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Approximate Synchrony: An Abstraction for
Distributed Almost-Synchronous Systems

Ankush Desai1, Sanjit A. Seshia1, Shaz Qadeer2, David Broman1,3, John C. Eidson1

1 University of California at Berkeley, CA, USA
2 Microsoft Research, Redmond, USA

3 KTH Royal Institute of Technology, Sweden

Abstract. Forms of synchrony can greatly simplify modeling, design, and ver-
ification of distributed systems. Thus, recent advances in clock synchronization
protocols and their adoption hold promise for system design. However, these pro-
tocols synchronize the distributed clocks only within a certain tolerance, and there
are transient phases while synchronization is still being achieved. Abstractions
used for modeling and verification of such systems should accurately capture
these imperfections that cause the system to only be “almost synchronized.” In
this paper, we present approximate synchrony, a sound and tunable abstraction
for verification of almost-synchronous systems. We show how approximate syn-
chrony can be used for verification of both time synchronization protocols and
applications running on top of them. We provide an algorithmic approach for
constructing this abstraction for symmetric, almost-synchronous systems, a sub-
class of almost-synchronous systems. Moreover, we show how approximate syn-
chrony also provides a useful strategy to guide state-space exploration. We have
implemented approximate synchrony as a part of a model checker and used it to
verify models of the Best Master Clock (BMC) algorithm, the core component of
the IEEE 1588 precision time protocol, as well as the time-synchronized channel
hopping protocol that is part of the IEEE 802.15.4e standard.

1 Introduction

Forms of synchrony can greatly simplify modeling, design, and verification of dis-
tributed systems. Traditionally, a common sense of time is established using time-
synchronization (clock-synchronization) protocols or systems such as the global posi-
tioning system (GPS), network time protocol (NTP), and the IEEE 1588 [20] precision
time protocol (PTP). These protocols, however, synchronize the distributed clocks only
within a certain bound. In other words, at any time point, clocks of different nodes can
have differing values, but time synchronization ensures that those values are within a
specified offset of each other, i.e., they are almost synchronized.

Distributed protocols running on top of time-synchronized nodes are designed un-
der the assumption that while processes at different nodes make independent progress,
no process falls very far behind any other. Figure 1 provides examples of such real
world systems. For example, Google Spanner [8] is a distributed fault tolerant system
that provides consistency guarantees when run on top of nodes that are synchronized
using GPS and atomic clocks, wireless sensor networks [28,27] use time synchronized
channel hopping (TSCH) [1] as a standard for time synchronization of sensor nodes in
the network, and IEEE 1588 precision time protocol (PTP) [20] has been adopted in
industrial automation, scientific measurement [22], and telecommunication networks.



Correctness of these protocols depends on having some synchrony between different
processes or nodes.

Google Spanner 

Wireless Sensor 
Network 

Industrial Automation
Distributed 

Autonomous Robots

IEEE 1588 (PTP)

IEEE 802.15.4e (TSCH)GPS and Atomic Clocks

NTP

TSCH

Telecommunication

Application Layer

Time Synchronization Layer

Fig. 1. Almost-synchronous systems comprise
an application protocol running on top of a time-
synchronization layer.

When modeling and verifying sys-
tems that are almost-synchronous it
is important to compose them using
the right concurrency model. One re-
quires a model that lies somewhere be-
tween completely synchronous (lock-
step progress) and completely asyn-
chronous (unbounded delay). Various
such concurrency models have been
proposed in the literature, including
quasi-synchrony [7,18] and bounded-
asynchrony [16]. However, we discuss in
Sec. 7, these models permit behaviors
that are typically disallowed in almost-
synchronous systems. Alternatively, one can use formalisms for hybrid or timed sys-
tems that explicitly model clocks (e.g., [3,2]), but the associated methods (e.g., [21,17])
tend to be less efficient for systems with a huge discrete state space, which is typical for
distributed software systems.

In this paper, we introduce symmetric, almost-synchronous (SAS) systems, a class
of distributed systems in which processes have symmetric timing behavior. In our ex-
perience, protocols at both the application layer and the time-synchronization layer can
be modeled as SAS systems. Additionally, we introduce the notion of approximate syn-
chrony (AS) as a concurrency model for almost-synchronous systems, which also en-
ables one to compute a sound discrete abstraction of a SAS system. Intuitively, a system
is approximately-synchronous if the number of steps taken by any two processes do not
differ by more than a specified bound, denoted ∆. The presence of the parameter ∆
makes approximate synchrony a tunable abstraction method. We demonstrate three
different uses of the approximate synchrony abstraction:
1. Verifying time-synchronized systems: Suppose that the system to be verified runs

on top of a layer that guarantees time synchronization throughout its execution. In
this case, we show that there is a sound value of ∆ which can be computed using a
closed form equation as described in Sec. 3.2.

2. Verifying systems with recurrent logical behavior: Suppose the system to be ver-
ified does not rely on time synchronization, but its traces contain recurrent logical
conditions — a set of global states that are visited repeatedly during the protocol’s
operation. We show that an iterative approach based on model checking can identify
such recurrent behavior and extract a value of∆ that can be used to compute a sound
discrete abstraction for model checking (see Sec. 4). Protocols verifiable with this
approach include some at the time-synchronization layer, such as IEEE 1588 [20].

3. Prioritizing state-space exploration: The approximate synchrony abstraction can
also be used as a search prioritization technique for model checking. We show in
Sec. 6 that in most cases it is more efficient to search behaviors for smaller value of
∆ (“more synchronous” behaviors) first for finding bugs.
We present two practical case studies: (i) a time-synchronized channel hopping

(TSCH) protocol that is part of the IEEE802.15.4e [1] standard, and (ii) the best mas-
ter clock (BMC) algorithm of the IEEE 1588 precision time protocol. The former is
system where the nodes are time-synchronized, while the latter is the case of a system



with recurrent logical behavior. Our results show that approximate synchrony can re-
duce the state space to be explored by orders of magnitude while modeling relevant
timing semantics of these protocols, allowing one to verify properties that cannot be
verified otherwise. Moreover, we were able to find a so-called “rogue frame” scenario
that the IEEE 1588 standards committee had long debated without resolution (see our
companion paper written for the IEEE 1588 community [6] for details).

Our abstraction technique can be used with any finite-state model checker. In this
paper we implement it on top of the ZING model checker [4], due to its ability to control
the model checker’s search using an external scheduler that enforces the approximate
synchrony condition.

To summarize, this paper makes the following contributions:
– The formalism of symmetric, almost synchronous (SAS) systems and its use in mod-

eling an important class of distributed systems (Sec. 2);
– A tunable abstraction technique, termed approximate synchrony (Sec. 2 and 3);
– Automatic procedures to derive values of ∆ for sound verification (Sec. 3 and 4);
– An implementation of approximate synchrony in an explicit-state model checker

(Sec. 5), and
– The use of approximate synchrony for verification and systematic testing of two real-

world protocols, the BMC algorithm (a key component of the IEEE 1588 standard),
and the time synchronized channel hopping protocol (Sec. 6).

2 Formal Model and Approach

In this section, we define clock synchronization precisely and formalize the notion of
symmetric almost-synchronous (SAS) systems, the class of distributed systems we are
concerned with in this paper.

2.1 Clocks and Synchronization

Each node in the distributed system has an associated (local) physical clock χ, which
takes a non-negative real value. For purposes of modeling and analysis, we will also
assume the presence of an ideal (global) reference clock, denoted t. The notation χ(t)
denotes the value of χ when the reference clock has value t. Given this notation, we
describe the following two basic concepts:
1. Clock Skew: The skew between two clocks χi and χj at time t (according to the

reference clock) is the difference in their values |χi(t)− χj(t)|.
2. Clock Drift: The drift in the rate of a clock χ is the difference per unit time of the

value of χ from the ideal reference clock t.
Time synchronization ensures that the skew between any two physical clocks in the
network is bounded. The formal definition is as below.

Definition 1. A distributed system is time-synchronized (or clock-synchronized) if there
exists a parameter β such that for every pair of nodes i and j and for any t,

|χi(t)− χj(t)| ≤ β (1)

For ease of exposition, we will not explicitly model the details of dynamics of physical
clocks or the updates to them. We will instead abstract the clock dynamics as compris-
ing arbitrary updates to χi variables subject to additional constraints on them such as
Eqn. 1 (wherever such assumptions are imposed).



Example 1. The IEEE 1588 precision time protocol [20] can be implemented so as to
bound the physical clock skew to the order of sub-nanoseconds [22], and the typical
clock drift to at most 10−4 [20].

2.2 Symmetric, Almost-Synchronous Systems
We model the distributed system as a collection of processes, where processes are used
to model both the behavior of nodes as well as of communication channels. There can
be one or more processes executing at a node.

Formally, the system is modeled as the tupleMC = (S, δ, I, ID,χ, τ ) where
- S is the set of discrete states of the system,
- δ ⊆ S × S is the transition relation for the system,
- I ⊆ S is the set of initial states,
- ID = {1, 2, . . . ,K} is the set of process identifiers,
- χ = (χ1, χ2, . . . , χK) is a vector of local clocks, and
- τ = (τ1, τ2, . . . , τK) is a vector of process timetables. The timetable of the ith pro-

cess, τi, is an infinite vector (τ1i , τ
2
i , τ

3
i , . . .) specifying the time instants according

to local clock χi when process i executes (steps). In other words, process i makes its
jth step when χi = τ ji .

For convenience, we will denote the ith process byPi. Since in practice the dynamics of
physical clocks can be fairly intricate, we choose not to model these details — instead,
we assume that the value of a physical clock χi can vary arbitarily subject to additional
constraints (e.g., Eqn. 1).

The kth nominal step size of processPi is the intended interval between the (k−1)th
and kth steps of Pi, viz., τki − τ

k−1
i . The actual step size of the process is the actual

time elapsed between the (k − 1)th and kth step, according to the ideal reference clock
t. In general, the latter differs from the former due to clock drift, scheduling jitter, etc.

Motivated by our case studies with the IEEE 1588 and 802.15.4e standards, we
impose two restrictions on the class of systems considered in this paper:
1. Common Timetable: For any two processes Pi and Pj , τi = τj . Note that this does

not mean that the process step synchronously, since their local clocks may report
different values at the same time t. However, if the system is time synchronized,
then the processes step “almost synchronously.”

2. Bounded Process Step Size: For any process Pi, its actual step size lies in an interval
[σl, σu]. This interval is the same for all processes. This restriction arises in practice
from the bounded drift of physical clocks.

A set of processes obeying the above restrictions is termed a symmetric, almost-synchronous
(SAS) system. The adjective “symmetric” refers only to the timing behavior — note
that the logical behavior of different processes can be very different. Note also that
SAS systems may or may not be running on top of a time synchronization layer, i.e.,
SAS systems and time-synchronized systems are orthogonal concepts.

Example 2. The IEEE 1588 protocol can be modeled as a SAS system. All processes in-
tend to step at regular intervals called the announce time interval. The specification [20]
states the nominal step size for all processess as 1 second; thus the timetable is the se-
quence (0, 1, 2, 3, . . .). However, due to the drift of clocks and other non-idealities such
as jitter due to OS scheduling, the step size in typical IEEE 1588 implementations can
vary by ±10−3. From this, the actual step size of processes can be derived to lie in the
interval [0.999, 1.001].



Traces and Segments. A timed trace (or simply trace) of the SAS system MC is a
timestamped record of the execution of the system according to the global (ideal) time
reference t. Formally, a timed trace is a sequence h0, h1, h2, . . . where each element
hj is a triple (sj ,χj , tj) where sj ∈ S is a discrete (global) state at time t = tj and
χj = (χ1,j , χ2,j , . . . , χK,j) is the vector of clock values at time tj . For all j, at least one
process makes a step at time tj , so there exists at least one i and a corresponding mi ∈
{0, 1, 2, . . .} such that χi,j(tj) = τmi

i . Moreover, processes step according to their
timetables; thus, if any Pi makes its mith and lith steps at times tj and tk respectively,
for mi < li, then χi,j(tj) = τmi

i < τ lii = χi,k(tk). Also, by the bounded process
step size restriction, if any Pi makes its mith and mi + 1th steps at times tj and tk
respectively (for all mi), |tk − tj | ∈ [σl, σu]. Finally, s0 ∈ I and δ(sj , sj+1) holds for
all j ≥ 0 with the transition into sj occuring at time t = tj .
A trace segment is a (contiguous) subsequence hj , hj+1, . . . , hl of a trace ofMC .

2.3 Verification Problem and Approach

The central problem considered in this paper is as follows:

Problem 1. Given an SAS systemMC modeled as above, and a linear temporal logic
(LTL) property Φwith propositions over the discrete states ofMC , verify whetherMC

satisfies Φ.

One way to modelMC would be as a hybrid system (due to the continuous dynam-
ics of physical clocks), but this approach does not scale well due to the extremely large
discrete state space. Instead, we provide a sound discrete abstractionMA ofMC that
preserves the relevant timing semantics of the ‘almost-synchronous’ systems. (Sound-
ness is formalized in Sec. 3).
There are two phases in our approach:
1. Compute Abstraction Parameter: Using parameters of MC (relating to clock dy-

namics), we compute a parameter ∆ characterizing the “approximate synchrony”
condition, and use ∆ to generate a sound abstract modelMA.

2. Model Checking: We verify the temporal logic property Φ on the abstract model
using finite-state model checking.

The key to this strategy is the first step, which is the focus of the following sections.

3 Approximate Synchrony

We now formalize the concept of approximate synchrony (AS) and explain how it can
be used to generate a discrete abstraction of almost-synchronous distributed systems.
Approximate synchrony applies to both (segments of) traces and to systems.

Definition 2. (Approximate Synchrony for Traces) A trace (segment) of a SAS system
MC is said to satisfy approximate synchrony (is approximately-synchronous) with pa-
rameter ∆ if, for any two processes Pi and Pj inMC , the number of steps Ni and Nj
taken by the two processes in that trace (segment) satisfies the following condition:

|Ni −Nj | ≤ ∆

Although this definition is in terms of traces of SAS systems, we believe the notion of
approximate synchrony is more generally applicable to other distributed systems also.
An early version of this definition appeared in [10].
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olated for ∆ = 2

The definition extends to a SAS system in the standard way:

Definition 3. (Approximate Synchrony for Systems) A SAS sys-
tem MC satisfies approximate synchrony (is approximately-
synchronous) with parameter ∆ if all traces of that system satisfy
approximate synchrony with parameter ∆.

We refer to the condition in Definition 3 above as the approxi-
mate synchrony (AS) condition with parameter ∆, denoted AS(∆).
For example, in Fig. 2, executing step 5 of process P1 before step
3 of process P2 violates the approximate synchrony condition for
∆ = 2. Note that ∆ quantifies the “approximation” in approxi-
mate synchrony. For example, for a (perfectly) synchronous system
∆ = 0, since processes step at the same time instants. For a fully
asynchronous system, ∆ =∞, since one process can get arbitrarily
ahead of another.

3.1 Discrete Approximate Synchrony Abstraction

We now present a discrete abstraction of a SAS system. The key modification is to (i)
remove the physical clocks and timetables, and (ii) include instead an explicit sched-
uler that constrains execution of processes so as to satisfy the approximate synchrony
condition AS(∆).

Formally, given a SAS systemMC = (S, δ, I, ID,χ, τ ), we construct an∆-abstract
model MA as the tuple (S, δa, I, ID, ρ∆) where ρ∆ is a scheduler process that per-
forms an asynchronous composition of the processes P1,P2, . . . ,PK while enforcing
AS(∆). Conceptually, the scheduler ρ∆ maintains state counts Ni of the numbers of
steps taken by each process P̂i from the initial state.4 A configuration ofMA is a pair
(s,N) where s ∈ S and N ∈ ZK is the vector of step counts of the processes. The
abstract model MA changes its configuration according to its transition function δa
where δa((s,N), (s′, N ′)) iff (i) δ(s, s′) and (ii)N ′i = Ni+1 if ρ∆ permits Pi to make
a step and N ′i = Ni otherwise.

In an initial state, all processes Pi are enabled to make a step. At each step of δa,
ρ∆ enforces the approximate synchrony condition by only enabling Pi to step iff that
step does not violate AS(∆). Behaviors ofMA are untimed traces, i.e., sequences of
discrete (global) states s0, s1, s2, . . . where sj ∈ S , s0 is an initial (global) state, and
each transition from sj to sj+1 is consistent with δa defined above.

Note that approximate synchrony is a tunable timing abstraction. Larger the value
of ∆, more conservative the abstraction. The key question is: for a given system, what
value of ∆ constitutes a sound timing abstraction, and how do we automatically com-
pute it? Recall that one model is a sound abstraction of another if and only if every
execution trace of the latter (concrete model MC) is also an execution trace of the
former (abstract modelMA). In our setting, the ∆-abstract and concrete models both
capture the protocol logic in an identical manner, and differ only in their timing se-
mantics. The concrete model explicitly models the physical clocks of each process as
real-valued variables as described in Sec. 2. The executions of this model can be rep-
resented as timed traces (sequences of timestamped states). On the other hand, in the

4 The inclusion of step counts may seem to make the model infinite-state. We will show in Sec. 5
how the model checker can be implemented without explicitly including the step counts in the
state space.



∆-abstract model, processes are interleaved asynchronously while respecting the ap-
proximate synchrony condition stated in Definition 3. An execution of the ∆-abstract
model is an untimed trace (sequences of states). We equate timed and untimed traces
using the “untiming” transformation proposed by Alur and Dill [3] — i.e., the traces
must be identical with respect to the discrete states.

3.2 Computing ∆ for Time-Synchronized Systems

We now address the question of computing a value of ∆ such that the resultingMA is
a sound abstraction of the original SAS systemMC . We consider here the case when
MC is a system running on a layer that guarantees time synchronization (Eqn. 1) from
the initial state. A second case, when nodes are not time-synchronized and approximate
synchrony only holds for segments of the traces of a system, is handled in Sec. 4.

Consider a SAS system in which the physical clocks are always synchronized to
within β, i.e., Equation 1 holds for all time t and β is a tight bound computed based
on the system configuration. Intuitively, if β > 0, then ∆ ≥ 1 since two processes
are not guaranteed to step at the same time instants, and so the number of steps of two
processes can be off by at least one. The main result of this section is that SAS systems
that are time-synchronized are also approximately-synchronous, and the value of ∆ is
given by the following theorem.

Theorem 1. Any SAS systemMC satisfying Equation 1 is approximately-synchronous
with parameter ∆ =

⌈
β
σl

⌉
. (Proof in [12])

Suppose the abstract modelMA is constructed as described in Sec. 3.1 with∆ as given
in Theorem 1 and σl is the lower bound of the step size defined in Sec. 2.2. Then as a
corollary, we can conclude thatMA is a sound abstraction ofMC : every trace ofMC

satisfies AS(∆) and hence is a trace ofMA after untiming.

Example 3. The Time-Synchronized Channel Hopping (TSCH) [1] protocol is being
adopted as a part of the low power Medium Access Control standard IEEE802.15.4e. It
can be modeled as a SAS system since it has a time-slotted architecture where processes
share the same timetable for making steps. The TSCH protocol has two components:
one that operates at the application layer, and one that provides time synchronization,
with the former relying upon the latter. We verify the application layer of TSCH that
assumes that nodes in the system are always time-synchronized within a bound called
the “guard time” which corresponds to β. Moreover, in practice, β is much smaller than
σl and thus ∆ is typically 1 for implementations of the TSCH.

4 Systems with Recurrent Logical Conditions

We now consider the case of a SAS system that does not execute on top of a layer that
guarantees time synchronization (i.e., Eqn. 1 may not hold). We identify behavior of
certain SAS systems, called recurrent logical conditions, that can be exploited for ab-
straction and verification. Specifically, even though AS(∆) may not hold for the system
for any finite ∆, it may still hold for segments of every trace of the system.

Definition 4. (Recurrent Logical Condition) For a SAS systemMC , a recurrent logical
condition is a predicate logicConv on the state ofMC such thatMC satisfies the LTL
property G F logicConv.



Our verification approach is based on finding a finite ∆ such that, for every trace of
MC , segments of the trace between states satisfying logicConv satisfy AS(∆). This
property of system traces can then be exploited for efficient model checking.

We begin with an example of a recurrent logical condition case in the context of
the IEEE 1588 protocol (Sec. 4.1). We then present our verification approach based on
inferring ∆ for trace segments via iterative use of model checking (Sec. 4.2).

4.1 Example: IEEE 1588 protocol

The IEEE 1588 standard [20], also known as the precision time protocol (PTP), enables
precise synchronization of clocks over a network. The protocol consists of two parts: the
best master clock (BMC) algorithm and a time synchronization phase. The BMC algo-
rithm is a distributed algorithm whose purpose is two-fold: (i) to elect a unique grand-
master clock that is the best clock in the network, and (ii) to find a unique spanning tree
in the network with the grandmaster clock at the root of the tree. The combination of a
grandmaster clock and a spanning tree constitutes the global stable configuration known
as logical convergence that corresponds to the recurrent logical condition. The second
phase, the time synchronization phase, uses this stable configuration to synchronize or
correct the physical clocks (more details in [20]).

Failure, causing re-
configuration

BMCA running

Logical Convergence

Physical 
Synchronization

Recurrent logical condition

Maximum Difference in 
Number of Steps of Processes = 

Fig. 3. Phases of the IEEE 1588 time-synchronization protocol

Figure 3 gives an overview of the phases of the IEEE 1588 protocol execution.
The distributed system starts executing the first phase (e.g., the BMC algorithm) from
an initial configuration. Initially, the clocks are not guaranteed to be synchronized to
within a bound β. However, once logical convergence occurs, the clocks are synchro-
nized shortly thereafter. Once the clocks have been synchronized, it is possible for a
failure at a node or link to break clock synchronization. The BMC algorithm operates
continually, with the goal of ensuring that, if time synchronization is broken, the clocks
will be re-synchronized. Thus, a typical 1588 protocol execution is structured as a (po-
tentially infinite) repetition of the two phases: logical convergence, followed by clock
synchronization. We exploit this recurrent structure to show in Sec. 4.2 that we can
compute a value of ∆ obeyed by segments of any trace of the system. The approach
operates by iterative model checking of a specially-crafted temporal logic formula.

Note that the time taken by the protocol to logically converge depends on various
factors including network topology and clock drift. In Sec. 6, we demonstrate empiri-
cally that the value of ∆ depends on the number of steps (length of the segment) taken
by BMCA to converge which in turn depends on factors mentioned above.



4.2 Iterative Algorithm to Compute ∆-Abstraction for Verification

Given a SAS systemMC whose traces have a recurrent structure, and an LTL property
Φ, we present the following approach to verify whetherMC satisfies Φ:
1. Define recurrent condition: Guess a recurrent logical condition, logicConv, on the

global state ofMC .
2. Compute Nmin: Guess an initial value of ∆, and compute, from parameters σl, σu

of the processes inMC , a number Nmin such that the AS(∆) condition is satisfied
on all trace segments where no process makes Nmin or more steps. We describe the
computation of Nmin in more detail below.

3. Verify if ∆ is sound: Verify using model checking onMA that, every trace segment
that starts in an initial state or a state satisfying logicConv and ends in another state
in logicConv satisfies AS(∆). This is done by checking that no process makesNmin

or more steps in any such segment. Note that verifyingMA in place ofMC is sound
as AS(∆) is obeyed for up to Nmin steps from any state. Further details, including
the LTL property checked, are provided below.

4. VerifyMC using ∆: If the verification in the preceding step succeeds, then a model
checker can verify Φ on a discrete abstraction M̂A ofMC , which, similar toMA, is
obtained by dropping physical clocks and timetables, and enforcing the AS(∆) con-
dition to segments between visits to logicConv. Formally, M̂A = (S, δ̂a, I, ID, ρ∆)

where δ̂a differs from δa only in that for a configuration (s,N), N ′i = 0 for all i if
s′ ∈ logicConv (otherwise it is identical to δa).
However, if the verification in Step 3 fails, we go back to Step 2 and increment ∆
and repeat the process to compute a sound value of ∆.

Pick a value of 

Compute 

Verify Eventual Logical Convergence (Property eq. 2)

Verify that achieves 
logical convergence in less 
than steps (under 

Found sound Verify 
using 

Increment 

Failed Success

Repeat the process to 
compute sound value of 

Consider a recurrent condition for the system.

Fig. 4. Iterative algorithm for computing ∆ exploiting logical convergence

Figure 4 depicts this iterative approach for the specific case of the BMC algorithm. We
now elaborate on Steps 2 and 3 of the approach.
Step 2: Computing Nmin for a given ∆. Recall from Sec. 2.2 that the actual step size
of a process lies in the interval [σl, σu]. LetPf be the fastest process (the one that makes
the most steps from the initial state) and Ps be the slowest (the fewest steps). Denote
the corresponding number of steps by Nf and Ns respectively. Then the approximate
synchrony condition in Definition 3 is always satisfied ifNf−Ns ≤ ∆. We wish to find
the smallest number of steps taken by the fastest process when AS(∆) is violated. We
denote this value as Nmin, and obtain it by formulating and solving a linear program.



Suppose first that Ps and Pf begin stepping at the same time t. Then, since the time
between steps of Pf is at least σl and that between steps of Ps is at most σu, the total
elapsed must be at least σlNf and at most σuNs, yielding the inequality σlNf ≤ σuNs.

However, processes need not begin making steps simultaneously. Since each process
must make its first step at least σu seconds into its execution, the maximum initial offset
between processes is σu. The smallest value of Nf occurs when the fast process starts
σu time units after the slowest one, yielding the inequality:

σlNf + σu ≤ σuNs

We can now set up the following integer linear program (ILP) to solve for Nmin:

min Nf s.t.

Nf ≥ Ns, Nf −Ns > ∆, σlNf + σu ≤ σuNs, Nf , Ns ≥ 1

Nmin is the optimal value of this ILP. In effect, it gives the fewest steps any process
can take (smallest Nf ) to violate the approximate synchrony condition AS(∆).

Example 4. For the IEEE 1588 protocol, as described in Sec. 2.2, the actual process step
sizes lie in [0.999, 1.001]. Setting ∆ = 1, solving the above ILP yields Nmin = 1502.

Step 3: Temporal Logic Property. Once Nmin is computed, we verify on the discrete
abstractionMA whether, from any state satisfying I ∨ logicConv, the model reaches
a state satisfying logicConv in less than Nmin steps. This also verifies that all traces in
the BMC algorithm satisfy the recurrent logicConv property and the segments between
logicConv satisfy AS(∆). We perform this by invoking a model checker to verify the
following LTL property, which references the variables Ni recording the number of
steps of process Pi:

(I ∨ logicConv) =⇒ F
[
logicConv ∧

(∧
i

(0 < Ni < Nmin)
)]

(2)

We show in Sec. 5 how to implement the above check without explicitly including the
Ni variables in the system state. Note that it suffices to verify the above property on
the discrete abstraction MA constrained by the scheduler ρ∆ because we explore no
more than Nmin steps of any process and so MA is a sound abstraction. The overall
soundness result is formalized below.

Theorem 2. If the abstract modelMA satisfies Property 2, then all traces of the con-
crete modelMC are traces of the model M̂A (after untiming) (Proof in [12])

In Sec. 6, we report on our experiments verifying properties of the BMC algorithm by
model checking the discrete abstract model M̂A as described above.

5 Model Checking with Approximate Synchrony

We implemented approximate synchrony within ZING [4], an explicit state model checker.
ZING performs a “constrained” asynchronous composition of processes, using an ex-
ternal scheduler to guide the interleaving. Approximate synchrony is enforced by an
external scheduler that explores only those traces satisfying AS(∆) by scheduling, in
each state, only those processes whose steps will not violate AS(∆).

Section 4 described an iterative approach to verify whether a ∆-abstract model of
a protocol is sound. The soundness proof depends on verifying Property 2. A naı̈ve



approach for checking this property would be to include a local variable Ni in each
process as part of the process state to keep track of the number of steps executed by
each process, causing state space explosion. Instead, we store the values of Ni for each
i external to the system state, as a part of the model checker explorer.

var StateTable : Dictionary〈State, List〈int〉〉;
BoundedDFS(s : State) {

var i : int, s′ : State, steps′ : List〈int〉;
i := 0;
while (i <#Processes(s)){

steps′ :=IncElement(i, StateTable[s]);
if ¬ CheckASCond(steps′)
∨ steps′[i] > (Nmin +∆)
∨ s |= logicConv then
continue ;

s′ :=NextState(s, i);
if steps′[i] = Nmin then

assert(s′ |= logicConv);
if s′ /∈ Domain(StateTable)
∨¬(steps′ ≥pt StateTable[s

′]) then
StateTable[s′] := steps′;
BoundedDFS(s′);

i := i+ 1; } }

Verify() {
StateTable[sinitial ] = newList〈int〉;
BoundedDFS(sinitial );}

Fig. 5. Algorithm for Verification of Property 2

The algorithm in Fig. 5 performs
systematic bounded depth first search
for a state sinitial, belonging to the set
of all possible initial states. To check
whether all traces of length Nmin sat-
isfy eventual logical convergence un-
der AS(∆) constraint, we enforce two
bounds: first, the final depth bound is
(Nmin + ∆) and second, in each state
a process is enabled only if executing
that process does not violate AS(∆). If
a state satisfies logicConv then we ter-
minate the search along that path.

The BoundedDFS function is called
recursively on each successor state and
it explore only those traces that satisfy
AS(∆). If the steps executed by a pro-
cess is Nmin then the logicConv mon-
itor is invoked to assert if s′ |= logicConv (i.e. we have reached logical convergence
state) and if the assertion fails we increment the value of ∆ as described in Sec. 4.2.
Nmin and ∆ values are derived as explained in Sec. 4.2.

StateTable is a map from reachable state to the tuple of steps with which it was
last explored. steps′ is the vector of number of steps executed by each process and
is stored as a list of integers. #Processes(s) returns the number of enabled processes
in the state s. IncElement(i, t) increments the ith element of tuple t and returns the
updated tuple. CheckASCond(steps′) checks the following condition that ∀s1, s2 ∈
steps′ |s1 − s2| ≤ ∆.

To avoid re-exploring a state which may not lead to new states, we do not re-explore
a state if it is revisited with steps′ greater than what it was last visited with. The operator
≥pt does a pointwise comparison of the integer tuples. We show in the following section
that we are able to obtain significant state space reduction using this implementation.

6 Evaluation
In this section, we present our empirical evaluation of the approximate synchrony ab-
straction, guided by the following goals:
• Verify two real-world standards protocols: (1) the best master clock algorithm in

IEEE 1588 and (2) the time synchronized channel hopping protocol in IEEE 802.15.4e.
• Evaluate if we can verify properties that cannot be verified with full asynchrony

(either by reducing state space or by capturing relevant timing constraints).
• Evaluate approximate synchrony as an iterative bounding technique for finding bugs

efficiently in almost-synchronous systems.

6.1 Modeling and Experimental Setup
We model the system in P [11], a domain-specific language for writing event-driven
protocols. A protocol model in P is a collection of state machines interacting with each



other via asynchronous events or messages. The P compiler generates a model for sys-
tematic exploration by ZING [4]. P also provides ways of writing LTL properties as
monitors that are synchronously composed with the model. Both the case studies, the
BMC algorithm and the TSCH protocol, are modeled using P. Each node in the protocol
is modeled as a separate P state machine. Faults and message losses in the protocol are
modeled as non-deterministic choices.

Protocol Temporal Property Description

BMCA F G (logicConv)
Eventually the BMC algorithm stabilizes with a unique spanning tree having
the grandmaster at its root. The system is said to be in logicConv state when
the system has converged to the expected spanning tree.

TSCH
∧

i∈n G(¬desynchedi)
A node in TSCH is said to be desynched - if it fails to synchronize with its
master within the threshold period. The desired property of a correct system is
that the nodes are always synchronized.

Table 1. Temporal properties verified for the case studies

All experiments were performed on a 64-bit Windows server with Intel Xeon ES-
2440, 2.40GHz (12 cores/24 threads) and 160 GB of memory. ZING can exploit paral-
lelism as its iterative depth-first search algorithm is completely parallelized. All timing
results reported in this section are when ZING is run with 24 threads. We use the number
of states explored and the time taken to explore them as the comparison metric.

6.2 Verification and Testing using Approximate Synchrony

We applied approximate synchrony in three different contexts : (1) Time synchronized
Channel Hopping protocol (time synchronized system) (2) Best Master Clock Algorithm
in IEEE 1588 (exploiting recurrent logical condition) (3) Approximate Synchrony as a
bounding technique for finding bugs.
Verification of the TSCH Protocol. Time Synchronized Channel Hopping (TSCH) is
a Medium Access Control scheme that enables low power operations in wireless sen-
sor network using time-synchronization. It makes an assumptions that the clocks are
always time-synchronized within a bound, referred to as the ‘guard’ time in the stan-
dard. The low power operation of the system depends on the sensor nodes being able
to maintain synchronization (desynchronization property in Table 1). A central server
broadcasts the global schedule that instructs each sensor node when to perform op-
erations. Whether the system satisfies the desynchronization property depends on this
global schedule, and the standard provides no recommendation on these schedules.

We modeled the TSCH as a SAS system and used Theorem 1 to calculate the value
of ∆ 5. We verified the desynchronization property (Table 1) in the presence of failures
like message loss, interference in wireless network, etc. For the experiments we con-
sidered three schedules (1) round-robin: nodes are scheduled in a round robin fashion,
(2) shared with random back-off: all the schedule slots are shared and conflict is re-
solved using random back-off (3) Priority Scheduler: nodes are assigned fixed priority
and conflict is resolved based on the priority.

We were able to verify if the property was satisfied for a given topology under
the global schedule, and generated a counterexample otherwise (Table 2) which helped
the TSCH system developers in choosing the right schedules for low power operation.
Using sound approximate synchrony abstraction (with ∆ = 1), we could accurately
capture the “almost synchronous” behavior of the the TSCH system.

5 For system of nodes under consideration, the maximum clock skew, ε = 120µs and nominal
step size of 100ms, the value of ∆ = 1



Verification of BMC Algorithm

Network Safety Property Convergence Property

Topology Fully Asynchronous Model with Approximate Model with Approximate

(#Nodes) Model Synchrony Synchrony
States Time Property ∆ States Time Property ∆ States Time Property

Explored (h:mm) Proved Explored (h:mm) Proved Explored (hh:mm) Proved
Linear(5) 1.2 E+9 7:12 Yes 1 9.5 E+5 0:35 Yes 1 5.3 E+8 6:33 Yes
Star(5) 2.4 E+10 9:40 Yes 1 5.8 E+5 0:54 Yes 1 4.1 E+7 5:10 Yes

Random(5) 9.19 E+9 9:01 Yes 2 5.5 E+6 1:44 Yes 2 1.8 E+9 9:10 Yes
Ring(5) 7.1 E+12* * No 1 4.8 E+7 3:44 Yes 1 8 E+9 8:04 Yes

Linear(7) 1.4 E+13* * No 1 4.6 E+7 3:05 Yes 1 1.0 E+8 6:21 Yes
Star(7) 1.1 E+13* * No 2 3.7 E+8 5:06 Yes 2 3.3 E+10 13:34 Yes
Ring(7) 3.3 E+12* * No 2 6.8 E+8 8:04 Yes 2 2.1 E+10 11:11 Yes

Random(6) 1.1 E+13* * No 3 5.7 E+9 6:00 Yes 3 1.3 E+10 10:34 Yes
Random(7) 1.1 E+13* * No 3 8.1 E+8 7:11 Yes 3 9.9 E+10 10:11 Yes

Verification of TSCH Protocol
Network Round-Robin Scheduler Shared with CSMA Priority Scheduler
Topology States Time Property States Time Property States Time Property
(#Nodes) Explored (h:mm) Satisfied Explored (h:mm) Satisfied Explored (h:mm) Satisfied
Linear(5) 4.4 E+4 0:20 Yes 1.2 E+2# 0:03 No 2.4E +3# 0:09 No

Random(5) 3.6 E+2# 0:05 No 6.2 E+3# 0:12 No 1.9E +6 0:35 Yes
Mesh(5) 1.7 E+7 4:05 Yes 9.1 E+6 2:01 Yes 9.3 E+5 0:31 Yes

* denotes end of exploration as model checker ran out of memory, # denotes property violated and counter example is reported

Table 2. Verification results using Approximate Synchrony.

Verification of BMC Algorithm. The BMC algorithm is a core component of the IEEE
1588 precision time protocol. It is a distributed fault tolerant protocol where nodes in
the system perform operations periodically to converge on a unique hierarchical tree
structure, referred to as the logical convergence state in Sec. 4. Note that the conver-
gence property for BMCA holds only in the presence of almost synchrony — it does not
guarantee convergence in the presence of unbounded process delay or message delay.
Hence, it is essential to verify BMC using the right form of synchrony.

We generated various verification instances by changing the configuration param-
eters such as number of nodes, clock characteristics, and the network topology. The
results in Table 2 for the BMC algorithm are for 5 and 7 nodes in the network with lin-
ear, star, ring, and random topologies. The∆ value used for verification of each of these
configurations was derived by using the iterative approach described in Sec. 4.2. The re-
sults demonstrate that the value of ∆ required to construct the sound abstraction varies
depending on network topology, and clock dynamics. Table 2 shows the total number
of states explored and time taken by the model checker for proving the safety and con-
vergence property (Table 1) using the sound∆-abstract model. Approximate synchrony
abstraction is orders of magnitude faster as it explores the reduced state-space. BMCA
algorithm satisfies safety invariant even in the presence of complete asynchrony. For
demonstrating the efficiency of using approximate synchrony we also conducted the
experiments with complete asynchronous composition, exploring all possible interleav-
ing (for safety properties). The complete asynchronous model is simple to implement
but fails to prove the properties for most of the topologies.

An upshot of our approach is that we are the first to prove that the BMC algorithm
in IEEE 1588 achieves logical convergence to a unique stable state for some interesting
configurations. This was possible because of the sound and tunable approximate syn-
chrony abstraction. Although experiments with 5/7 nodes may seem small, networks of
this size do occur in practice, e.g., in industrial automation where one has small teams
of networked robots on a factory floor.
Endlessly circulating (rogue) frames in IEEE 1588: The possibility of an endlessly
circulating frame in a 1588 network has been debated for a while in the standards com-
mittee. Using formal model of BMC algorithm under approximate synchrony, we were



able to reproduce a scenario were rogue frame could occur. Existence of a rogue frame
can lead to network congestion or cause the BMC algorithm to never converge. The
counter example was cross-validated using simulation and is described in detail in [6].
It was well received by the IEEE 1588 standards committee.

Buggy Iterative Depth Bounding Non-Iterative AS Iterative AS
with Random Search

Models Depth States Time ∆ States Time ∆ States Time
Explored (h:mm) Explored (h:mm) Explored (h:mm)

BMCA Bug 1 51 1.4 E+3 0:05 2 1.1 E+3 0:04 0 2.1 E+2 0:02
BMCA Bug 2 64 5.9 E+5 0:15 2 6.1 E+4 0:14 0 1.6 E+3 0:04
BMCA Bug 3 101 9.4 E+7 0:45 3 3.3 E+5 0:17 1 9.1 E+2 0:05

ROGUE FRAME Bug 1 44 3.9 E+5 0:18 2 9.7 E+6 0:29 1 5.6 E+4 0:12
ROGUE FRAME Bug 2 87 4.4 E+4 0:09 2 2.1 E+3 0:05 1 1.1 E+3 0:03

SPT Bug 1 121 8.4 E+8 1:05 3 8.1 E+4 0:11 0 5.5 E+2 0:04

Table 3. Iterative Approximate Synchrony with bound ∆ for finding bugs faster.

Approximate Synchrony as a Search Prioritization Technique. Approximate synchrony
can also be used as a bounding technique to prioritize search. We collected buggy mod-
els during the process of modeling the BMC algorithm and used them as benchmarks,
along with buggy instance of the Perlman’s Spanning Tree Protocol [24] (SPT). We
used AS as an iterative bounding technique, starting with ∆ = 0 and incrementing ∆
after each iteration. For ∆ = 0, the model checker explores only synchronous system
behaviors. Increasing the value could be considered as adding bounded asynchronous
behaviors incrementally. Table 3 shows comparison between iterative AS, non-iterative
AS with fixed value of ∆ taken from Table 2 and iterative depth bounding with ran-
dom search. Number of states explored and the corresponding time taken for finding
the bug is used as the comparison metric. Results demonstrate that most of the bugs are
found at small values of ∆ (hence iterative search is beneficial for finding bugs). Some
bugs like the rogue frame error, that occur only when there is asynchrony were found
with minimal asynchrony in the system (∆ = 1). These results confirm that prioritizing
search based on approximate synchrony is beneficial in finding bugs. Other bounding
techniques such as delay bounding [15] and context bounding [23] can be combined
with approximate synchrony but this is left for future work.

7 Related Work

The concept of partial synchrony has been well-studied in the theory of distributed
systems [14,13,25]. There are many ways to model partial synchrony depending on the
type of system and the end goal (e.g., formal verification). Approximate synchrony is
one such approach, which we contrast against the most closely-related work below.
Hybrid/Timed Modeling: The choice of modeling formalism greatly influences the ver-
ification approach. A time-synchronized system can be modeled as a hybrid system [2].
However, it is important to note that, unlike traditional hybrid systems examples from
the domain of control, the discrete part of the state space for these protocols is very
large. Due to this we observed that leading hybrid systems verification tools, such as
SpaceEx [17], cannot explore the entire state space.

There has been work on modeling timed protocols using real-time formalisms such
as timed automata [3], where the derivatives of all continuous-time variables are equal
to one. While tools based on the theory of timed automata do not explicitly support
modeling and verification of multi-rate timed systems [21], there do exist techniques for
approximating multirate clocks. For instance, Huang et al. [19] propose the use of inte-
ger clocks on top of UPPAAL models. Daws and Yovine [9] show how multirate timed



systems can be over-approximated into timed automata. Vaandrager and Groot [29]
models a clock that can proceed with different rate by defining a clock model consist-
ing of one location and one self transition. Such models only approximately represent
multirate time systems. By contrast, our approach algorithmically constructs abstrac-
tions that can be refined to be more precise by tuning the value of ∆, and results in an
sound untimed model that can be directly checked by a finite-state model checker.
Synchrony and Asynchrony: There have been numerous efforts devoted towards mix-
ing synchronous and asynchronous modeling. Multiclock Esterel [26] and communicat-
ing reactive processes (CRP) [5] extend the synchronous language Esterel to support a
mix of synchronous and asynchronous processes. Bounded asynchrony is another such
modeling technique with applications to biological systems [16]. It can be used to model
systems in which processes can have different but constant rates, and can be interleaved
asynchronously (with possible stuttering) before they all synchronize at the end of a
global “period.” Approximate synchrony has no such synchronizing global period. The
quasi-synchronous (QS) [7,18] approach is designed for communicating processes that
are periodic and have almost the same period. QS [18] is defined as “Between any two
successive activations of one period process, the process on any other process is acti-
vated either 0, 1, or at most 2 times”. As a consequence, in both quasi-synchrony and
bounded asynchrony, the difference of the absolute number of activations of two differ-
ent processes can grow unboundedly. In contrast, the definition of AS does not allow
this difference to grow unbounded.

8 Conclusion
This paper has introduced two new concepts: a class of distributed systems termed as
symmetric, almost-synchronous (SAS) systems, and approximate synchrony, an abstrac-
tion method for such systems. We evaluated applicability of approximate synchrony for
verification in two different contexts: (i) application-layer protocols running on top of
time-synchronized systems (TSCH), and (ii) systems that do not rely on time synchro-
nization but exhibit recurrent logical behavior (BMC algorithm). We also described an
interesting search prioritization technique based on approximate synchrony with the
key insight that, prioritizing synchronous behaviors can help in finding bugs faster.

In this paper, we focus on verifying protocols that fit the SAS formalism defined in
Sec. 2.2. While other protocols whose behavior and correctness relies on using values of
timestamps do not natively fit into the SAS formalism, they can be abstracted using the
suitable methods (e.g., using a state variable to model a local timer for a process whose
value is incremented on each step of that process — with approximate synchrony the
timer values across different processes will not differ by more than ∆). Evaluating such
abstractions for protocols like Google Spanner and others that use timestamps would
be an interesting next step.
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