
Approximate Two-Party Privacy-Preserving String
Matching with Linear Complexity

Martin Beck
Technische Universität Dresden

Institute of Systems Architecture
Dresden, Germany

Email: martin.beck1@tu-dresden.de

Florian Kerschbaum
SAP Research

Karlsruhe, Germany
Email: florian.kerschbaum@sap.com

Abstract—Consider two parties who want to compare their
strings, e.g., genomes, but do not want to reveal them to each
other. We present a system for privacy-preserving matching
of strings, which differs from existing systems by providing a
deterministic approximation instead of an exact distance. It is
efficient (linear complexity), non-interactive and does not involve
a third party which makes it particularly suitable for cloud
computing. We extend our protocol, such that it only reveals
whether there is a match and not the exact distance. Further an
implementation of the system is evaluated and compared against
current privacy-preserving string matching algorithms.

Keywords-privacy-preserving string comparison, approximate
string matching, homomorphic encryption, variable length
grams, linear complexity

I. INTRODUCTION

Storing and querying big data poses significant privacy
risks. We present an approach to privately querying genomic
sequences – a major source of big data. Particularly, we opti-
mize performance, such that our approach scales to volumes
frequently found in big data.

As technology for sequencing the human genome is devel-
oping at a fast pace and the number of sequenced genomes is
rapidly growing, the need to process this highly personalized
information in a privacy preserving way also increases. Several
studies demonstrate how genomes can be linked to surnames
[6] or even reveal the full identity [9, 19] of the individual.
Many algorithms were presented which should protect the ge-
nomic information while it is being processed across untrusted
parties.

These protocols however are either interactive, match only
exact strings or require a third party to be involved. Our
protocol is non-interactive, implements approximate string
matching and does not require any third party. Our protocol
is efficient and has linear complexity in computation and
communication. It also has better resistance to an iterated
differential attack proposed by Goodrich [7], that exploits the
information gained by knowing the exact string distance (as
proposed in other protocols), since it only reveals whether
there is a match.

Our contributions:

• A new efficient privacy-preserving, non-interactive, two-
party string matching protocol

• An analysis of our scheme in a genome matching setting
using full mitochondrial DNA sequences

• We can privacy-preservingly, approximately compare
real-world genomes in under 5 minutes on commodity
hardware.

The remainder of this paper is structured as follows. Section
II gives an overview over basic concepts and related work.
In Section III the design will be presented and followed by
Section IV, which gives a security analysis of our system.
Section V describes some implementation details and results
in comparison to related systems. Section VI concludes this
work and points out further research directions.

II. RELATED WORK

Research into string matching algorithms is defined by a
long list of proposed algorithms over many years and for many
different problems. String matching itself is closely related to
the distance between strings, which can be measured by a large
variety of means, ranging from generic and simple solutions
like the Hamming distance [11] to more powerful algorithms
like Smith-Waterman [24] solving local sequence alignment
problems. A survey about current developments can be found
in [18].

A. Approximate String Matching

As several tasks, for example checking whether a user
profile is within a remote database, do not require the exact
distance between two strings, data items or other entities,
the notion of approximate matching was introduced to define
levels of similarity, which in the most extreme way only
output a single bit of information: if the input strings are
similar or not. Due to these properties this class is called
approximate string matching algorithms, which is not to be
confused with the approximate string matching of [10], where
the term “approximate” referred to the property of two strings
being close in distance.

B. Privacy-Preserving String Matching

Two of the applications for string comparison algorithms
which are often used for motivation are calculating the dis-
tance of genome or protein sequences in bioinformatics and
checking if a person is present in a remote database. As
these topics by design deal with very personal information,
which must not be given to third parties, the necessity to build
privacy-preserving matching algorithms arose. As these were
not sufficient to protect privacy due to information leakage
given by the exact distance results, just obtained in a privacy
preserving manner, combinations of the above mentioned
approximation and the privacy-preserving computational steps
were developed. A survey of recently published algorithms
together with benchmark results can be found in [2].

One of the more recent protocols introduced by Schnell et
al. [23] uses Bloom filters to represent strings and transforms
the notion of distances between strings into distances between
similar Bloom filters. We will also use Bloom filters as set
representation for our genomic strings and build the matching
protocol upon them. However, we use a two-party technique
for comparing the Bloom filters and therefore do not need a
trusted third party for comparing the strings. Furthermore, our
protocol can be size-hiding, by choosing appropriate Bloom
filter sizes, that are not proportional to the string length.

Alternatively, techniques from private set intersection (PSI)
[13] could be used. However, revealing the content of the
intersection is not appropriate for a privacy preserving pro-
tocol. Based on these security concerns, protocols for private
set intersection cardinality (PSI-CA) were developed [5]. Yet,
these solutions still reveal the intersection cardinality, whereas
we only reveal whether there is a match.

Privacy-preserving protocols designed for approximate
string comparisons can also be found in literature [25, 15],
but rely on interactive techniques like oblivious transfers
or secure computation. This excludes these protocols from
off-line execution, e.g., in the cloud. Further [3] presents a
more efficient solution, but which only matches exact strings,
whereas we compare approximate strings.

III. PROTOCOL DESIGN

Let the client (Alice) have a string, e.g. a genome, and the
server have a string. After the execution of our protocol Alice
will have learned whether the two strings are approximately
close, but not Bob’s string nor the approximate distance to
Bob’s string. Bob will learn nothing.

First the transformation into grams of variable length and
their representation through a Bloom filter is specified, upon
which the generic string matching algorithm is given. Fol-
lowing this generic matching algorithm a privacy-preserving
version is constructed and then enhanced to only reveal
whether there is a match.

A. Bloom Filter Representation

A Bloom filter is a data structure fixed in size to which ele-
ment representations can be added and on which member tests

can be performed. Checking for an element is probabilistic due
to the design of the filter.

Let b be an array of bits of length n and b[i] the ith value
within the array with i ∈ [1, n]. Further let h1() . . . hk() be
k hash functions, with uniformly distributed output in [1, n].
For initialization set ∀i ∈ [1, n] : b[i] = 0.

To add an element e to the filter, all k hash functions are
evaluated on e and the results are taken as indexes for b to set
these positions to one. Set ∀j ∈ [1, k] : b[hj(e)] = 1.

A member test for element e′ is performed by also evaluat-
ing all k hash functions and checking the referenced positions
in b. If at least one of the positions b[hj(e

′)] is set to zero, the
element has not been added to the Bloom filter before. If all
bits are set to one, however, one cannot be sure if the exact
element was inserted, or one or more different elements had
these positions set to one.

Using these operations a set is represented by adding all set
elements to the filter. Depending on the filter parameters, the
probability that a false-positive member test occurs, i.e. that
an element is falsely identified as being added to the filter
before, is given by:

(1)p =

(
1−

(
1− 1

n

)kl
)k

Where
(
1− 1

n

)kl
is the probability that a single bit is still

zero after l elements were added to the filter of length n using
k hash functions. To calculate the required length of a Bloom
filter n given the false-positive rate and the number of elements
to be inserted l, the equation (1) can be transposed to:

(2)n =
−1(

1− p1/k
)1/(k∗l) − 1

B. String Matching Using Bloom Filters

A typical string comparison algorithm is the Levenshtein
distance [16], which is often also referred to as edit distance
and describes the minimum number of insertions, deletions and
substitutions needed to transform one string S1 into another
S2. The result is a distance measure d, which can easily be
converted into a similarity score s between zero and one by:
s = 1− d

dmax

dmax, i.e. the maximum distance between two strings,
equals the length of the longer string and can thus be re-
placed by dmax = max(|S1|, |S2|) regarding the Levenshtein
distance.

s = 1− d

max(|S1|, |S2|)
As a Bloom filter is a set representation, the input strings

first need to be converted into sets. This has to be done in
a way, that a distance measure can later be formulated upon
the constructed set which, loosely spoken, correlates with the
Levenshtein distance measure.

The sets are build from q-grams, which are substrings of
length q from input string S. Let n = |S| be the number of
characters in S and si the q-gram starting at position i with

i ∈ [1, n− q+1]. As a result n− q+1 q-grams are generated
out of S using a sliding window for all possible i. If this
set would be used to represent a string and measure similarity
upon, the positional information of the substrings would not be
included, which is important to build the similarity measure.
To keep this information positional q-grams are used, which
are pairs (i, si) with i being the position in S and si the actual
q-gram starting at that position.

Further as characters at the beginning and at the end of S
are underrepresented over all q-grams, the input string S is
extended by q − 1 identical symbols, which are not part of
the alphabet of S at the beginning and end of S. Gravano
et al. [8] introduced this definition of positional q-grams on
extended strings. Without the extension we would only see the
first character in the first q-gram, whereas in the middle of the
string each character is found within q q-grams.

These positional grams are not used directly, but a technique
called VGRAM [17] is employed to generate grams with vari-
able lengths within a previously defined range [qmin, qmax].
To choose which length to select at what position, a gram
dictionary is build prior to running the string comparison
algorithm. As source to build this dictionary, the Human
Mitochondrial Genome Database [14] is used. Afterwards
the generated dictionary is published and available to all
participants described in this string matching algorithm.

Both parties use the VGRAM algorithm to build a set
of variable length grams based on the published dictionary,
following the description in [17]. The number of variable
length grams generated for a string S is depicted by nv .

As these sets cannot be used directly to compare strings in a
privacy-preserving way, which would reveal the original data,
we represent them using Bloom filters. A single Bloom filter is
used for all grams generated by a single string S. Papapetrou
et al. [22] conclude, that the optimal number of hash functions
to do cardinality estimation using Bloom filters is 1. As our
string similarity measure will mainly use the estimated set
cardinality for the Bloom filters, we thus fix k = 1 and only
use a single hash function to build and query Bloom filters
throughout the rest of the paper. The length l of the Bloom
filter and the used hash function h() is also fixed and set to
be equal across all participants.

Determining an appropriate value for l can be done using
the formula (2) with the simplification k = 1 as introduced
above. This results in l being calculated as:

l =
−1

(1− p)
n−1
v − 1

Under these constraints, that k, l and h() are identical, set
union ∪ and intersection ∩ can also be performed upon Bloom
filters B1, B2 by applying the binary OR or AND operator.

Li et al. [17] describe the effect of a single edit operation on
the set of variable length grams and propose an algorithm to
calculate the maximum number of affected grams by applying
a number of edit operations upon an initial string. Based on
this number a lower bound on the number of common grams

for two strings which are within a certain edit distance can be
calculated.

As this lower bound calculation on the set intersection
cardinality uses the input sequences to generate a baseline for
the lower bound, it cannot be applied in our privacy-preserving
scheme directly. To be independent of such a baseline, we do
not use the absolute set intersection cardinality directly, but the
difference between the union cardinality and the intersection
cardinality. This results in an approximate distance measure,
which follows the explanation for the upper bound on the
Hamming distance between bit vectors in [17]. Our distance
measure equals the Hamming distance between the Bloom
filter bit vectors.

d = |B1 ∪B2| − |B1 ∩B2|

Thus having d = 0 equals to having identical strings, as the
set union and intersection sizes are identical.

C. Encrypting the Bloom Filter

We constructed string representations using Bloom filters in
Section III-B and used them to define an appropriate distance
measure. However the Bloom filters themselves cannot be
exchanged between the participants directly, as they can be
used to possibly reconstruct the original strings by guessing
substrings and checking if they were added to the filter.
For preserving privacy of the filter content, an additively
homomorphic cryptosystem is used.

A homomorphic cryptosystem uses at least one homomor-
phic property to evaluate an operation ⊕ on the ciphertext,
which translates into applying the equivalent operation +
on the plaintext. We will use the additively homomorphic
system introduced by Naccache and Stern [20], which is also
probabilistic. Alice generates a key pair and shares the public
key with Bob. Let E(x, r) denote the encryption of a value
x using a fresh random value r for each encryption, this
additively homomorphic system has the following properties:

E(x, r) · E(y, s) = E(x+ y, rs)

E(x, r)y = E(xy, ry)

Further let E(x, r)−1 denote the calculation of the mul-
tiplicative inverse upon E(x, r), found through executing the
extended euclidean algorithm, which is by the homomorphism
definition the encryption of the additively inverse plaintext.
This results in E(x, r)−1 = E(−x, r) and can be used to
calculate a difference between two encrypted values.

To multiply an encrypted plaintext with a negative factor
−z, first the multiplicative inverse of the encrypted value is
calculated and then multiplied using the positive factor.

E(x, r)−z = E(x, r)−1·z = E(−x, r)z = E(−xz, rz)

To increase readability, E(x) = E(x, r) is used, which also
always uses a fresh r.

An encryption of a Bloom filter B with length l is con-
structed by encrypting every bit in B separately, storing the
resulting l values in a new array C with equal length.

∀i ∈ [1, l], fresh r : C[i] = E(B[i], r)

This encryption is not to be confused with “encrypted
Bloom filter”, which were presented in [4]. Encryption of
the Bloom filter is only performed by Alice, who wants to
compare a string privately to one that Bob holds. Bob also
slices his string down into variable length grams, which are
then added to a new Bloom filter using the previously agreed
upon parameters k, l and h().

Alice sends the encryption of her Bloom filter to Bob,
together with her public key. Recall that the Bloom filters
just contained zeros and ones. So calculating the cardinality
of a filter, denoted by |B|, cannot just be done by counting all
bits set to one, but also by calculating the sum over all values
|B| =

∑l
i=1 B[i].

Bob can use this property to calculate the encrypted sum
over all values in the encrypted Bloom filter and thus the
encrypted cardinality.

E(|B|, r) = E(

l∑
i=1

B[i], r) =

l∏
i=1

C[i]

However as Bob is not interested in the encrypted cardi-
nality of Alice’s filter |BA|, he only adds up values at those
positions, that are set to one on his own Bloom filter BB . This
is equivalent to building the intersection using binary AND and
calculating the resulting cardinality.

E(|BA ∩BB |) =
∏

i,BB [i]=1

C[i]

Further Alice encrypts the cardinality of her Bloom filter
E(|BA|) and sends it to Bob, who also encrypts the cardinality
of his own Bloom filter E(|BB |). Using these values, the union
cardinality is calculated as follows:

|BA ∪BB | = |BA ∩BB |+ (|BA| − |BA ∩BB |)
+ (|BB | − |BA ∩BB |)

= |BA|+ |BB | − |BA ∩BB |

E(|BA ∪BB |) = E(|BA|) · E(|BB |) · E(|BA ∩BB |)−1

This way the encrypted distance E(d) for the measure
presented in Section III-B is calculated as such:

E(d) = E(|BA ∪BB |) · E(|BA ∩BB |)−1

= E(|BA|) · E(|BB |) · E(|BA ∩BB |)−2

D. Privacy-Preserving Similarity

The calculated approximate distance value E(d) between
both compared strings SA and SB in Section III-C, could
be returned to Alice for decryption, for her to learn the
actual computed value. This would however result in increased
sensitivity to the Mastermind attack described in [7]. To
circumvent this attack, we restrict the information Alice gains
from executing this protocol. Instead of learning the exact
result of the comparison, the result is manipulated to give

Alice only the information whether the distance is smaller
than a previously defined threshold tmax.

Recall that the calculated distance value equals the Ham-
ming distance between the Bloom filters and that [17] de-
scribes how to calculate an upper bound for the Hamming
distance in equation (4). The calculation however involves
the number of affected grams for both input strings SA and
SB . As SB is not available to Alice, she uses the revised
Cambridge Reference Sequence (rCRS) [1] SrCRS as a refer-
ence to replace SB in the calculation of the upper Hamming
distance bound. This replacement is a good approximation
for small edit distances. Following [17] the upper bound
for a maximum edit distance emax is calculated as tmax =
NAG(SA, emax) + NAG(SrCRS , emax), where NAG(S, e)
describes the maximum number of affected grams for e edit
operations on string S. Further, as NAG(SrCRS , emax) is
very close to NAG(SB , emax) and thus used as an replace-
ment. NAG(SA, emax) can also be replaced for the same
reason. This has the effect, that the chosen tmax does not
depend on the input sequence SA.

Due to the probabilistic nature of the Bloom filter, elements
are mapped to the same positions with a probability p as
described in Section III-A. As the Bloom filter cardinality |BA|
is therefore on average smaller than the number of variable
grams for SA by a factor p, the upper bound is corrected to
an approximated upper bound.

tmax = 2 ·NAG(SrCRS , emax)) · (1− p)

The protocol for calculating the return values for Alice by Bob
is as follows:

• Calculate encrypted inverse thresholds ∀ti ∈ [0, tmax] :
E(−ti) = E(ti)

−1

• Calculate encrypted threshold differences for all inverse
thresholds
E(Di) = E(d− ti) = E(d) · E(−ti)

• Multiply all differences with random values. E(rDi) =
E(Di)

r for fresh r drawn uniformly from the plaintext
space of the used cryptographic system.

After the first two steps Bob has tmax+1 values, expressing
the differences between the incremented thresholds and the
actual distance. If the calculated distance d is within the
defined threshold range [0, tmax], then there is one single
element, which is the encryption of zero due to equal threshold
and distance values.

Performing the last step randomizes all values through mul-
tiplication with a random number, except the one encrypting
a zero. All these tmax + 1 encrypted values are then shuffled
randomly and sent to Alice, who decrypts and checks them
against zero. In case a zero is found, she learns that the Bloom
filter intersection cardinality was within the specified threshold
and thus the compared strings have an edit distance equal or
less than the specified maximum edit distance emax used to
calculate tmax in Section III-B.

IV. SECURITY ANALYSIS

Our protocol is secure under the semi-honest, also called
honest-but-curious model and under the assumption the inte-
grated crypto system builds upon. In our case this is based
on the higher residuosity problem used in the Naccache-Stern
cryptosystem. Several other additive homomorphic cryptosys-
tems like Paillier [21] can easily be used instead of the cur-
rently employed system, bringing possibly another assumption
like one based on the decisional composite residuosity problem
as basis.

The encryption of the used cryptosystem must however
be probabilistic, such that similar plaintexts are mapped to
different ciphertexts at random. This is true for our employed
Naccache-Stern system and the above mentioned Paillier
cryptosystem. This property is also called semantic security
and corresponds to indistinguishability under chosen plaintext
attack (IND-CPA).

In the first part of our protocol, Alice translates her input
string into variable length grams, generates a Bloom filter
representation and encrypts it using a public key cryptosystem.
As she is not using any information from Bob, she cannot gain
any insight into Bob’s input.

The second part involves Bob working on the encrypted
Bloom filter from Alice and her encrypted Bloom filter car-
dinality. As all values are encrypted using an asymmetric,
probabilistic cryptosystem, for which only Alice has the pri-
vate decryption key, Bob cannot decide if an encrypted value
represents a zero, a one or any other value, which directly
follows the security analysis of the underlying hardness as-
sumption. The number of elements received does not depend
on Alice input, as only public information is used to infer the
Bloom filter length, as introduced in Section III-D. Further
Bob sums up elements from Alice’s encrypted Bloom filter,
based on his Bloom filter. The result is then subtracted several
times from different threshold values and multiplied with
random numbers, chosen uniformly from within the domain
of plaintexts of the underlying cryptosystem. All results are
shuffled at random and transmitted back to Alice. Bob gained
no information in this phase about Alice’s input.

As a last step Alice decrypts all results received from
Bob and checks if they contain a zero. If a zero is found,
she learns that the Hamming distance between the Bloom
filters was below a predefined threshold tmax. There can be
at most one zero. If no zero was found, the threshold was
lower than the Hamming distance. From the decrypted non-
zero results, she cannot learn anything, as these numbers are
uniformly distributed due to the multiplication with uniform
random numbers drawn from the plaintext domain modulo
the the plaintext domain modulus. The index of the zero
element, if there was one, gives no information to Alice, as the
return values were randomly shuffled by Bob. The number of
returned elements also holds no further information, as there
are always tmax + 1 results.

The only information Alice learns about the input of Bob is,
if the threshold was above the Bloom filter Hamming distance

or not.

V. EVALUATION

For the experiments a Linux Laptop with an Intel Core2 Duo
T9600 running at 2.8 GHz was used. The code is written in
Java, using the Bouncy Castle library1. The first tests evaluate
the relation between the Levenshtein distance and the measure
introduced in section III-B. Further the runtime performance of
the algorithm is evaluated for string lengths, which were also
used for comparing other privacy-preserving string matching
protocols. All code implementing the techniques in this paper
and producing the test results can be found under http://dud.
inf.tu-dresden.de/∼beck/bloomEncryption.tar.bz2.

A. Distance Measure

As the similarity metric is based on the Levenshtein distance
as described in [17], we measure the relation between the
edit distance and the Bloom filter Hamming distance as our
proposed metric. The parameters qmin = 2 and qmax = 40
are used as [17] states that the variable length gram algorithm
can start with a low qmin and a large qmax to find appropriate
values for these parameters after pruning the built Trie.

To run the tests the Bloom filters are set up to use a single
hash function, in our case “SHA1” modulo the size of the
filter. The used strings contain roughly n = 16, 569 characters,
which means that about the same number of variable grams
have to be inserted into each Bloom filter.

The probability that a false-positive test occurs after the
n elements are added to the filter is set to p = 0.1, which
in turn generates a Bloom filter of size 157261 bits. We
used 10000 runs and for each 100 applied a fixed number
of edit operations. The original string and the altered string
are then compared using our distance measure. The resulting
value is the difference between the union cardinality and the
intersection cardinality of both Bloom filters B1 and B2.
This represents the total number of unique elements for both
parties, or the Hamming distance between both Bloom filters.
Following Lemma 1 in [17] this directly correlates with the
Levenshtein distance between the strings.

Figure 1 shows a Boxplot for every Levenshtein distance
and the according 100 runs tested with our approximate
distance measure. As can be seen from the figure, our distance
value approximates small Levenshtein distances very good,
with a narrow range of possible values and a small variance.
The Pearson correlation between the Levenshtein distances and
the approximated distances is cp = 0.997 for up to 100 edit
operations.

B. Protocol Execution Time

To evaluate the performance of our protocol, we ran 100
runs for each test. The parameters were set to qmin = 2,
qmax = 40, p = 0.1 and an edit distances of up to 10
operations.

The client runtime depends linearly on the length of the
input sequence, where the most time is spent on decrypting

1http://www.bouncycastle.org/

http://dud.inf.tu-dresden.de/~beck/bloomEncryption.tar.bz2
http://dud.inf.tu-dresden.de/~beck/bloomEncryption.tar.bz2

1 8 16 26 36 46 56 66 76 86 96

0
1

0
0

0
2

0
0

0
3

0
0

0
Correlation of distance measure to edit distance

Edit Distance

H
a

m
m

in
g

 D
is

ta
n

c
e

Fig. 1. Approximation of the Levenshtein distance by our distance measure

the results from the server and encrypting the Bloom filter
prior to transmission. We can see a pretty high variance on
client runtimes, growing linearly with longer sequences, due
to the unknown number of results which are needed to be
decrypted until a zero is found. If the distance between both
compared sequences is not within the predefined range given
by the threshold, the client always needs to decrypt all results,
as no zero will be found within the returned values.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

100

200

Sequence length

R
un

tim
e

in
se

co
nd

s

Maximum
Mean

Minimum

Fig. 2. Client runtimes

Server runtime depends linearly on the threshold value,
whereas runtimes for different sequence lengths are only in-
creasing slightly. The measured values for a constant threshold
derived from a maximum edit distance of 10 and a variable
sequence length range between 8.54 seconds for sequences
of length 200 and 9.01 seconds for full mitochondrial DNA
sequences.

The amount of data that needs to be transferred between
Alice and Bob is shown in table I and grows linearly with the
length of the Bloom filter for the traffic from Alice to Bob
and linearly with the size of the threshold range for the traffic
from Bob to Alice. For this test the threshold tmax is set to
the maximum Hamming distance defined in Section III-D for
a maximum edit distance of 10.

Comparing these results to the ones given by Jha et al. [15]
and Huang et al. [12] in the evaluations of their state of the
art protocols, we achieve an increased performance starting
with the smallest sequence lengths of 200 characters. Due to

Sequence length Client to server Server to client

200 296 KB 123 KB
400 590 KB 123 KB
800 1169 KB 123 KB

1600 2337 KB 123 KB
3200 4663 KB 123 KB
6400 9323 KB 123 KB

12800 18636 KB 123 KB

TABLE I
BANDWIDTH USED FOR TRANSMISSION

the lower linear complexity of our protocol, comparisons of
full mitochondrial DNA sequences can be performed more
efficiently. The referenced protocols have computational com-
plexity of O(n log n), O(n2) and O(n ∗m) for input string
lengths n and m.

VI. CONCLUSION

We presented a novel, non-interactive approach for a
privacy-preserving approximate string matching protocol, that
achieves superior performance for real-world sized genomes.
An attacker will not even learn the exact distances or approx-
imations, but only whether two compared strings are within a
predefined distance range.

Due to the computation having linear complexity in the
used sequence length and the communication having linear
complexity in the range of allowed distances, respectively in
the Bloom filter length, this protocol is very practical and was
tested for full mitochondrial sequences with 16500 characters
in length and a maximum edit distance of 10, which took about
286 seconds on the mentioned hardware to complete.

Further enhancements could go into using our protocol for
database searches.

REFERENCES

[1] S. Anderson, A. T. Bankier, B. G. Barrell, M. H. L.
de Bruijn, A. R. Coulson, J. Drouin, I. C. Eperon,
D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier,
A. J. H. Smith, R. Staden, and I. G. Young. Sequence
and organization of the human mitochondrial genome.
Nature, 290(5806):457–465, April 1981. ISSN 0028-
0836.

[2] Tobias Bachteler and Rainer Schnell. An empirical com-
parison of approaches to approximate string matching in
private record linkage. Proceedings of Statistics Canada,
2010.

[3] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro,
Paolo Gasti, and Gene Tsudik. Countering GATTACA:
efficient and secure testing of fully-sequenced human
genomes. In Proceedings of the 18th ACM conference on
Computer and communications security, CCS ’11, pages
691–702, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0948-6.

[4] Steven M. Bellovin, Steven M Bellovin, and William R
Cheswick. Privacy-Enhanced Searches Using Encrypted
Bloom Filters, 2004.

[5] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Fast and Private Computation of Cardinality of Set In-
tersection and Union. Cryptology ePrint Archive, Report
2011/141, pages 1–19, 2011.

[6] Jane Gitschier. Inferential genotyping of Y chromosomes
in Latter-Day Saints founders and comparison to Utah
samples in the HapMap project. American journal of
human genetics, 84(2):251–8, February 2009. ISSN
1537-6605.

[7] Michael T. Goodrich. The Mastermind Attack on Ge-
nomic Data. In 2009 30th IEEE Symposium on Security
and Privacy, pages 204–218. IEEE, May 2009. ISBN
978-0-7695-3633-0.

[8] Luis Gravano, Panagiotis G. Ipeirotis, Hosagra-
har Visvesvaraya Jagadish, Nick Koudas,
Shanmugauelayut Muthukrishnan, and Divesh Srivastava.
Approximate String Joins in a Database (Almost) for
Free. Proceedings of the 27th International Conference
on Very Large Data Bases, pages 491–500, September
2001.

[9] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and
Y. Erlich. Identifying Personal Genomes by Surname
Inference. Science, 339(6117):321–324, January 2013.
ISSN 0036-8075.

[10] Patrick A. V. Hall and Geoff R. Dowling. Approximate
String Matching. ACM Computing Surveys, 12(4):381–
402, December 1980. ISSN 03600300.

[11] Richard Wesley Hamming. Error-Detecting and Error-
Correcting Codes. Bell System Technical Journal, 29:
147–160, 1950.

[12] Yan Huang, David Evans, and Jonathan Katz. Faster
secure two-party computation using garbled circuits.
USENIX Security Symposium, 2011.

[13] Yan Huang, David Evans, and Jonathan Katz. Private Set
Intersection: Are Garbled Circuits Better than Custom
Protocols? NDSS, 2012.

[14] Max Ingman and U Gyllensten. mtDB: Human Mito-
chondrial Genome Database, a resource for population
genetics and medical sciences. Nucleic Acids Research,
34:749–751, 2006.

[15] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. To-
wards Practical Privacy for Genomic Computation. In
2008 IEEE Symposium on Security and Privacy (sp
2008), pages 216–230. IEEE, May 2008. ISBN 978-
0-7695-3168-7.

[16] Vladimir Levenshtein. Binary Codes Capable of Correct-
ing Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

[17] Chen Li, Bin Wang, and Xiaochun Yang. VGRAM:
improving performance of approximate queries on string
collections using variable-length grams. In Proceedings
of the 33rd international conference on Very large data
bases, VLDB’07, pages 303–314, September 2007. ISBN
978-1-59593-649-3.

[18] Heng Li and Nils Homer. A survey of sequence align-
ment algorithms for next-generation sequencing. Brief-

ings in bioinformatics, 11(5):473–83, September 2010.
ISSN 1477-4054.

[19] Jeantine E Lunshof, Ruth Chadwick, Daniel B Vorhaus,
and George M Church. From genetic privacy to open
consent. Nature reviews. Genetics, 9(5):406–11, May
2008. ISSN 1471-0064.

[20] David Naccache and Jacques Stern. A new cryptosystem
based on higher residues. Proceedings of the 5th ACM
conference on on computer and communication security,
pages 59–66, 1998.

[21] Pascal Paillier. Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. Advances in
Cryptography - Eurocrypt ’99, 1592:223–238, 1999.

[22] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Ne-
jdl. Cardinality estimation and dynamic length adaptation
for Bloom filters. Distributed and Parallel Databases, 28
(2-3):119–156, September 2010. ISSN 0926-8782.

[23] Rainer Schnell, Tobias Bachteler, and Jörg Reiher.
Privacy-preserving record linkage using Bloom filters.
BMC medical informatics and decision making, 9(1):41,
January 2009. ISSN 1472-6947.

[24] Temple F. Smith and Michael S. Waterman. Identification
of common molecular subsequences. Journal of molec-
ular biology, 147(1):195–7, March 1981. ISSN 0022-
2836.

[25] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser,
and Mehmet Celik. Privacy preserving error resilient dna
searching through oblivious automata. In Proceedings of
the 14th ACM conference on Computer and communica-
tions security - CCS ’07, page 519, New York, New York,
USA, October 2007. ACM Press. ISBN 9781595937032.

	Introduction
	Related Work
	Approximate String Matching
	Privacy-Preserving String Matching

	Protocol Design
	Bloom Filter Representation
	String Matching Using Bloom Filters
	Encrypting the Bloom Filter
	Privacy-Preserving Similarity

	Security Analysis
	Evaluation
	Distance Measure
	Protocol Execution Time

	Conclusion

