
∑
a

∑
ia,µ

Ua
2
nia,µ(nia,µ − 1) +

∑
a

∑
ia

U ′ania,tnia,b

+
∑
〈ij〉,µ

V ni,µnj,µ +
∑
〈ij〉

(V ′ni,tnj,b + H.c.) ,

(6)

where c†i,µ,s is the creation operator of localized Wannier or-

bitals (see Appendix C). Here µ = t, b labels the layer and
τ = K,K ′ labels the valley. 〈. . . 〉, 〈〈. . . 〉〉, 〈〈〈. . . 〉〉〉 rep-
resents nearest neighbor, next nearest neighbor, next next
nearest neighbor, respectively. ia(a = A,B) represents the
site on A,B sublattice, which is defined in Fig.10(b). The
interaction parameters Ua, U ′a, V , V ′ are calculated via pro-

jecting the Coulomb repulsion Ũ(r) = e2/εr onto the Wan-
nier orbitals, the details are in Appendix C.

The values of the parameters are listed in Table I for a
few twist angles. Because of the sublattice potential ∆ term,
holes occupy the B sublattice when n ≤ 1, leading to a single
orbital Hubbard model on the triangular lattice formed by B
only, which reduces to the model used in the previous section.
However, when n > 1, the additional holes prefer to enter A
if U ′B > V ′+∆. This happens when the dielectric constant ε
is smaller than a threshold. The boundary between the two
regions is plot in Fig. 11(a). In the following we focus on the
region II. There is already experimental evidence that the
region II is realized in the real experiment[50].

Now we have a Mott insulator on a honeycomb lattice at
the total filling n = 2. The resulting spin model in the large
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FIG. 11: (a) The phase diagram of the four-flavor Hubbard
model when n = 1 + x. The two regions: (I) The additional
holes still prefer to stay on sublattice B. (II) The additional
holes go to sublattice A. (b) Dependence of δJ

J and δV
J on

the twist angle θ. Here, we use ε = 10 as an example.

U/t limit is:

HS =
J

4

∑
〈ij〉

(4Pi ·Pj + P 0
i P

0
j )(4Si · Sj + S0

jS
0
j )

+ δJ
∑
〈ij〉

(P xi P
x
j + P yi P

y
j )(4Si · Sj + S0

i S
0
j )

+ 2(δJ + δV )
∑
〈ij〉

P zi P
z
j ,

(7)

where 〈ij〉 stands for nearest neighbor AB bond of the hon-

eycomb lattice. J = t2

UA−V+∆ + t2

UB−V−∆ , δJ = t2

U ′A−V ′+∆ +

t2

U ′B−V ′−∆ −
t2

UA−V+∆ −
t2

UB−V−∆ , δV = V − V ′. δJ
J and

δV
J are plotted as functions of the twist angle in Fig.11.

We only keep nearest-neighbor hopping because t2 is usu-
ally larger enough than t′2, t2A, t

2
B , which can be seen from

Table I. Strictly speaking there should still be an inter-layer
hopping term similar to the tz term in Eq.3. We will ignore
it because it is very small as discussed in Sec. III.

If we set δJ = δV = 0, the above model is a SU(4) Heisen-
berg model on honeycomb lattice. Previous works have sug-
gested that the ground state is a Dirac spin liquid with π
flux ansatz[56–58] with Nf = 2 × 4 = 8 Dirac fermions.
Here 4 is from the four flavors and each flavor hosts two
Dirac fermions. If δV/J is large enough, the ground state
must have Pz = 1

2 on one sublattice and Pz = − 1
2 on the

other sublattice. It is interesting to study the phase transi-
tion between the Dirac spin liquid and this layer pseudo-spin
density wave state through tuning δJ, δV . The monopole
operator[59] in the Dirac spin liquid may also play an im-
portant role in the potential phase transitions. We leave to
future work to carefully study the phase diagram and possi-
ble quantum criticalities in Eq. 7.

VI. CONCLUSION

In this paper, we derive a lattice model for the twisted AB
stacked TMD homo-bilayer through continuum model calcu-
lation and Wannier orbital construction. Without Rashba
SOC, we have an approximate SU(4) Hubbard model. We
consider the effect of the Rashba SOC and find that it gener-
ates a small inter-layer tunneling, meaning that the violation
of the SU(4) symmetry due to inter-layer tunneling is small.
At total filling n = 1, we derive an approximate SU(4) spin
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θ ∆ t t′ tA tB εUA εUB εU ′A εU ′B εV εV ′

2 19.15 5.26 0.788 -0.764 -0.587 479.22 825.44 405.27 640.10 276.13 259.27

3 14.25 12.58 2.926 -1.328 -1.945 694.20 1005.68 544.28 729.95 389.02 354.83

4 9.86 22.27 6.513 -2.205 -3.866 873.12 1174.04 639.25 798.28 489.45 431.29

5 6.18 34.36 11.38 -3.466 -6.216 1046.88 1342.77 717.40 856.04 583.76 496.37

TABLE I: Dependence of the kinetic and interaction parameters on different twist angle θ. The unit of θ is ◦ and that of
energy is meV. We assume that the distance between the top and the bottom layer is 0.7nm.

model which reduces to an XXZ model for the layer pseudo-
spin with an additional sublattice-dependent transverse Ising
field in a strong magnetic field. We study the phase diagram
and find a 1/3 plateau in the layer polarization curve when
increasing the displacement field D. When n = 2, the two
holes prefer to stay in the A, B sublattices of a honeycomb
lattice in a certain regime. This results in an approximate
SU(4) spin model on a honeycomb lattice, which may host a
Dirac spin liquid ground state. The lattice models derived in
this work offer a starting point to explore the various strongly

correlated physics in twisted AB-stacked TMD homo-bilayer.
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view Letters 127, 096802 (2021).

[29] H. Pan and S. D. Sarma, Interaction range and temperature
dependence of symmetry breaking in strongly correlated two-
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Appendix A: Construction of the tight-binding model

We want to build a two-layer tight-binding model of the
lowest moiré band which is four-fold degenerate and consists
of two valleys and two layers. As the two valleys are decou-
pled and are related by the time reversal symmetry, we only
focus on the valley K. We start from the bands of Eq.1 which
can be obtained from numerical diagonalization. We choose

the lowest two bands from the two layers at valley K:

HTB(k) = −
∑
a=1,2

∑
b=1,2

tabc
†
a(k)cb(k). (A1)

where a, b = 1, 2 are band indices. If there is no Rashba SOC,
these two bands are from the two layers and are decoupled.
With a finite Rashba SOC, the band indices are not layer in-
dices anymore. To build a two-layer model, we define a layer

polarization operator Pz(k) = 1
2 (c†t(k)ct(k)−c†b(k)cb(k)) and

project it into the lowest two bands. We transform to a new
basis where Pz(k) is diagonal at every momentum k. Then
in this new basis we reach a two-band Hamiltonian:

HTB(k) = −
∑
l=t,b

∑
l′=t,b

tll′c
†
l (k)cl′(k). (A2)

Note that tbb(k), ttt(k) are invariant under a change
of phase ct(k) → ct(k)eiθt(k), cb(k) → cb(k)eiθb(k), but
tbt(k), ttb(k) are not. We fix the relative phase θt(k)− θb(k)
by enforcing that Px(k) ≈ 1

2σx . Px(k) is obtained by pro-

jecting 1
2 (c†t(k)cb(k) + c†b(k)ct(k)) into the lowest two bands,

similar to Pz(k). Fig.12 shows that our gauge is smooth and
we only need to consider tz(0, 0).

FIG. 12: tz(r)
t at

D = 5mV,α = 0.1meV · Å, α− = 10meV · Å as a function of
lattice coordinates at twist angle θ = 4◦ . tz(0, 0) is clearly

dominant.

Consider the term −
∑

k tbt(k)c†b(k)ct(k). We plug in the
Wannier functions c(k) = 1√

N

∑
r

exp(ik · r)c(r) and get

− 1
N

∑
k

∑
r

∑
r′
tbt(k) exp[−ik · (r− r′)]c†b(r)ct(r

′). Let r− r′ =

ma1 + na2, tbt(m,n) = − 1
N

∑
k

tbt(k) exp[−ik · (r − r′)] =∑
k

tbt(k) exp[−ik ·(ma1 +na2)], where a1,a2 are two Bravais

lattice vectors of the triangular lattice. The top-to-bottom-
layer hopping term in the tight-binding model can now be

written as
∑
r

∑
m

∑
n
tbt(m,n)c†b(r+ma1 +na2)ct(r). We only

keep on-site and nearest-neighbour terms.

Appendix B: Spin-Wave Theory

We want to study the quantum phase diagram of Eq. 5
with respect to the effective magnetic field. It is well-known
that on a triangular lattice, the XXZ model has a three-
sublattice magnetic structure[68–70]. We assume that the

https://doi.org/10.1103/PhysRevB.105.205429
https://doi.org/10.1038/s42005-019-0127-7
https://doi.org/10.1016/j.physe.2021.114768
https://doi.org/10.1103/PhysRevLett.116.086601
https://doi.org/10.1038/s41467-020-20802-z
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.121.026402
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.91.081104
https://doi.org/10.1103/PhysRevLett.112.127203
https://doi.org/10.1103/PhysRevLett.112.127203
https://doi.org/10.1103/PhysRevB.100.140410
https://doi.org/10.1103/PhysRevB.100.140410
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.67.144427
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basic magnetic structure is similar here. We choose the order
parameter to be the average sublattice polarization which we
can use spin wave theory[73, 74] to compute.

The main idea of spin wave theory is viewing the expec-
tation of the pseudo-spin P as a classical vector and using
three bosonic fields a,b,c for the three sublattices of a trian-
gular lattice to do a Holstein-Primakoff (H-P) transforma-
tion such that P zu = p − u†u, P+

u =
√

2pu, P−u =
√

2pu†,
u = a, b, c, and p is the magnitude of P, where we have
set ~ = 1, taken the large-p limit and only kept the lead-
ing order term. This is called linear spin wave theory.
In this approximation, the magnons are free. In the H-P
transformation, we only keep terms of order p2 and p and
quadratic in the a,b,c fields. We then use the Fourier series
u(r) = 1√

N

∑
k u(q)eiq·r, u = a, b, c to find the Hamiltonian

in the momentum space. Note that q is in the Brillouin zone
of only one of the sublattices. In the end, we set p = 1

2 as
an approximation.

In each sublattice, the P vector is in a different direction.
Therefore, in Eq.5 it is convenient to transform the P vectors
to their local frames.

1. Rotation of frame

Let the three sublattices be a,b,c. Firstly, we can ro-
tate the x-y plane so that the direction of the magnetic
field’s projection in the x-y plane becomes the new x’-axis:

(P xi , P
y
i )T =

[
cosωi sinωi
− sinωi cosωi

]
(P x′i , P

y′
i )T , i = a, b, c, ωi =

π−2κ · ri. The problem is now only in the x’-z plane. Then,
we use spherical coordinates (θ, φ) to parameterize the p vec-
tors.

For convenience, we remove all the primes of the P vectors
in the local frame in Eq. B1 below. Please keep in mind that
all the axis labels below belong to the local frames. After the
rotations, Eq. 5 becomes

H =3(Hab +Hbc +Hac)−
∑

i=a,b,c

HxP
x
i cos θi

−Hz

∑
i

P zi cos θi,
(B1)

where

Hab =Jz[αabP
z
aP

z
b + λabP

x
a P

x
b + ζabP

y
aP

y
b

+ µabP
x
a P

y
b + νabP

x
b P

y
a )],

(B2)

, Hbc, Hac are defined similarly, Hx = 2. We have defined

∆ =
J

Jz
,

εab = cosωa cosωb + sinωa sinωb,

ηab = cosωa sinωb − sinωa cosωb,

αab = cos θa cos θb + ∆εab sin θa sin θb,

βab = sin θa sin θb + ∆εab cos θa cos θb,

λab =βab cosφa cosφb + ∆εab sinφa sinφb

+ ∆ηab(cos θb sinφa cosφb − cos θa cosφa sinφb),

ζab =∆εab cosφa cosφb + βab sinφa sinφb

+ ∆ηab(cos θa sinφa cosφb − cos θb cosφa sinφb),

µab =βab cosφa sinφb −∆εab sinφa cosφb

+ ∆ηab(cos θa cosφa cosφb + cos θb sinφa sinφb),

νab =βab sinφa cosφb −∆εab cosφa sinφb

−∆ηab(cos θa sinφa sinφb + cos θb cosφa cosφb)
(B3)

. We have discarded terms that do not contribute to the
leading-order ground state fluctuations such as P xP z. We

choose ra = (0, 0), rb = (aM , 0), rc = (aM2 ,
√

3aM
2 ) =⇒ ωa =

πωb = −π3 , ωc = π
3 . Note that equation B1 has an a,b,c

permutation symmetry, so our choice of a,b,c in this paper
is without loss of generality.

2. Hamiltonian

After the rotations above, H-P transformation, and
Fourier transform, we get

Hsw = Hcl + 3p
∑
k

d†(k)M(k,
Jxy
Jz

,H)d(k), (B4)

where Hcl is the classical Hamiltonian

Hcl =3p2Jz
∑
i,j

[∆εij(sin θi sin θj cosφi cosφj

+ sin θi sin θj sinφi sinφj) + cos θi cos θj

+ ∆ηij(sin θi sin θj cosφi sinφj − sinθi sin θj sinφi cosφj)]

− p
∑
i

Hx sin θi cosφi − pHz

∑
i

cos θi,

(B5)
θa, θb, θc, φa, φb, φc are spherical coordinates and minimize
Hcl(We use scipy.optimize to perform the optimization.),

d(k) = (ak, bk, ck, a
†
−k, b

†
−k, c

†
−k)T , and M =

[
A B

B A

]
,
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A =

 −3(αab + αac) + h(θa) f
2 [λab + ζab + (νab − µab)i] f∗

2 [λac + ζac + (νac − µac)i]
f∗

2 [λab + ζab − (νab − µab)i] −3(αab + αbc) + h(θb)
f
2 [λbc + ζbc + (νbc − µbc)i]

f
2 [λac + ζac − (νac − µac)i] f∗

2 [λbc + ζbc − (νbc − µbc)i] −3(αac + αbc) + h(θc)

,

B =

 0 f
2 [λab − ζab + (νab + µab)i]

f∗

2 [λac − ζac + (νac + µac)i]
f∗

2 [λab − ζab − (νab + µab)i] 0 f
2 [λbc − ζbc + (νbc + µbc)i]

f
2 [λac − ζac − (νac + µac)i]

f∗

2 [λbc − ζbc − (νbc + µbc)i] 0

 ,

f(k) = eik·δ1 + eik·δ2 + eik·δ3 , h(θ) = Hz
p cos θ + Hx

p sin θ, δ1 = (1, 0), δ2 = (− 1
2 ,
√

3
2 ), δ3 = (− 1

2 ,−
√

3
2 ).

FIG. 13: Layer polarization 2〈Pz〉 vs displacement field D
Jz

at different sublattice dependent transverse Ising field

Hp = 2tz near phase boundaries.
Jxy
Jz

= 0.1.

Note that λij + ζij and νij−µij can be simplified with the
angle sum and difference identities.

3. Sublattice polarization

Our goal is to compute the average sublattice polarization.
The sublattice polarization of a, for example, is given by
the ground state expectation of a†a, which can be obtained
from the Bogoliubov transformation that diagonalizes M. We
follow [75] to obtain the Bogoliubov transformation matrix
U such that d(k) = Uγ(k), where γ(k) is a diagonal basis
for M. Once we have U, the layer pseudo-spin reduction due
to quantum fluctuation for sublattice l is

∆pl =
1

N

∑
k

|Ui4|2 + |Ui5|2 + |Ui6|2 (B6)

, i = 1 if l = a, i = 2 if l = b, and i = 3 if l = c[74]. Finally,
the average sublattice layer polarization in the z-direction is

p(cos θa + cos θb + cos θc)

3
−
∑
l

∆pl cos θl
3

(B7)

4. Phase diagram

We explain how we plot Fig.9 here. First, we set Hp =
0.001Jz to study the model’s behavior near the Hp = 0 limit.

As Fig.13 shows, the transition between the Y-shape phase
and the 1

3 plateau happens near D = 0.3Jz and the transi-

tion between the 1
3 plateau and the umbrella phase happens

near D = 3Jz. The optimized θa, θb, θc <
π
2 , confirming the

umbrella phase. Then around D = 3.3Jz, the system is sat-
urated. Then we use Hp = 0.1Jz to extend the boundaries.
All the boundaries are determined similarly with curves sim-
ilar to the ones in Fig.9 and Fig.13. We find that the Y-shape
phase disappears between Hp = 1.3Jz and Hp = 1.35Jz.

The layer polarization clearly jumps at first-order phase
transitions but not at second-order ones.

Appendix C: Construction of the honeycomb lattice
model

In the main text, we constructed an effective lattice model
to describe the first 2 energy bands (each is four fold degen-
erate coming from the spin and the layer). The appropriate
Wannier orbitals for the construction are[47]:

c†n(x0) =
1√
N

∑
k,a

e−ik·x0c†a(k)Uan(k), (C1)

where Uan(k) is an m×m unitary matrix, c†a(k) is the cre-
ation operator of the ath band’s Bloch wave function.
Uan(k) can be determined by projecting the original Bloch

orbitals to well-localized wave functions[72]. We first cal-
culate Aan(k) = 〈ψa(k)|gn(k)〉. Here, ψa(k) and gn(k)
are the Bloch state and the trial state respectively. Then,
U = A(A†A)−1/2. As for the trial wave function, we choose
it to be:

gn(x) =
1

π1/2α
e−

(x−xn)2

2α2 , (C2)

where α = aM/6 and xn are determined by the center of the
original nth Bloch state.

If we consider the case with Rashba coupling α− = 0 and
include first two bands, i.e., m = 2, the centers of Wan-
nier orbitals form a honeycomb lattice as required by the
C3 symmetry. Their positions correspond to the center of
the original Bloch states, which can be obtained by cal-
culating the eigenvalue of the C3 operator. We observed
that the C3 eigenvalues of the first band are 1, e−i

2π
3 , ei

2π
3

at Γ, κ+, κ−. For the second band, they are 1, ei
2π
3 , e−i

2π
3

respectively. This constrains the Wannier orbitals of the two
bands to be in different positions within a moiré unit cell.
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We find that the kinetic and the interaction parameters in
Eq.6 can be calculated by projecting the energy band and the
Coulomb interaction onto the new basis. We take t and εUA
as an example, suppose that the wannier function localized

at x0 in sublattice n is φn(x− x0), then t and εUA are:

t =
1

N

∑
k,a

U†Aa(k)ξa(k)UaB(k)e
−i(k·ex)

aM√
3 ,

εUA =

∫
d3xd3x′φ∗A(x′)φ∗A(x)

e2

|x− x′|
φA(x)φA(x′),

(C3)

where ξa(k) is the dispersion relation of the ath band. In re-
ality we first express the interaction in the momentum space
with form factors and then do the Fourier transformation,
following the same procedure as in Ref. 47.
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