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Abstract
Neutron stars and quark stars are ideal laboratories to study fundamental physics at
supra nuclear densities and strong gravitational fields. Astrophysical observables, however,
depend strongly on the star’s internal structure, which is currently unknown due to
uncertainties in the equation of state. Universal relations, however, exist among certain
stellar observables that do not depend sensitively on the star’s internal structure. One such
set of relations is between the star’s moment of inertia (I), its tidal Love number (Love) and
its quadrupole moment (Q ), the so-called I–Love–Q relations. Similar relations hold among
the star’s multipole moments, which resemble the well-known black hole no-hair theo-
rems. Universal relations break degeneracies among astrophysical observables, leading to
a variety of applications: (i) X-ray measurements of the nuclear matter equation of state,
(ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects,
and (iii) gravitational and astrophysical tests of General Relativity that are independent of
the equation of state. We here review how the universal relations come about and all the
applications that have been devised to date.
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1. The ubiquity of universality

Universal behavior, a set of properties of a physical system that arises irrespective of the internal details of the system, is
everywhere in Nature. From the probability of an avalanche happening to how cracks form and propagate in materials, from
the electrical breakdown of dielectrics to fluid flow in disordered media, from molecular diffusion in fluids to how rocks
distribute according to their sizes, from the emergence of opalescence in fluids to the size and spin of black holes, universal
behavior is unavoidable. The concept of universality, however, differs slightly from discipline to discipline. Perhaps themost
well-studied version of universality stems from the field of statistical mechanics where universal behavior is associatedwith
a large class of systems whose macroscopic properties are independent of their dynamics. On a microscopic level, different
parts of the system may seem to act independently, but in a certain scaling limit, the system shows global properties that
are independent of the microscopic details of each part.

Historically, universality in statistical mechanics arose from the study of phase transitions, colloquially speaking, the
abrupt and dramatic change of the properties of a system. The latter are typically encoded in a certain order parameter, such
as the density ρ, which is a function of another parameter of the system, such as the temperature T . A phase transition is
defined by the existence of a critical parameter or critical point, at which the system’s properties change abruptly. Universal
behavior in phase transitions occurswhen the order parameter of the systembecomes insensitive to the details of the system
as the critical point is approached. For the example considered above, universality occurs if ρ = ρcr[(T − Tcr)/Tcr]δ and if the
critical exponent δ is a constant that is independent of the details of the system, where ρcr and Tcr are the critical density
and temperature. Therefore, systems that differ widely in composition or overall properties can present the same type of
universal behavior, the same critical exponent, independent of their internal composition. A well-known example of such a
phase transition is ferromagnetism.

Today, the concept of universality has gone beyond the precise statistical mechanics definition to simply refer to
properties of a system or an object that can be deduced from a small, finite set of global parameters, without requiring
local knowledge of the system. A global parameter here means a quantity that depends on the behavior of the entire system,



and not just on the behavior of the system in a small subdomain; typically, a global quantity is defined as an integral over

the entire manifold. For example, the total mass of a system is a global quantity, while the density at the system’s surface is a

local quantity. FromNewtonianmechanics and Birkhoff’s theorem in General Relativity, we know that the gravitational field

outside a sphericalmass distribution is completely determined by its totalmass, and not by the precisematerial composition

of the distribution. If the distribution is not spherical, however, the exterior gravitational field depends on an infinite set of

multipole moments, and thus, the exterior gravitational field of spinning planets and stars is not universal.

1.1. Universality in black holes

One of the most fascinating and far-reaching results of General Relativity involves the universality of black holes: the

exterior gravitational field, and in fact the entire exterior metric tensor field, of stationary, isolated black holes in General

Relativity can be entirely described in terms of only three global parameters: the mass, the electric charge and the spin

angular momentum.1 This statement sometimes goes by the name of the no-hair theorem or the two-hair theorem [5,6].

The latter neglects the electric charge by assuming that black holes quickly and efficiently neutralize due to quantum

Schwinger pair-production effects [7,8], a vacuum breakdown mechanism [9–11] and accretion of intergalactic or disk

plasma. According to this universality principle, it does not matter what fell into the black hole to create it in the first place;

all that information is hidden inside the black hole’s event horizon and it is thus causally disconnected and unobservable

by any exterior agent. Because of this principle, astrophysical observations need only care about the mass (and if accurate

enough, also the spin) of black holes to, for example, monitor the orbits of stars at the center of the Milky Way [12–16] and

search for gravitational waves emitted in binary black hole coalescences [17,18].

The history of the no-hair theorem is long and twisted, and summarized for example inMisner, Thorne andWheeler [19].

Hawking proved that all stationary black holes must (i) have a horizon with a spherical topology and (ii) be either static or

axially symmetric [20,21]. Israel had earlier proved that any static black hole with an event horizon of spherical topology

must (i) have external fields that are determined uniquely by its mass and charge and (ii) be either the Schwarzschild

or Reissner–Nordström solution [22,23]. Carter extended Israel’s proof to axially-symmetric but uncharged black holes

with event horizons of spherical topology, whose external fields are uniquely determined by its mass and spin angular

momentum [24]. This, in turn, was extended by Robinson, who proved the uniqueness of the Kerr solution [25]. Combining

all of these results, one arrives at the statement of the no-hair theorem mentioned above. These theorems, however, make

several assumptions, such as the non-degeneracy of event horizons and the real analyticity of spacetime, that have not yet

been relaxed.

Real black holes, of course, do have hair. The theorems described above are only valid for isolated and stationary black

holes, but no system in Nature is truly isolated or stationary. Astrophysical black holes are typically surrounded by other

stars or compact objects, even if the latter are a large distance away. Moreover, astrophysical black holes are constantly

accreting matter, even if at an infinitesimal rate due to the inextricable presence of dust or radiation. Therefore, the total

multipole moments of the spacetime at spatial infinity are different from those of an isolated black hole, but this difference

is entirely due to the multipole moments of these additional external fields [26] (see also [27–32] for related works). The

latter have a truly negligible effect in the exterior gravitational field of astrophysical black holes, which is still effectively

dominated just by the black hole’s mass and spin angular momentum. The spirit of the no-hair theorems, however, can be

strongly violated in theories other than General Relativity, if one considers black holes in spacetimeswith dimensions higher

than four [33,34], or black holes in the presence of exotica, such as non-Abelian Yang–Mills fields, Proca fields, coupled scalar

fields or skyrmions.

Perhaps one of the nicest incarnations of the no-hair theorem is the relation between the multipole moments of

the exterior metric of a black hole. In flat space, multipole moments are typically understood as the angle-independent

coefficients of the far-field expansion of a solution to the Laplace equation in terms of a Legendre decomposition. Geroch

extended this definition to static, curved spacetimes in a coordinate-independent way through the use of the conformal

group [35,36]. Hansen further extended [35,36] to stationary spacetimes and found that the extended Geroch moments of

the Kerr solution satisfy the following identity [37]:

Mℓ + iSℓ = M(ia)ℓ, (1)

where Mℓ are mass moments, Sℓ are current moments, M = M0 is the black hole mass, and a = S1/M = |S⃗|/M is the black

hole spin angularmomentumper unitmass. Notice that only two parameters,M and a, are required to completely determine

all of the Geroch–Hansenmoments of the Kerr solution. Since themetric tensor of a stationary spacetime can be constructed

from knowledge of all the Geroch–Hansen moments of the spacetime [38,39], the exterior gravitational field described by

the Kerr solution is completely determined by the black hole’s mass and spin.

1 See [1–4] for recent work on black holes in General Relativity that can acquire scalar hair.



1.2. Universality in non-vacuum spacetimes

Astrophysical objects other than black holes are not expected to share the same type of universality. Black holes are very
special solutions to Einstein’s theory, with singularities and event horizons; itmay stand to reason to expect that information
about material that fell into a black hole would be hidden from its exterior by its event horizon. Stars, however, do not
possess an event horizon, but rather a stellar surface. The internal composition of a star or of a planet should therefore affect
the exterior gravitational field it produces. This is indeed the case, for example, for Earth, whose gravitational field can be
represented as a sum over its infinitely many multipole moments. In fact, astrophysical missions, such as GRACE [40] and
GAIA [41,42], are designed to measure the multipole moments of Earth [40], and thus, be able to model and predict the
motion of satellites in orbit to high accuracy.

The same lack of universality may also be expected in compact objects, such as white dwarfs and neutron stars. White
dwarfs are mostly composed of degenerate electrons, supported against gravitational collapse by electron-degeneracy
pressure. With masses comparable to the Sun and radii comparable to Earth, white dwarfs are very weakly relativistic,
with gravitational compactnesses C = (GM)/(Rc2) ∼ 10−3, and their internal composition can thus be well-described as
a cold Fermi gas. Neutron stars [43–45], on the other hand, are supported by neutron-degeneracy pressure, and thus, are
much more compact; although their mass is typically comparable to the Sun, their radii are of order ten kilometers, so that
C ∈ (0.05, 0.25). The density inside neutron stars can easily exceed the nuclear saturation limit, rendering the cold Fermi
gasmodel inapplicable. The inner core of sufficiently massive neutron stars may contain hyperons and kaon-condensates, as
well as quark–gluon plasmas that are color-superconducting [46]. In fact, neutron-star-like compact objects may be made
out of purely quarks (quark stars) [47]. Therefore, the interior structure of such compact stars2 can vary with its mass, as
more massive stars allow for higher central densities, and thus, for the possibility of exotica in their inner cores. Variability
in the internal structure then suggests variability in their exterior gravitational field, since onemay expect stars with exotica
in their inner cores to produce a gravitational field different from that of stars without such exotica.

In spite of this reasoning and of the lack of applicability of the no-hair theorems, the exterior gravitational field of neutron
stars and quark stars has recently been found to present certain universality. For example, the current dipole moment
(i.e. the spin angular momentum) and the mass quadrupole moment (i.e. the quadrupole moment) have been shown to
obey approximately universal relations, i.e. relations that are approximately insensitive to the stellar internal composition to
percent level. The I–Love–Q relations [48,49] (between themoment of inertia, the Love number and the quadrupolemoment)
are an example of this universality. These relations have been extended to highermultipole order [50–52] and to a large class
of neutron stars, including weakly-magnetized [53] and rapidly rotating [50,52,54,55] ones. Taken together, these results
imply the existence of approximate no-hair relations for neutron stars and quark stars through which one can approximately
determine all of the star’s multipole moments with knowledge only of the first three: the mass, the spin and the quadrupole
moment [51,52]. The approximate relations take on a form analogous to Eq. (1), which, in turn, allows one to construct the
gravitational field. In fact, one can approximately represent the full metric tensor outside a stationary compact star entirely
in terms of only these three quantities [56–58]. In particular, Pappas [56,57] use the two-soliton solution found by Manko
et al. [59] (see also Manko and Ruiz [60] for a simpler representation of the solution).

The approximately universal I–Love–Q and no-hair relations that compact stars satisfy are the main topic of this review
paper. Many other universal relations have been discovered in neutron stars [43,61–92], such as the relation between the
complex oscillation frequencies of neutron stars and certain functions of mass and radius [64,68,93]. These relations are
different from the I–Love–Q and no-hair ones in that they do not involve themultipolemoments of the exterior gravitational
field of compact stars. We will here touch on some of these other universal relations only through a description of how they
connect to the I–Love–Q and no-hair relations for compact stars.

1.3. Why universality matters

The approximate universal relations of neutron stars and quark stars are important for multiple reasons. On the
astrophysics front, a measurement of the compact star mass, spin period andmoment of inertia can be used to automatically
obtain the star’s quadrupole moment through the I–Q relations. In turn, this would provide a very precise description of the
exterior gravitational field of compact stars [94], allowing an extraordinarily precise prediction of the orbit of objects around
such stars. Of course, such precision is currently unnecessary, since not even the effect of the moment of inertia, and thus
the dipole moment, on the orbital motion is currently within the level of observational precision [70,95].

Perhaps of greater applicability is the use of the approximate universal relations to break degeneracies in compact star
observations. For example, the NICER [96,97] and LOFT [98–100] missions aim to detect X-rays emitted from the surface
of hot spots on millisecond pulsars. The waveform model for the X-ray light-curve depends, in principle, on a large set
of parameters that include the mass, the spin and the star’s higher multipole moments [101,102]. Through the use of
compact star universality one can eliminate some of these parameters from the waveformmodel, thus analytically breaking
degeneracies that allows the remaining parameters to be measured more accurately [71,78,101]. Similarly, gravitational
wave astronomy has just recently begun with the direct detection of gravitational waves emitted in black hole binary
coalescences [17,18]. The LIGO [103–105], Virgo [106,107] GEO [108], KAGRA [109,110] and LIGO-India [111] detectors

2 In this review, the phrase ‘‘compact stars’’ refers to both neutron stars and quark stars.



aim to detect many more gravitational wave signals, such as those produced in the late inspiral and merger of compact
star binaries. The waveform model for the gravitational wave signal depends on parameters that include the compact star
masses, spins, quadrupole moments and Love numbers. Through the use of universal relations one can analytically break
degeneracies in the waveform model, and thus, measure the remaining parameters more accurately [48,49,112].

An improvement in the estimation of parameters from astrophysical observations can be very valuable. Not only can one
extract more physical information from the signal that has been detected, but one can also combine this information across
multiple observations to obtain newphysical information thatwould be otherwise inaccessible. For example, ameasurement
of themoment of inertia of neutron stars from the orbitalmotion of binary pulsars togetherwith themeasurement of the Love
number of neutron stars from gravitational wave observations would provide a unique, model-independent and internal-
structure independent test of General Relativity [48,49]. This is because bothmeasurements (and their error ellipsoids)must
lie on the approximately universal I–Love curve of General Relativity if neutron stars are described by Einstein’s theory. One
can further use universal relations to probe cosmology with gravitational wave observations of neutron star binaries [112]
via measurements of tidal effects in the late inspiral [113–115].

1.4. Layout and conventions

This review paper will focus on approximate universal relations between different properties of neutron stars and quark
stars, in particular on the I–Love–Q and the no-hair relations. Section 2 summarizes these universal relations in detail within
General Relativity. Section 3 discusses extensions of the universality to rapidly and differentially rotating stars, magnetars,
binary neutron stars, and stars with anisotropic or non-barotropic fluids. Section 4 describes connections between other
forms of universality in neutron stars and the I–Love–Q and the no-hair relations. Section 5 attempts to explain why the
universality in the I–Love–Q relations is present in compact stars, describing in detail one explanation that has not yet been
disproven, as well as a few early explanations that have now been shown to be insufficient. Section 6 summarizes how the
I–Love–Q relations are changed in a few modified theories of gravity and for exotic compact objects such as gravastars.
Section 7 focuses on the different applications of the universal relations, including those in nuclear physics, gravitational
wave physics, experimental relativity and cosmology. Section 8 concludes and points to future research.

The remainder of the review paper utilizes the following conventions. In general, we follow mostly the conventions
of Misner, Thorne and Wheeler [19], where Greek indices (α, β, . . .) in sublists are spacetime indices. We, moreover, use
geometric units G = 1 = c , which can be converted to physical units using the fact that M⊙ ∼ 1.476 km ∼ 5 × 10−6 s.
When discussing data analysis topics, Latin indices (a, b, . . .) in sublists are parameter indices. For ease of reading,we present
below a reference list with the definitions of many symbols that appear commonly throughout the review:

• M , M (max): the mass and the maximum of a compact star,

• e ≡
√

1 − a23/a
2
1: the eccentricity of an ellipsoidal star, where a1 and a3 are the semi-major and semi-minor axis, and

e0 is the eccentricity at the surface,
• fe ≡ 1 − a3/a1: the stellar flattening parameter similar to the stellar eccentricity,
• R, R(θ ), R̄ ≡ a1(1 − e2)1/6, Re ≡ R(π/2): the stellar radius for a non-rotating configuration, the stellar surficial radius

in terms of the polar angle, the geometrical mean radius and the equatorial radius of a star respectively,
• C ≡ M/R, C̄ ≡ M/R̄, Ce ≡ M/Re: the stellar compactness defined with respect to R, R̄ and Re respectively,

• |S⃗|, I ,Ω , fs ≡ Ω/(2π ), P ≡ 1/fs: themagnitude of the spin angularmomentum, themoment of inertia, the spin angular
velocity, the spin frequency and the spin period of a compact star, with Ωc , Ωs and Ωbk the spin angular velocity at
the center, at the surface and at breakup respectively,

• Q , λ2, k2, λ
(rot)
2 : the quadrupolemoment and the (electric-type) quadrupolar tidal deformability, the tidal Love number

and the rotational deformability of a compact star,
• p, qt , ρ, T : the internal radial and tangential pressure, the energy density and the temperature, where pc and ρc are

the central pressure and density, while ρ0 is the nuclear saturation density and ρ̄ is the mean density,
• Γ , n: the adiabatic and polytropic indices,
• a ≡ |S⃗|/M , χ ≡ |S⃗|/M2, q̃ ≡ −i

√
M2/M: the magnitude of the spin angular momentum per unit mass, the

dimensionless spin parameter and the reduced quadrupole moment,
• Ī ≡ I/M3, λ̄2 ≡ λ2/M

5, Q̄ ≡ −Q/(M3χ2): the dimensionless moment of inertia, tidal deformability and quadrupole
moment,

• Ĩ ≡ I/
(

MR̄2
)

and J2 ≡ −M2/(MR̄2): another dimensionless version of the moment of inertia and the quadrupole
moment,

• Mℓ, Sℓ: mass and current multipole moments,
• M̄ℓ ≡ (−1)ℓ/2Mℓ/(M

ℓ+1χ ℓ), S̄ℓ = (−1)(ℓ−1)/2Sℓ/(M
ℓ+1χ ℓ): the dimensionless mass and current multipole moments,

• λℓ, σℓ: the ℓth electric-type and magnetic type tidal deformabilities,
• λ̄ℓ ≡ λℓ/M

2ℓ+1, σ̄ℓ ≡ σℓ/M
2ℓ+1: the dimensionless version of λℓ and σℓ,

• hℓ, η̄ℓ ≡ {2/[(2ℓ− 1)!!]}(hℓ/C2ℓ+1): the ℓth shape Love number and the ℓth dimensionless shape tidal deformability,
• ϑLE: the Lane–Emden function,
• E, Ωorb, forb ≡ Ωorb/(2π ), v ≡ (MΩorb)

1/3: the energy, orbital angular velocity, orbital frequency and velocity of a
test-particle around a compact star,



• Bp, ⟨B⟩: the magnetic field strength at the poles and the averaged field strength,
• ωℓ: the ℓth f-mode oscillation (angular) frequency, with ω̄ℓ ≡ Mωℓ its dimensionless version,
• R: the Ricci curvature scalar,
• m ≡ m1 + m2, η ≡ m1m2/m

2, M ≡ mη3/5, q ≡ m1/m2: the total mass, the symmetric mass ratio, the chirp mass and
the mass ratio of a binary with massesm1 and m2,

• b: the orbital separation of a binary system,
• f : the gravitational wave frequency,
• χ⃗s ≡ (χ⃗1 + χ⃗2)/2, χ⃗a ≡ (χ⃗1 − χ⃗2)/2: the symmetric and antisymmetric combination of the individual spin angular

momentum in a binary with χ⃗A ≡ S⃗A/m
2
A, χs ≡ |χ⃗s| and χa ≡ |χ⃗a|,

• Q̄s ≡ (Q̄1 + Q̄2)/2, Q̄a ≡ (Q̄1 − Q̄2)/2: the symmetric and antisymmetric combination of the individual dimensionless
quadrupole moments,

• λ̄ℓ,s ≡ (λ̄ℓ,1+λ̄ℓ,2)/2, λ̄ℓ,a ≡ (λ̄ℓ,1−λ̄ℓ,2)/2: the symmetric and antisymmetric combination of the individual ℓth-order,
dimensionless tidal deformability,

• DL, z: the luminosity distance and the redshift,
• mz,A ≡ mA(1 + z): the redshifted mass of the Ath body.

2. Universal relations for neutron stars and quark stars in general relativity

This section reviews the universal I–Love–Q and no-hair relations for neutron stars and quarks stars. We begin by
introducing a description of neutron stars and quark stars and by defining a couple of useful approximations that will be
used heavily in many calculations. We then proceed to describe the universal relations in General Relativity, both in the
so-called Newtonian limit and in the relativistic regime.

2.1. Neutron stars, quark stars and approximation schemes

2.1.1. The structure of compact stars

Most calculations that aim to model old and cold neutron stars typically use a perfect fluid stress–energy tensor to
describe the matter sector. Such a tensor can be written as

Tµν = (ρ + p) uµuν + p gµν, (2)

where ρ is the energy density, p is the (isotropic) pressure, uµ is the (timelike) four-velocity of the fluid and gµν is the
metric tensor. When modeling real fluids, one typically must also account for shear stresses, anisotropic pressure, viscosity,
magnetic fields and heat conduction. These quantities, however, play a subdominant role and can be effectively neglected
(we consider some of these effects in Section 3).

Above we referred to old and cold neutrons stars to differentiate them from newly-born and hot proto-neutron stars.
By ‘‘old’’ we mean stars that have lived long enough to cool down to surface temperatures of roughly 105–106 K, such that
they are cold relative to their Fermi temperature. Such stars are also typically so far from any other body that they can be
treated as isolated. These isolated stars rotate rigidly because vorticity is unsourced when the pressure only depends on
the stellar density, i.e. in the barotropic limit. On the other hand, proto-neutron stars formed after a supernova explosion
or hypermassive neutron stars formed after the merger of binary neutron stars, are typically hot, highly magnetized and
deformed, and rotate differentially. Such stars cannot be modeled with a perfect fluid stress–energy tensor. In this review
paper, we mostly focus on old and cold neutron stars, which we shall refer to as simply ‘‘neutron stars’’, unless otherwise
stated.

The internal structure of stars is fully determined by their equation of state, i.e. a thermodynamic relation between the
matter degrees of freedom in their interior. For neutron stars and quark stars described by a perfect fluid stress–energy
tensor, the equation of state is barotropic, meaning that it relates the star’s internal pressure to only its density. The equation
of state of compact stars can be probed experimentally on Earth at around nuclear saturation density ρ0 ≈ 2.5×1014 g/cm3,
appropriate to model their crust. Neutron stars and quark stars, however, are extremely compact, with densities that easily
exceed the nuclear saturation limit in their interior. The equation of state is thus quite uncertain at densities appropriate to
the outer core [ρ ∈ (0.5, 2)ρ0], or even worse at densities appropriate to the inner core [ρ > 2ρ0].

These uncertainties have led to a large number of proposed, so-called ‘‘realistic’’, equations of state for neutron stars.
These differ not only in the different approximations used to solvemany-body nuclear physics equations (e.g. the variational
method [116], the Hartree–Fock approximation [117,118], the Relativistic Mean Field approximation [119,120]), but also in
the internal matter degrees of freedom that are allowed to be present (e.g. normal matter in the form of neutrons, protons,
electrons, and muons, or kaon condensates [121,122], hyperons [123–125], and quark–gluon plasmas [46]) or even pure
quark matter [47]. Fig. 1 shows the mass–radius curve for a sequence of compact stars, constructed by varying the central
density (a higher central density leads to amoremassive star with a smaller radius). Observe that different equations of state
can lead to widely different mass–radius curves, with most of them allowing for stars with masses larger than the recently
discovered massive pulsar J1614-2230 [126], J0348+0432 [127] and Vela X-1 [128–130].



Fig. 1. Mass–radius curve for a sequence of isolated, non-rotating compact star solutions labeled by central density. The solid lines correspond

to regular neutron star solutions with different equations of state with normal matter composition (i.e. neutrons, protons electrons and muons)

[118–120,122,124,125,131–140]. The dashed lines correspond to solutions for equations of state that also contain exotic matter, namely hyperons, kaon

condensates and quarks [122–125,140,141]. The dotted lines correspond to strange quark star solutions [47]. Observe how the mass–radius curve can

be drastically different as one varies the equation of state, with most still passing the constraints imposed by the massive pulsars J1614-2230 [126,142]

(green dot-dashed horizontal line), J0348+0432 [127] (red dot-dashed horizontal line) and Vela X-1 [128–130] (blue dot-dashed horizontal line), where

the measurement error in the latter is shown with dotted horizontal lines.

In this review, we will choose a subset of equations of state to study universal behavior in neutron stars and quark
stars. When modeling neutron stars composed only of normal matter, we will present results using a group of the following
equations of state: APR, AP3 and AP4 [131], SLy [132], SGI and SV [133], SkI4 [134], LS220 [135], Shen [119,120], ENG [118],
MPA1 [136],MS1 andMS1b [137],WFF1 andWFF2 [138], DBHF(2)(A) [124], GA-FSU2.1 [122], G4 [125], GCR [139],MPa [140].
When modeling neutron stars that also contain exotic matter, we will employ the following equations of state: ALF5 [141],
SGI-YBZ6-S333 and SkI4-YBZ6-S333 [123], NlY5KK∗ [124], GA-FSU2.1-180 [122], H4 [125], MPaH [140]. When modeling
quark stars, we will employ the SQM1, SQM2 and SQM3 [47] equations of state. This set of equations of state include some
that present kaon condensates, hyperons and quark–gluon plasmas; see Chatziioannou et al. [141] for a more detailed but
concise description of these equations of state.

All of these different equations of state can be effectively approximated as piecewise polytropes [43,143]. A polytropic
equation of state is one defined by the equation

p = KρΓ = Kρ1+1/n, (3)

where the quantities K , Γ and n are constants, with Γ the adiabatic index and n the polytropic index. The n = 0 case
corresponds to the equation of state of an incompressible (i.e. constant density) fluid, which is also a good model for
strange quark stars [47] in the low pressure regime. The realistic equations of state described above can bemodeled through
piecewise polytropic equations of state with indices n ∈ [0.5, 1] [43,143].

2.1.2. Useful approximations

The calculation of the gravitational field generated by a compact star requires the solution to the field equations. In
General Relativity, this is a set of ten, non-linear and coupled partial differential equations for ten metric functions of
four spacetime coordinates. Needless to say, a solution to these equations has not yet been found analytically in closed
form for generic equations of state, even when restricting attention to highly symmetric spacetimes. Fortunately, however,
compact stars are rather simple objects that possess enough symmetries to simplify the mathematics significantly. To start
with, since compact stars are typically isolated, rigidly rotating objects, one can assume their spacetime is stationary and
axially symmetric. Mathematically, these symmetries imply the existence of a temporal and an azimuthal Killing vector
(with the azimuthal direction identified with rotation), which in turn implies that the metric functions only depend on the
radial and polar angle coordinates. Moreover, these symmetries plus the Einstein equations imply that only four of the ten
metric functions need to be non-vanishing, which allows us to write the line element in the standard Weyl–Papapetrou
form [144,145] in Boyer–Lindquist-type coordinates

ds2 = −eν(r,θ )dt2 + eλ(r,θ )dr2 + r2K (r, θ )
[

dθ2 + sin2 θ [dφ − ω(r, θ )dt]2
]

, (4)

where ν(r, θ ), λ(r, θ ), K (r, θ ) and ω(r, θ ) are metric functions.



Fig. 2. Dimensionless spin parameter as a function of spin frequency in Hz for stars with different masses and different equations of state. The shaded

regions correspond to stars with the same equation of state (red for SLy [132] and blue for Shen [119,120]). Observe that χ < 0.5 for most stars, especially

those with periods above 2ms (equivalent to fs < 500 Hz), except those close to the spin frequency of the fastest millisecond pulsar observed [155] (dashed

black line). This figure is constructed with data obtained for slowly-rotating stars to third order in spin. Higher order terms in spin only affect the result by

≲3%. Each line has a fixed central density and the mass and radius in the legend are for a non-rotating configuration.

Even with these symmetries invoked, the resulting system of coupled and non-linear, partial differential equations is
formidable, which forces us to face one of two options. The first is to find an ‘‘exact’’ solution by solving this system fully
numerically, for example through a Green’s function approach or through spectral methods. Such an approach has been
implemented in the publicly available RNS [146] and LORENE/rostar [147,148] codes. The LORENE code solves the four
elliptic-type equations that result from the Einstein equations [149] usingmulti-domain spectral methods and decomposing
themetric functions in terms of Chebyshev polynomials. The RNS code solves the Einstein equations using a Green’s function
approach [150,151]. Once a numerical solution has been obtained, the exterior multipole moments of the spacetime can
be extracted through the evaluation of certain integrals [52]. These codes are particularly well-suited to modeling rapidly
rotating stars, since then the effect of rotation is large enough to be numerically resolvable.

But almost all neutron stars observed in Nature happen to be slowly-rotating, which then allows for a different, semi-
analytic approach. Although neutron stars are typically born with millisecond periods, they quickly spin-down due to
magnetic braking and viscous damping [152–154]. When in a binary, neutron stars may be spun-up or ‘‘recycled’’ through
accretion, leading again to millisecond periods. The fastest millisecond pulsar observed, J1939+2134 [155], has a period of
1.5 ms, which is comparable to the rotational period of the blades in a professional kitchen blender. How can one then be
justified in using a slow-rotation approximation? The reason is that although the raw angular velocity is large, it is much
smaller than the Keplerian angular velocity of a test-particle at the surface (or the breakup angular velocity). Alternatively,
one can introduce the dimensionless perturbation parameter χ = |S⃗|/M2 for neutron stars and quark stars (where |S⃗| = IΩ

is the magnitude of the spin angular momentum, withM the mass, I the moment of inertia andΩ the angular velocity) and
require it to be small. This quantity is plotted in Fig. 2 as a function of spin frequency for a few neutron star masses and
equations of state. Observe that χ < 0.5 for a large portion of parameter space, especially those with periods above 2 ms
(equivalent to fs < 500 Hz).

The slow-rotation or ‘‘Hartle–Thorne’’ approximation [145,156] consists of expanding and solving the Einstein equations
in χ ≪ 1. Because of the structure of these equations, the radial and angular sectors separate and the free metric functions
can be product decomposed into Legendre polynomials of cos θ and free functions of r . Moreover, axisymmetry requires that
the metric functions that appear in the diagonal components of the metric be proportional to even powers of χ , while the
gravitomagnetic (t, φ) component be proportional to odd powers of χ . The metric expanded in this form goes by the name
of the Hartle–Thorne metric. The perturbed Einstein equations to O(χ0) reduce to the well-known Tolman–Oppenheimer–
Volkoff equations (when using stress–energy tensor conservation) and their solution leads to the mass (the zeroth mass
multipole moment) and the radius of the star (i.e. the radius where the pressure vanishes). The solution to the perturbed
Einstein equations to O(χ ) and O(χ2) leads to the moment of inertia (related to the first current multipole moment) and
the quadrupole moment (the second mass multipole moment) of the star. Yagi et al. [52] have extended the slow-rotation
approximation to fourth-order in rotation and compared results to those obtained fully numerically [52]. Throughout this
review, ‘‘slow-rotation limit’’ will refer to calculations carried out to leading-order in the slow-rotation approximation.

Even within the slow-rotation approximation, the perturbed Einstein equations, however, still need to be solved
numerically for most but the simplest equations of state. In practice, the differential system is simplified by changing
radial coordinates such that the matter sector (the pressure and energy density) does not need to be perturbed [145].
The perturbed Einstein equations are then numerically solved order by order in rotation, both inside and outside the star,
imposing regularity at the stellar center and asymptotic flatness at spatial infinity. Matching the two numerical solutions at



the stellar surface determines integration constants in the exterior metric tensor, whose asymptotic form at spatial infinity

determines the multipole moments of the spacetime. For simple polytropic equations of state, like an n = 0 polytrope and

the Tolman VII equation of state [43,157], the perturbed Einstein equations to O(χ0) can be solved analytically.

An approximate analytic solution, e.g. using an n = 0 polytrope, can also be obtained to higher order in the dimensionless

spin parameter through aweak-field or post-Minkowskian approximation, i.e. by expanding the perturbed Einstein equations

in powers of the stellar compactness C := M/R, which determines the strength of the gravitational field at the stellar

surface. Neutron stars are the most compact stars in Nature, but nonetheless C ∈ (0.05, 0.25), depending on their mass or

central density. This implies that one may obtain an accurate solution to the perturbed Einstein equations if one carries out

such an expansion to sufficiently high order in compactness, at any given (fixed) order in χ . When one truncates the post-

Minkowskian expansion to leading-order in compactness one obtains the so-called Newtonian limit. Newtonian neutron

stars are thus not neutron stars constructed in Newtonian gravity, but rather neutron stars constructed in General Relativity

to leading-order in an expansion about small compactness.

Until now, we have mostly discussed the calculation of the gravitational field of isolated compact stars, but much of

this review paper will deal with tidal deformations induced by companion bodies. When compact stars are in binaries, the

gravitational field of the companion can distort the shape and the gravitational field of the primary star. These deformations

are encoded in the so-called tidal deformabilities, related to the tidal Love numbers, of the star. All observed astrophysical

neutron star binaries, including the most relativistic binary pulsar, are however very well-separated, with radial distances

that exceed105 km. For stars sowidely separated, one can employ a small-tide approximation inwhich one solves the Einstein

equations as an expansion in the tidal deformation about an isolated neutron star solution. In fact, such an approximation

is valid even for the late-inspiral phase of neutron star binaries, which are also targets for ground-based gravitational

wave interferometers, such as Adv. LIGO. In practice, the calculation of the tidal deformation is similar to solving the

perturbed Einstein equations in the slow-rotation approximation, except that here one sets the odd-parity (rotation-related)

perturbations to zero and does not impose asymptotic flatness [27,28,158]. This allows for the extraction of not only the

tidally-induced quadrupole moment, but also the strength of the tidal field, with which one can then calculate the tidal

deformability.

2.2. I–Love–Q

The I–Love–Q relations are approximately-universal (i.e. equation-of-state insensitive) inter-relations between the

stellar moment of inertia I , the quadrupolar tidal deformability λ2 and the (spin-induced) quadrupole moment Q . The

moment of inertia quantifies how fast an object can spin with a given angular momentum. The quadrupole moment Q

determines the magnitude of the quadrupolar deformation of a star due to rotation. The tidal deformability λ2 is defined as

the ratio between the tidally-induced quadrupole moment and the strength of the external quadrupolar tidal field [158],

and thus, it determines how easily an object can be deformed due to an external tidal field. The tidal deformability is

related to the dimensionless tidal Love number (also known as the tidal apsidal constant) of the second kind k2 [159] via

k2 = 3λ2/(2R
5) [158].

2.2.1. Newtonian results

In the Newtonian limit, the tidal Love number k2 is calculated as follows [160–163]. The isodensity surfaces inside a star

can be represented by the following function

r(r̄, θ, φ) = r̄

[

1 +
∑

ℓ,m

fℓ(r̄)Yℓm(Ω̂)Yℓm(n̂)

]

, (5)

where r̄ is a radial parameter, Yℓm(Ω̂) are spherical harmonics in the Ω̂ direction and n̂ denotes the principal direction of

the perturbation. The dimensionless distortion function fℓ is obtained by solving the Clairaut–Radau equation, which comes

from the Poisson and Euler equations, i.e. the equations of structure of General Relativity in the Newtonian limit [163]:

r̄
dηℓ

dr̄
+ 6

ρ

ρ̄
(ηℓ + 1) + ηℓ(ηℓ − 1) − ℓ(ℓ+ 1) = 0, (6)

with the boundary condition ηℓ(0) = ℓ− 2, where ηℓ(r̄) ≡ d ln fℓ/d ln r̄ . In this equation, ρ is the density of the undistorted

configuration and ρ̄ is the mean density of the undistorted star, where recall that the energy density is the same as the mass

density in the Newtonian limit. The quadrupolar tidal Love number k2 is given by η2 via

k2 = 3 − η2(R)

2[2 + η2(R)]
. (7)

In the Newtonian limit, the moment of inertia I in the slow-rotation limit is given by [145,163]

I = 8π

3

∫ R

0

r4ρ(r)dr, (8)



while the quadrupole moment Q is given by [164,165]

Q = 2π

∫ π

0

∫ R(θ )

0

ρ(r, θ )r4P2(cos θ ) sin θ dr dθ, (9)

where R(θ ) is the surface of the stellar ellipsoid, i.e. the location of the surface when the star is rotating is a function of the

angle θ , where we note that R(θ ) = R+O(χ2). One can also calculate Q from λ2 directly, using the fact that the quadrupolar

rotational deformability, given by λ
(rot)
2 = −Q/Ω2 with Ω the stellar angular velocity [162,166], is the same as λ2 in the

Newtonian limit [162].

The easiest way to see how the I–Love–Q relations come about is by calculating them analytically for an n = 0 and an

n = 1 polytrope. For an isolated star, the density of a non-rotating configuration in these two cases is given analytically

by [49]

ρ(n=0) = 3

4π

M

R3
, ρ(n=1)(r) = 1

4

M

R2

1

r
sin
(

π
r

R

)

. (10)

In the incompressible (n = 0) case, the density is obtained trivially by computing the mass of the star, while in the n = 1

case it is obtained by solving the Tolman–Oppenheimer–Volkoff equation and then using the polytropic equation of state

[Eq. (3)]. With the density at hand, one can then compute (I, λ2,Q ) as a function of compactness and then eliminate the

compactness to find the following relations [49]:

Ī = C
(n)

Īλ̄2
λ̄
2/5

2 , Ī = C
(n)

Ī Q̄
Q̄ 2, Q̄ = C

(n)

Q̄ λ̄2
λ̄
1/5

2 , (11)

where we have a dimensionalized (I, λ2,Q ). The equation-of-state dependence of the I–Love–Q relations in Eq. (11) is

completely encoded in the coefficients (C
(n)

Īλ̄2
, C

(n)

Ī Q̄
, C

(n)

Q̄ λ̄2
),which dependon the polytropic indexn. These coefficients, however,

are approximately independent of n, which can be seen by taking the ratio between the coefficients in the n = 0 and n = 1

case [49]:

C
(0)

Īλ̄2

C
(1)

Īλ̄2

= 22/533/5π6/5(15 − π2)2/5

5π2 − 30
≈ 1.002, (12)

C
(0)

Ī Q̄

C
(1)

Ī Q̄

= 108π6(π2 − 15)2

3125(π2 − 6)5
≈ 1.008, (13)

C
(0)

Q̄ λ̄

C
(1)

Q̄ λ̄

= 25(π2 − 6)2

24/536/5π12/5(15 − π2)4/5
≈ 0.997. (14)

The I–Love–Q relations are then roughly the same, with differences of about 0.2–0.8%, regardless of whether one constructs

the Newtonian stars with two very different equations of state, an n = 0 and an n = 1 polytrope.

2.2.2. Relativistic results

Let us now consider the I–Love–Q relations in the full relativistic regime, outside of the Newtonian limit. As explained

in Section 2.1.2, this must be done numerically, either through a slowly-rotating and a tidally-deformed approximation or

through a fully numerical analysis. Consider first the I–Love–Q relations in the slow-rotation approximation, as shown in

the top panels of Fig. 3 for various equations of state. The single parameter along the sequence of stellar configurations is

the central density (high central density corresponds to low λ̄2, Q̄ and Ī), since the rotational frequency cancels out of the

dimensionless quantities. We only show data with the stellar mass of an isolated, non-rotating configuration in the range

1M⊙ < M < M (max) with M (max) representing the maximum mass for such a configuration. These numerical results can be

validated against the analytic relations in the Newtonian limit presented in Section 2.2.1 (dashed lines), where we see the

former approach the latter as λ̄2 increases (as the compactness decreases). Observe that the relations are insensitive to the

equation of state, which allows one to construct a single fit (black solid curves) given by

ln yi = ai + bi ln xi + ci(ln xi)
2 + di(ln xi)

3 + ei(ln xi)
4, (15)

with coefficients given in Table 1. Such a fit corresponds to an updated version of that in Yagi and Yunes [48,49] due to a

larger number of equations of state considered in this review.We stress that the fit is valid only within the range of Ī , λ̄2 and

Q̄ shown in Fig. 3. The bottom panels of Fig. 3 show the absolute fractional difference between all the data and the fit, which

is at most ∼1%, slightly larger than the variation in the Newtonian limit of Section 2.2.1. These relations were first found in

Yagi and Yunes [48,49] and later confirmed in Lattimer and Lim [167] for different equations of state.

The I–Love–Q relations can also be obtained analytically in a full post-Minkowskian expansion (beyond the Newtonian

limit) for special equations of state. Chan et al. [168] extended the results of Section 2.2.1 through a post-Minkowskian



Fig. 3. (Top) The universal I–Love (left) and Q–Love (right) relations for slowly-rotating neutron stars and quark stars of 1M⊙ < M < M (max) with various

equations of state. A single parameter along the curve is the stellar mass or compactness, which increases to the left of the plots. The solid curves show

the fit in Eq. (15). The top axis shows the corresponding stellar mass of an isolated, non-rotating configuration with the APR equation of state. (Bottom)

Absolute fractional difference from the fit, while the dashed lines show the analytic Newtonian relations in Eq. (11) with n = 0. Observe that the relations

are equation-of-state insensitive to O(1%).

Table 1

Updated numerical coefficients for the fitting formula of the I–Love, I–Q and Q–Love relations given in Eq. (15).

yi xi ai bi ci di ei

Ī λ̄2 1.496 0.05951 0.02238 −6.953 × 10−4 8.345 × 10−6

Ī Q̄ 1.393 0.5471 0.03028 0.01926 4.434 × 10−4

Q̄ λ̄2 0.1940 0.09163 0.04812 −4.283 × 10−3 1.245 × 10−4

expansion for incompressible stars to find analytic expressions for Ī and λ̄2 to sixth-order in compactness. Combining these

expressions, they found the following I–Love relation for incompressible stars [168]:

Ī = 2

5

(

2λ̄2
)2/5

[

1 + 22

7

(

2λ̄2
)−1/5 + 8726

2205

(

2λ̄2
)−2/5 + 79840

33957

(

2λ̄2
)−3/5 + 10621396

21068775

(

2λ̄2
)−4/5

− 495373192

4866887025

(

2λ̄2
)−1 − 29520935754944

286683980207625

(

2λ̄2
)−6/5 + O

(

1

λ̄2

)]

. (16)

The expansion is here in powers of λ̄
−1/5

2 because λ̄2 ∝ C−5 for incompressible stars. One could attempt to resum this

expansion, for example, through a Padé approximation [168], but this is actually not necessary. The above equation is an

excellent representation of the I–Love relation that cannot be visually distinguished from the fit used in Fig. 3, except for

λ̄2 > 10 [168].3 Chan et al. [169] extended the above analysis to self-bound stars, which include quark stars, and found that

the I–Love relation is very similar to that for incompressible stars in the above equation. We will review the results of Chan

et al. [169] in more detail in Section 4.4.2.

2.3. No-hair relations

The no-hair relations are approximately-universal (i.e. equation-of-state insensitive) inter-relations between the multi-

pole moments of the exterior metric of a star. In General Relativity, there are two types of multipole moments: mass and

currentmoments, associatedwith the energy density and the energy current density of the fluid respectively. Thesemoments

encode information about observable properties of the star (as measured by an observer at spatial infinity): the ℓ = 0 mass

multipole moment is just the mass of the star, the ℓ = 1 current moment is the spin angular momentum of the star and the

ℓ = 2massmoment is the quadrupolemoment. The oddmassmoments and the even currentmoments vanish by symmetry

considerations.

3 Wehave attempted to determine the coefficients of Eq. (16) by fitting them to numerical data.We found that the first and second coefficients agreewith

those in Eq. (16) within 2% and 12% respectively, while higher coefficients disagree by 80% or more. This is because Eq. (16) is an expansion in compactness,

and thus, there is no reason to believe that the fit gives similar coefficients as in Eq. (16) for data that includes large compactnesses.



Two main definitions of multipole moments have been introduced in the literature. The Thorne multipole moments are
defined at spatial infinity through an expansion of the metric tensor in a particular set of coordinates [170]. The Geroch–
Hansenmultipole moments are defined in terms of the conformal group [35,36]. These two sets of moments can be mapped
into each other [171],with either set capable of describing the exteriormetric of a compact star [38,39,164]. In theNewtonian
limit, both definitions reduce to a single expression for the exterior multipole moments, modulo an overall constant. In the
relativistic regime, we will mostly use the Geroch–Hansen moments in this article.

2.3.1. Newtonian results
The massMℓ and current Sℓ multipole moments of a compact star in the Newtonian limit are [164]

Mℓ = 2π

∫ π

0

∫ R(θ )

0

ρ(r, θ ) Pℓ(cos θ ) sin θ dθ r
ℓ+2dr, (17)

Sℓ = 4π

ℓ+ 1

∫ π

0

∫ R(θ )

0

Ω ρ(r, θ )
dPℓ(cos θ )

d cos θ
sin3 θ dθ rℓ+3dr, (18)

where recall that R(θ ) describes the stellar surface of an ellipsoidal star. Note that the above expression forM2 is equivalent
to the Newtonian expression forQ in Eq. (9). Note also that reflection symmetry about the equator, i.e. thatMℓ and Sℓ remain
invariant under θ → θ + π , requires thatM2ℓ+1 = 0 = S2ℓ.

In order to derive the no-hair like relations analytically, onemust solve the above integrals to find closed-formexpressions
for themultipole moments in terms of the compactness. This is impossible without the use of further approximations due to
the coupling of the radial and polar angle sectors in each integral. Therefore, in order tomake analytic progress, one employs
the elliptical isodensity approximation [172];

(i) The stellar isodensity surfaces are self-similar ellipsoids with a fixed stellar eccentricity,
(ii) The density as a function of the isodensity radius r̃ for a rotating configuration matches that of a non-rotating

configuration with the same volume,

where recall that the stellar eccentricity is defined via e =
√

1 − a23/a
2
1 with a1 (a3) representing the semi-major (semi-

minor) axis of the ellipsoid. The isodensity radius r̃ is defined via r̃ ≡ r/Θ(θ ) [51] with

Θ(θ ) ≡
√

1 − e2

1 − e2sin2 θ
. (19)

The elliptical isodensity approximation is excellent when describing compact stars, such as neutron stars and quark stars,
that rotate slowly. The left panel of Fig. 4 compares isodensity contours obtained numerically for slowly-rotating neutron
stars (solid contours) and analytically4 within the elliptical isodensity approximation (dashed contours), using the SLy
equation of state and a stellar rotation frequency of fs = 500 Hz. We set the central density to ρc = 1.0 × 1015 g/cm3,
which gives a star with massM = 1.4M⊙ for an isolated, non-rotating configuration. Observe that the two types of contours
are indistinguishable. The top right panel of Fig. 4 shows the stellar density profile at the equator obtained numerically (solid)
and analytically (dashed) for various frequencies fs, with fs = 700 Hz roughly corresponding to the rotation frequency of the
fastest spinning pulsar currently observed [155]. The bottom panel shows the fractional difference between the numerical
and analytic density profiles for each fs. Observe that the elliptical isodensity approximation becomes less accurate, as
expected, when one increases fs. Observe also that the maximum fractional difference occurs close to the stellar surface.
This is because the density profile changes significantly close to the surface, as shown in the top panel, and hence, a small
error in isodensity contours leads to a relatively large difference between the two approaches. Notice, however, that the
maximum fractional difference is 7% at most for the largest frequency considered fs ≤ 700 Hz.

The elliptical isodensity approximation allows us to make analytic progress in the solution to the integrals for the
multipole moments. The first assumption allows for the decomposition of the integrals as follows:

Mℓ = 2π Iℓ,3 Rℓ, Sℓ = 4πℓ

2ℓ+ 1
Ω
(

Iℓ−1,5 − Iℓ+1,3

)

Rℓ+1, (20)

where the radial and angular integrals are defined by

Rℓ ≡
∫ a1

0

ρ(r̃)r̃ℓ+2dr̃, Iℓ,k ≡
∫ +1

−1

Θ(µ)ℓ+kPℓ(µ)dµ. (21)

Notice that Rℓ can be written as a function of compactness and eccentricity, where the precise functional form will depend
on the equation of state. On the other hand, Iℓ is simply a function of eccentricity that is equation-of-state independent. In
particular, the integrals Iℓ,3 and Iℓ,5 can be solved exactly as a function of e [173], but the radial integrals must be solved
numerically for a generic equation of state.

4 Strictly speaking, the elliptical isodensity result is obtained semi-analytically, as one needs to calculate the density profile for an isolated, non-rotating

configuration numerically.



Fig. 4. (Left) Ratio of the stellar density to the central density (color gradient) and isodensity contours of a typical slowly-rotating neutron star with

M = 1.4M⊙ and fs = 500 Hz, using the SLy equation of state [132]. The solid contours are obtained numerically by solving the slow-rotation equations

of structure, while the dashed curves are obtained analytically using the elliptical isodensity approximation. (Top Right) The stellar density profile at the

equator for stars rotating at various frequencies fs , using the SLy equation of state. As in the left panel, the solid curves represent the profile obtained

numerically, while the dashed curves represent that obtained analytically within the elliptical isodensity approximation. (Bottom Right) The fractional

difference between the solid and dashed curves in the top panel for each fs . Observe that the elliptical isodensity approximation accurately captures the

realistic profile with an error of 7% at most when fs ≤ 700 Hz. The rapidly oscillatory behavior at r/R ∼ 0.95 is due to a sudden change in the stellar density

for an isolated, non-rotating configuration.

The second assumption of the elliptical isodensity approximation allows us to rewrite the radial integrals in terms of the
Lane–Emden function ϑLE(ξ ), if we assume a polytropic equation of state. The Lane–Emden function, which is defined via
ϑLE = (ρ/ρc)

1/n with ρc representing the central density, is a solution to the Lane–Emden equation, which is nothing but
the dimensionless form of the Poisson equation for the gravitational potential of a polytropic fluid [163]. The quantity ξ is a
dimensionless radial coordinate, with the stellar surface located at ξ = ξ1. In terms of the Lane–Emden function, Mℓ and Sℓ
are then given by [51]

M2ℓ+2 = (−)ℓ+1

2ℓ+ 3

e2ℓ+2

(1 − e2)
ℓ+1
3

Rn,2+2ℓ

ξ 2ℓ+4
1 |ϑ ′(ξ1)|

M2ℓ+3

C̄2ℓ+2
, S2ℓ+1 = (−)ℓ

2ℓ+ 3

2Ω e2ℓ

(1 − e2)
ℓ+1
3

Rn,2+2ℓ

ξ 2ℓ+4
1 |ϑ ′(ξ1)|

M2ℓ+3

C̄2ℓ+2
, (22)

where

Rn,ℓ ≡
∫ ξ1

0

[ϑLE(ξ )]
nξ ℓ+2dξ, (23)

and where the geometric mean radius R̄ ≡ a1(1 − e2)1/6 was used in the definition of the compactness C̄ ≡ M/R̄.
With these analytic expressions for themultipolemoments in terms of the eccentricity and the compactness, we can now

compute the no-hair relations for compact stars in the Newtonian limit. EliminatingΩ and C̄ using S1 and M2 respectively,
one arrives at the three-hair relations [51]

Mℓ + i
q̃

a
Sℓ = B̄

n,⌊ ℓ−1
2

⌋M(iq̃)ℓ, (24)

or in terms of the dimensionless multipole moments [51]

M̄2ℓ+2 + iS̄2ℓ+1 = B̄n,ℓM̄
ℓ
2(M̄2 + iS̄1). (25)

The reduced quadrupole moment is given by iq̃ ≡ √
M2/M and ⌊x⌋ corresponds to the largest integer not exceeding x. All of

the equation-of-state dependence is encoded in the coefficients B̄n,ℓ, which is defined as

B̄n,ℓ ≡ 3ℓ+1

2ℓ+ 3

R
ℓ
n,0Rn,2ℓ+2

R
ℓ+1
n,2

, (26)

with Rn,0 = |ϑ ′(ξ1)|ξ 21 when using the Lane–Emden equation and B̄n,−1 = 1 = B̄n,0. Observe that the three-hair relations
for Newtonian polytropes resemble the black hole no-hair relations of Eq. (1), although unlike in the latter, the multipole
moments in the former depend not only on the mass and spin, but also on the quadrupole moment. Observe also that the
coefficients B̄n,ℓ do not depend on e at all, with all of the spin dependence factoring out through M̄2 and S̄1.

Whether the no-hair relations are equation-of-state independent depends on how sensitive the B̄n,ℓ coefficients are to
variations of the polytropic index. The solid curves in the top panel of Fig. 5 show B̄n,ℓ as a function of n for various ℓ,



Fig. 5. (Top) The coefficients B̄n,ℓ against the polytropic index n for various ℓ obtained numerically (solid) and analytically (dashed). The latter is obtained by

solving the perturbed Lane–Emden equation about n = 0. (Bottom) Fractional difference of the numerical results for various n from the average ⟨n⟩ = 0.65.

Observe that the coefficients are universal to O(10%).
Source: This figure is taken and modified from Bretz et al. [175].

while the bottom panel shows the fractional difference with respect to B̄⟨n⟩,ℓ, where ⟨n⟩ = 0.65 is the averaged polytropic
index in n ∈ [0.3, 1]. Observe that the equation-of-state variation increases as one increases ℓ. Nonetheless, up to ℓ = 3
(corresponding to the determination of S7 and M8 in terms of M , S1 and M2), the three-hair relations are equation-of-state
universal to better than ∼20%. These results were first presented in Stein et al. [51] and then extended to realistic equations
of state (through piecewise polytropes) in Chatziioannou et al. [174], which found similar levels of universality.

Completely analytic three-hair relations can also be obtained if one studies stars with equations of state that are
perturbations from n = 0 polytropes [174,176]. Doing so, one finds that [174,175]

B̄n,ℓ = 15 · 5ℓ
(2ℓ+ 3)(2ℓ+ 5)

{

1 − n

15

[

15H

(

ℓ+ 5

2

)

− 6ℓ− 46 + 30 ln 2

]}

+ O(n2), (27)

where H(ℓ) ≡ ∑ℓ

k=11/k is the ℓth harmonic number. Dashed lines in the top panel of Fig. 5 show the variability of B̄n,ℓ (as
given in Eq. (27)) with respect to n. Observe that this analytic but approximate expression accurately describes the numerical
results even when n = 1 (to O(1%) [174]). Observe also that the n-dependence of Eq. (27) is extremely weak, with ∂ B̄n,ℓ/∂n
a very shallow function of ℓ for small ℓ.

2.3.2. Relativistic results
The no-hair relations for compact stars hold, not only in theNewtonian limit, but also in full General Relativity. This can be

shown to be the case through a numerical, slow-rotation treatment carried out in Yagi et al. [52]. Let us begin by explaining
how one can calculate the Geroch–Hansen multipole moments of a relativistic spacetime, where the integrals in Eqs. (17)
and (18) are no longer valid. An obvious way is to simply follow the definition of such moments presented in [37], but an
easier approach was proposed in Pappas and Apostolatos [177]. Since the Geroch–Hansen moments are gauge invariant,
one can extract them by calculating a gauge invariant quantity in two ways, in terms of (i) the given spacetime metric and
(ii) the Geroch–Hansen moments, and then comparing the two expressions. Pappas and Apostolatos [177] considered a test
particle around a stationary and axisymmetric spacetime in an equatorial, circular orbit and chose the energy change per
logarithmic interval of the orbital frequency, dE/d lnΩorb, as the gauge invariant quantity. The orbital angular velocityΩorb

and the energy per unit mass of a test particle E are given in terms of the metric components as

Ωorb = −gtφ,r +
√

(gtφ,r )2 − gtt,rgφφ,r

gφφ,r
, E = − gtt + gtφΩorb

√

−gtt − 2gtφΩorb − gφφΩ
2
orb

, (28)

where commas represent partial derivatives. Substituting themetric for slowly-rotating compact stars valid to quartic order
in spin in Yagi et al. [52] into the above equations, expanding about small velocity v ≡ (MΩorb)

1/3 and eliminating the
radial coordinate r , one finds dE/d lnΩorb in a polynomial series of v. On the other hand, such an expression in terms of the
Geroch–Hansen moments was also derived in Ryan [178]. Comparing the two term by term, one finds the Geroch–Hansen
moments in terms of the integration constants in the metric [52].

With the multipole moments at hand, we now present the interrelations among them. The top panels of Fig. 6 show
the S̄3–M̄2 and M̄4–M̄2 relations [52] for slowly-rotating neutron stars and quark stars with various equations of state. As
before, the single parameter along each sequence is the central density, or equivalently, the stellar mass or compactness.
First, observe that for large values of M̄2 (i.e. as one approaches the Newtonian limit), the numerical results approach the
semi-analytic Newtonian relations of Section 2.3.1 for an n = 0.5 polytrope. Second, observe that the no-hair relations
are approximately independent of the equation of state, which allows the construction of a single fitting function (black



Fig. 6. (Top) The universal S̄3–M̄2 (left) and M̄4–M̄2 (right) relations for neutron stars and quark stars with various equations of state for 1M⊙ < M < M (max) .

The solid curves show a fit to all the numerical data given by Eq. (15), while the dashed ones represent the Newtonian relations in Eq. (25) with n = 0.5.

The meaning of each symbol is the same as in Fig. 3. (Bottom) Absolute fractional difference between the data and the fit. Observe that the relations are

equation-of-state insensitive to ∼10%.

solid curves) of the form of Eq. (15) with coefficients in Table 2 that is equation-of-state independent. As in the I–Love–Q
case, we only present data for 1M⊙ < M < M (max) and the fit is only valid within the range of M̄2 shown in Fig. 6. The
bottom panels present the absolute fractional difference between the numerical data and the fit. Observe that the S̄3–M̄2

and M̄4–M̄2 relations are insensitive to the variation in the equation of state to ∼4% and ∼10% respectively. Such an amount
of variation is somewhat larger than that found in the I–Love–Q relations of Fig. 3. The variation in the S̄3–M̄2 (M̄4–M̄2)
relation is comparable to (larger than) that in the Newtonian no-hair relations in Fig. 5.

3. Extensions of universality in general relativity

In this section, we review extensions to the analysis of the previous section. We begin by studying whether different
ways of normalizing the multipole moments lead to a stronger universality in Section 3.1. We then relax the slow- and
uniform-rotation approximations in Section 3.2. Section 3.3 deals with magnetized neutron stars. We introduce anisotropic
pressure in Section 3.4. We then review the effect of non-barotropic equations of state in Section 3.5 and finally consider
dynamical effects in the I–Love relation in Section 3.6.

3.1. Different normalizations to strengthen universality

Can we improve the strength of the universality in the I–Love–Q and the three-hair relations for the dimensionless
multipole moments in Eq. (25) by choosing a different normalization? This question was addressed byMajumder et al. [179]
when they considered a new set of dimensionless moments of inertia and multipole moments:

Ī (aI ) ≡ Ī

CaI
, M̄

(aM,2ℓ+2)

2ℓ+2 ≡ M̄2ℓ+2

CaM,2ℓ+2
, S̄

(aS,2ℓ+1)

2ℓ+1 ≡ S̄2ℓ+1

CaS,2ℓ+1
. (29)

Although these new definitions force the three-hair relations to depend in principle on both Ω and e, this dependence
vanishes in the slow-rotation limit. One then finds that the fractional difference in the I–Q , M̄4–M̄2 and S̄3–M̄2 Newtonian
relations between an n = 0 and an n = 1 polytrope is given by

Ī (aI )|n=0 − Ī (aI )|n=1

Ī (aI )|n=0

= 1 − 4−δ05δ0+1 π
2 − 6

3π2
, (30)

M̄
(aM,4)

4 |n=0 − M̄
(aM,4)

4 |n=1

M̄
(aM,4)

4 |n=0

= 1 − 42−δ15δ1−4
21
(

120 − 20π2 + π4
)

(

π2 − 6
)2

, (31)

S̄
(aS,3)

3 |n=0 − S̄
(aS,3)

3 |n=1

S̄
(aS,3)

3 |n=0

= 1 − 41−δ25δ2−3
21
(

120 − 20π2 + π4
)

(

π2 − 6
)2

, (32)

with δ0 ≡ (aI + 2)/(aM,2 + 1), δ1 ≡ (aM,4 + 2)/(aM,2 + 1) and δ2 ≡ (aS,3 + 1)/(aM,2 + 1). Using these expressions, one
can find a one-parameter family in (aM,2, aI ), (aM,2, aM,4) and (aM,2, aS,3) space such that the fractional differences vanish
exactly. In other words, one can choose specific normalizations of the dimensionless multipole moments such that the I–Q,
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Fig. 7. A maximum percent equation-of-state variation in the I–Q (left) and M̄4–M̄2 relations (right) for different values of the normalization constants

introduced in Eq. (29). We also present the relations among these normalization constants that reduce to the least equation-of-state variation in the

Newtonian limit (yellow) and in full General Relativity (orange). The original choice of normalization in [48,49,51,52] is shown by white circles.
Source: This figure is taken from Majumder et al. [179].

Table 2

Numerical coefficients for the fitting formula of the no-hair like relations given in Eq. (15).

yi xi ai bi ci di ei

S̄3 M̄2 3.131 × 10−3 2.071 −0.7152 0.2458 −0.03309

M̄4 M̄2 −0.02287 3.849 −1.540 0.5863 −8.337 × 10−2

M̄4–M̄2 and S̄3–M̄2 relations become exactly the same for slowly-rotating Newtonian stars constructed with n = 0 and
n = 1 polytropes. For realistic equations of state, there also exists a one-parameter family of normalization coefficients that
improve the universality [179].

Fig. 7 presents the maximum equation-of-state variation in the I–Q and M̄4–M̄2 relations in full General Relativity for
different choices of (aM,2, aI ) and (aM,2, aM,4) from the relations with a fiducial equation of state (LS220 [180]) [179],
assuming slow-rotation. The original choice of normalization in [51,52] is shownwith white dots. The one-parameter family
in each diagram that gives the least equation-of-state variation is shownwith an orange line, while the yellow line shows the
one-parameter family that gives zero variation between the relations for the n = 0 and n = 1 polytropes in the Newtonian
limit. In the I–Q case, the Newtonian result for the least equation-of-state variation is quite different from the relativistic
one, while the original normalization choice is close to the latter. In the M̄4–M̄2 case, the Newtonian result is close to the
relativistic one, and the original universality can be improved by roughly a factor of two. The S̄3–M̄2 relation presents similar
behavior to the I–Q relation, namely, the Newtonian expression for the least equation-of-state variation is quite different
from the relativistic result, while the original normalization lies close to the latter [179]. These results show that the amount
of the universality in the I–Q and no-hair relations depends on how one normalizes the multipole moments.

3.2. Rotation

In this section, we review how sensitive the universality is to the assumption of slow and uniform rotation of a relativistic
star. We will relax these assumptions in turn by considering rapidly-rotating neutron stars and quark stars in Section 3.2.1
and differentially-rotating stars in Section 3.2.2.

3.2.1. Rapid uniform rotation

Althoughmost neutron stars rotate slowly, the dimensionless spin of the fastest-spinning pulsar currently observed [155]
can be as large as χ ≈ 0.65 depending on its mass and radius (see Fig. 2). Hence, it is important to investigate how spin
corrections to the I–Love–Q and approximate no-hair relations affect the degree of universality. One can achieve this goal
by numerically constructing rapidly- and uniformly-rotating neutron star and quark star solutions as described already in
Section 2.1.2.

The I–Q relation for rapidly-rotating neutron stars and quark stars was first studied in Doneva et al. [54]. The authors
investigated sequences of relativistic stellar solutions for different spin frequencies and found that the universality becomes
significantly weaker as one increases the spin frequency. For example, the universality with a fixed spin frequency of
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Fig. 8. The universal I–Q relations in terms of the dimensionless spin parameter χ for both slowly-rotating and rapidly-rotating neutron stars and quark

stars from two different viewpoints. Different colors correspond to different equations of state. Observe that the I–Q relation is a plane instead of a curve

as in Fig. 3. Brown planes are the fit found in Pappas and Apostolatos [50].

Fig. 9. (Top) Spin dependence of the S̄3–M̄2 (left) and M̄4–M̄2 (right) relations for an APR equation of state. (Bottom) Fractional difference between the

relations for rapidly-rotating neutron stars using RNS and that in the slow-rotation limit with various dimensionless spin parameters. Observe that such a

difference for the S̄3–M̄2 (M̄4–M̄2) relation is comparable to (smaller than) the equation-of-state variation in Fig. 6.

fs = 800 Hz is ∼10%, an order of magnitude worse than the slow-rotation result (fs = 0 Hz). Thus, Doneva et al. [54]
concluded that the universality in the I–Q relation breaks for rapidly rotating starswhen considering compact star sequences
with fixed spin frequency.

The quantity that is held constant in a neutron star sequence when considering universality can have a huge impact.
Pappas and Apostolatos [50] found that the universality in the I–Q relation remains if one fixes the dimensionless spin
parameter χ instead of the dimensional spin frequency fs (for fixed χ , the single parameter along the universal curve is
the stellar mass or compactness, just like in the slow-rotation limit). Fig. 8 presents the I–Q relation as a function of χ
from two different viewpoints; observe that the numerical data lies approximately on a single universal plane, given by a
fit in Pappas and Apostolatos [50]. Therefore, if one fixes χ , the universality of the I–Q relations remains, but the universal
relation is different from that found in the slow-rotation limit (which corresponds to the χ = 0 cross-section of Fig. 8).
Chakrabarti et al. [55] further found that a similar universal I–Q relation arises for rapidly rotating stars when one fixes
other dimensionless spin combinations, such as Mfs and Rfs. In these cases, the universality is valid to O(1%), just like in the
slow-rotation case. These studies make it clear that the I–Q relation does not break for rapidly rotating stars, provided one
fixes the appropriate spin parameter in the stellar sequence.

Let us nowdiscuss the approximate no-hair relations for rapidly-rotating neutron stars. The S̄3–M̄2 relation, first studied in
Pappas and Apostolatos [50], is shown in the top left panel of Fig. 9 for an APR equation of state with different spins. Observe
that although the fractional difference between the relation for rapidly-rotating and slowly-rotating stars (bottom panel)
increases as one increases χ , the relation is only sensitive to spin to ∼ 5%, which is comparable to the equation-of-state
variation in Fig. 6. The M̄4–M̄2 relation, shown in the right panel of Fig. 9, shows similar spin behavior relative to that of the
S̄3–M̄2 relation, but now the spin variation is smaller than the equation-of-state variation. Observe also that the fractional



difference in both the S̄3–M̄2 and M̄4–M̄2 relations decreases as one increases M̄2. This is because the spin dependence
vanishes in the Newtonian limit within the elliptical isodensity approximation, as already explained in Section 2.3.1. These
findings allow us to conclude that the universality is also preserved in the approximate no-hair relations even for rapidly-
rotating neutron stars and quark stars, provided one fixes the spin parameter appropriately in the stellar sequence.

3.2.2. Differential rotation

Wenext study how the assumption of uniform rotation affects the universality by considering differentially rotating stars.
Differential rotation is important in proto-neutron stars formed after supernova explosions [181,182], whose differential
rotationmay last for∼1min, and in hypermassive neutron stars formed aftermergers of neutron star binaries [152,183,184].
Differential rotation may also arise due to nonlinear effects caused by r-mode oscillations [185–188].

The first (and only) study of the no-hair relations in differentially-rotating stars is that of Bretz et al. [175], which restricts
attention to the Newtonian limit and the small differential-rotation limit. Although the actual profile of rotation depends
on the astrophysical situation one considers, the rotation law in the Newtonian limit can be parametrized in a generic way
as [189]

Ω

Ωc

=
(

1 − αγ
r2

a12
sin2 θ

)

1
α

, (33)

whereΩc is the stellar angular velocity at the center, γ is a dimensionless parameter that controls the amount of differential
rotation, and α determines the type of differential rotation. For example, the j-constant and v-constant laws, the Keplerian
angular velocity profile and the rotation law for hypermassive neutron stars can be captured by choosing α = −1,−2,−4/3
and −4 respectively. In the small differential rotation approximation, |γ | ≪ 1. Keeping term to linear order in γ , the above
equation can be expanded as

Ω

Ωc

= 1 − γ
r2

a12
sin2 θ + O(γ 2). (34)

Notice that this equation does not depend on α, and hence, it applies to a large class of differential rotation laws.
Consider now how differential rotation affects the three-hair relations for uniformly-rotating stars of Section 2.3.1. One

modification arises from the relation between Ω and r in the current multipole moments of Eq. (18) and another from a
change in the shape of the stellar surface. In Section 2.3.1, we assumed that the latter is the same as that of a constant
density star, which in rigid rotation is a spheroid. For differentially rotating stars, a constant density star deviates from a
spheroid by O(γ ) terms [175], which affects both mass and current multipole moments. Taking these modifications into
account, one can repeat the analysis in Section 2.3.1, and keeping terms up to linear order in γ , one finds [175]

M̄2ℓ+2 + iS̄2ℓ+1 = B̄n,ℓM̄
ℓ
2

[

M̄2

(

1 + γ α
(3,M̄)
ℓ

)

+ i S̄1

(

1 + γ α
(3,S̄)
n,ℓ

)]

+ O(γ 2), (35)

or equivalently,

Mℓ + i
q

a
Sℓ = B̄

n,⌊ ℓ−1
2

⌋M0(iq̃)
ℓ
(

1 + γ α
(3)
n,ℓ

)

+ O(γ 2), α
(3)
n,ℓ =

⎧

⎪

⎨

⎪

⎩

α
(3,M̄)
ℓ−2
2

even ℓ

α
(3,S̄)

n, ℓ−1
2

odd ℓ,
(36)

where α
(3,M̄)
ℓ and α

(3,S̄)
n,ℓ are coefficients given by Eqs. (B5) and (B6) in Bretz et al. [175]. The former depends only on ℓ and e2,

while the latter also depends on the polytropic index n. One can go one step further and replace γ with the next independent
multipole moment S3. One then arrives at the four-hair relations for differentially rotating Newtonian polytropes [175]:

M̄2ℓ+2 + iS̄2ℓ+1 = B̄n,ℓM̄
ℓ
2

[

M̄2

(

1 + α
(4,M̄)
n,ℓ

)

+ i S̄1

(

1 + α
(4,S̄)
n,ℓ

)]

+ O(γ 2), (37)

where the coefficients α
(4,M̄)
n,ℓ and α

(4,S̄)
n,ℓ depend on M̄2 and S̄3 and are given by Eqs. (B7) and (B8) in Bretz et al. [175]

respectively.
In order to study the equation-of-state variation of the four-hair relations, let us nowwork in the slow-rotation limit. The

mass hexadecapole M̄4 is then given by [175]

M̄4 = M̄2
2 B̄n,1

[

1 + 49

45

(

S̄3 − M̄2B̄n,1

)

M̄2B̄n,1C̄n,1

]

+ O(γ 2), C̄n,ℓ := Rn,2ℓ+4

ξ 21 Rn,2ℓ+2

. (38)

The left panel of Fig. 10 shows this four-hair relation as a function of M̄2 and S̄3 with different polytropic indices. Observe
that the data lies approximately on a single universal plane that is well approximated by the n = 0.65 polytropic case. The
three-hair relation for uniformly-rotating Newtonian polytropes is shown by the white dashed curve. The right panel of this
figure shows the maximum fractional difference from the n = 0.65 case for each fixed M̄2 and S̄3. We only show the region
where |γ | < 0.5 to comply with the small differential rotation approximation, while the region enclosed by the red dashed
lines correspond to |γ | < 0.1. Observe that themaximum fractional difference is at most∼6% (3%) for |γ | < 0.5 (|γ | < 0.1).



Fig. 10. (Left) The four-hair relations for M̄4 as a function of M̄2 and S̄3 for differentially-rotating stars in the Newtonian and slow-rotation limit (Eq. (38))

with n = 0.3 (green dots), 0.5 (blue dots), 0.8 (orange dots), 1 (red dots), and 0.65 (light green plane). Observe that the dots approximately lie on the

plane. We also present the three-hair relation for uniformly-rotating stars in [51] (white dashed). (Right) Maximum fractional difference (color gradient

and contours) in the four-hair relation in the left panel from the n = 0.65 plane with index n ∈ [0.3, 1] within |γ | < 0.5, while the dashed red lines

correspond to the region for |γ | < 0.1 with n = 1. Observe that the maximum fractional difference is always less than ∼6% and 3% for |γ | < 0.5 and

|γ | < 0.1 respectively.
Source: This figure is taken from Bretz et al. [175].

A 3% equation-of-state variation is slightly smaller than the 4% variation in the uniformly-rotating three-hair case (see Fig. 5).
This is because one needs to fix both M̄2 and S̄3 in the relation for differentially-rotating stars, while one can only fix M̄2 for
the uniformly-rotating case. Such an additional degree of freedomhelps the relation be slightlymore universal. The four-hair
relations among S̄5, M̄2 and S̄3 present a similar behavior, though the equation-of-state variation is somewhat larger (∼10%
with |γ | < 0.1) [175].

3.3. Magnetic fields

In this section,we reviewhow the I–Q relation formagnetized stars differ from that for unmagnetized stars [53]. For radio
pulsars, the magnetic field strength at the surface is inferred to be ≲ 1012 G, while that of magnetars can be ∼ 1015 G. The
internalmagnetic field strength can bemuch larger than the surface value [190–192]. Thesemagnetic fields give rise to a non-
vanishing quadrupole moment, which may dominate the rotationally-induced one considered in Section 2.2. The toroidal
component of the magnetic field forces the star to be prolate, which can change the I–Q relation from the unmagnetized
case drastically.

Let us first look at a purely poloidal or toroidal configuration for simplicity. Based on the stellar ellipticity calculation
of Haskell et al. [193] in the Newtonian limit, the I–Q relation for magnetized Newtonian stars with an n = 1 polytropic
equation of state is approximately [53]

Q̄ = 5Ī1/2 + 10−3 Ī

(

Bp

1012 G

)2(
P

1 s

)2

, poloidal case, (39)

Q̄ = 5Ī1/2 − 3 × 10−5 Ī

( ⟨B⟩
1012 G

)2 (
P

1 s

)2

, toroidal case, (40)

up to quadratic order in (B P) ∼ 10−2(B/1012 G)(P/1 s), where P is the spin period, while Bp and ⟨B⟩ are the magnetic field
strength at the pole and the averaged field strength respectively. The first (second) term in the above equations corresponds
to the rotationally- (magnetically-) induced quadrupole moment. The I–Q relation clearly acquires a correction due to
the magnetic field, though the magnitude of such a correction is typically small, unless the magnetic field is of magnetar
magnitude. Observe also that the magnetic field correction to Q̄ for the toroidal configuration is negative, which means that
it pushes the star toward a prolate configuration.

In order to study the relativistic effect and the equation-of-state variation in the relation, Haskell et al. [53] constructed
magnetized neutron star solutions in full General Relativity using the LORENE code [194,195]. The authors found that
although the I–Q relation deviates from the relation in the unmagnetized case as one increases B or decreases P , the
relation remains relatively equation-of-state insensitive if one constructs a neutron star sequence by fixing B and P for a



purely poloidal or toroidal configuration. The effect of the magnetic field on the quadrupole moment, however, may be
enhanced [196,197] for a purely poloidal or toroidal configuration if one takes proton superconductivity in the outer core
region into account.

One of the problems in such a simple poloidal or toroidal configuration is that it is dynamically unstable on an Alfvén
timescale [198–203]. Therefore, one needs to consider a more realistic and stable configuration, where both poloidal
and toroidal components are present. In order to alleviate this problem, Haskell et al. [53] considered a twisted-torus
configuration by treating the magnetic field as a small perturbation to the non-rotating and unmagnetized background
spacetime [204–206]. To construct a stellar solution with such a field configuration, one first needs to solve the Grad–
Shafranov equation in the background spacetime for the azimuthal component of the vector potential Aφ with a regularity
condition at the stellar center. Such a solution is then matched to an analytic, vacuum exterior solution, which is taken to
be dipolar, namely Aφ ∝ sin2 θ . One then solves the perturbed Einstein equations sourced by this vector potential, keeping
terms up to quadratic order in (B P). Haskell et al. [53] found that the I–Q relation becomes sensitive to the equation of state
with such a twisted-torus configuration if P ≳ 10 s and B ≳ 1012 G. These conditions are probably satisfied by slowly-rotating
magnetars and isolated neutron stars, accreting pulsars andpulsars in high-mass X-ray binaries, but are typically not satisfied
by millisecond or rotation-powered pulsars and pulsars in low-mass X-ray binaries [207,208]. The relation is also sensitive
to magnetic field parameters such as the poloidal-to-toroidal field ratio.

3.4. Anisotropic pressure

Does the universality remain when we consider pressure anisotropy, i.e. situations in which the radial pressure
differs from the tangential one? (see Herrera and Santos [209] for a review of anisotropy). Pressure anisotropy may be
present in the stellar solid or superfluid cores of neutron stars [210–212] and may arise due to strong magnetic fields
[194,195,205,206,213–218], relativistic nuclear interactions [219,220], phase transitions [221], pion condensation [222] or
crystallization of the core [223]. Moreover, simple two-fluid models for normal and superfluid components can be well
approximated by a single anisotropic fluid model [209,224]. Having said this, one may expect isotropy to be eventually
restored inside a neutron star or a quark star due to its strong internal gravity, and thus, it is currently unclear whether
compact stars have large anisotropic pressure. Here, we take an agnostic view and review how pressure anisotropy affects
the degree of universality in the I–Love–Q and approximate no-hair relations.

One can achieve this goal by constructing tidally-deformed or slowly rotating neutron stars and quark stars with
anisotropic pressure. Slowly rotating, anisotropic neutron stars to linear order in spin were constructed in Bayin [225]
and Silva et al. [226] by extending the Hartle–Thorne formalism to anisotropic stars. Yagi and Yunes [227] extended these
analyses to third order in spin and to tidally-deformed anisotropic stars, which allowed the authors to extract the tidal
deformability and multipole moments up to octupole order. One way to construct anisotropic stars is to use the matter
stress–energy tensor [226,228]:

Tµν = ρuµuν + pkµkν + qt (gµν + uµuν − kµkν), (41)

where p and qt are the radial and tangential pressures respectively,while kµ is a unit radial vector that is spacelike (kµk
µ = 1)

and orthogonal to uµ (kµu
µ = 0).

The choice of how p differs from qt defines the anisotropy model. Yagi and Yunes [227] mainly considered the one
proposed by Horvat et al. [229] (H model), in which the difference between radial and tangential pressures in a spherically-
symmetric background is given by [226,228,229]

σ0 ≡ p − qt = λHp
(

1 − e−λ(r)) , (42)

where eλ(r) is the (r, r)-component of the metric in the background spacetime. This model is constructed such that the
effect of anisotropy in the hydrostatic equilibrium equation vanishes in the non-relativistic limit (p ≪ ρ), and σ0 vanishes
at the stellar surface and at the stellar center; the latter is required to ensure the absence of singularities in the interior
mass distribution [230]. The quantity λH in the above equation controls the amount of anisotropy. The isotropic case is
recovered when λH = 0, and λH can in principle be of order unity when anisotropy is produced by pion condensation [222].
Alternatively, a Skyrme crystallization in the core predicts−2 ≤ λH ≤ 0 for a neutron star withmassM ≳ 1.5M⊙. Following
Doneva and Yazadjiev [228], Silva et al. [226] and Yagi and Yunes [227], we focus on −2 ≤ λH ≤ 2. Higher order spin
corrections to σ0 are determined self-consistently by solving the perturbed Einstein equations order by order in the small-
rotation expansion [227].

The top panels of Fig. 11 present the I–Love and S̄3–M̄2 relations for neutron stars (with an APR equation of state) and
quark stars (with an SQM3 equation of state) for various values of λH. The bottom panels show the fractional difference of
each anisotropic relation from the corresponding isotropic one. Observe that the difference from the isotropic case decreases
as one decreases the mass or the compactness (moving to the right in each panel). This is because the effect of anisotropy
vanishes from the hydrostatic equilibrium equation in the Newtonian limit.

Table 3 compares the maximum amount of anisotropy and equation-of-state variation in different approximately
universal relations. The first row shows the maximum variations of the relations with respect to anisotropy for a fixed (APR)
equation of state. Such maximum variations for the I–Love and S̄3–M̄2 relations can be extracted from the bottom panels of



Fig. 11. (Top) The approximately universal I–Love (left) and S̄3–M̄2 (right) relations for neutron stars (circle) and quark stars (triangle) with various

anisotropy parameter λH . Top axes show the mass for isotropic neutron stars with the APR equation of state. (Bottom) Fractional difference from the

isotropic relations. Observe that the anisotropy variation is comparable to the equation-of-state variation in Figs. 3 and 6.
Source: This figure is taken and edited from Yagi and Yunes [227].

Table 3

Maximum effect of anisotropy for fixed APR equation of state (first row), effect of equation-of-state variation for fixed, maximal anisotropy of λH = 2

(second row) and for isotropic pressure (third row) on I–Love–Q and approximate no-hair relations. Observe that anisotropy increases the amount of

variation by a factor of 2–4 relative to the isotropic case.

Source: This table is taken from Yagi and Yunes [227].

Maximal variability I–Q I–Love Q–Love S̄3–M̄2

With λH (fixed APR equation of state) 7% 2% 8% 9%

With equation of state (fixed λH = 2) 5% 2% 5% 8%

With equation of state (fixed λH = 0) 2% 0.7% 2% 5%

Fig. 11. The second (third) row presents the maximum variation of the relations with respect to the equation of state for a

fixed λH = 2 (λH = 0) anisotropy parameter.5 Observe that equation-of-state variability (in the first and second rows) is

comparable and always less than 10%, but larger than the variability for isotropic stars by a factor of 1.5–4. This result shows

that the relations are approximately universal to variations in the equation of state and anisotropy to 10% at most, but to a

lesser degree than in the isotropic case.

How robust are these results to other choices of anisotropymodels? To address this question, Yagi and Yunes [227] further

studied the Bowers and Liang anisotropy model [230] (BL model):

σ0 = λBL

3
(ρ + 3p)(ρ + p)eλ(r)r2, (43)

where λBL is a constant that controls the amount of anisotropy, with λBL = 0 reducing to the isotropic case. This model

was constructed such that the modified Tolman–Oppenheimer–Volkoff equation for incompressible anisotropic stars can

be solved analytically. However, the effect of anisotropy does not vanish in the hydrostatic equilibrium equation in the

Newtonian limit. Such a feature seems unphysical if anisotropy originates from e.g. the strain of nuclear matter at the core

of compact stars. Notice also that σ0 does not vanish at the surface if the stellar density is discontinuous there, like for

constant density stars or quark stars. Because of these peculiarities, Yagi and Yunes [227] considered mainly the H model,

using the BL model only as an auxiliary example to study how the universality depends on the models.

Yagi and Yunes [227] found that the I–Love–Q and no-hair like relations are rather insensitive to the anisotropy model

when considering neutron stars, but not when studying quark stars. In particular, the I–Love–Q relations for BL anisotropic

quark stars can have large deviations from the relations for H anisotropic stars in the non-relativistic limit due to the

pathologies of the BL model described above. On the other hand, the S̄3–M̄2 relation is similar in the two anisotropy models

even for quark stars in the Newtonian limit. These results can be checked analytically by repeating the three-hair calculation

in the Newtonian limit presented in Section 2.3.1 in the BL model. Doing so, one first finds that the Lane–Emden equation is

5 Maximumequation-of-state variations in the third row of Table 3 are slightly larger than those extracted from Figs. 3 and 6, because the former include

stars with masses less than 1M⊙ .



modified to

1

ξ 2

d

dξ

[

ξ 2
(

dϑLE

dξ
+ λBL

6π
ξϑn

LE

)]

= −ϑn
LE, (44)

with the second term in square brackets on the left-hand side representing the anisotropic correction. One can solve such
an equation analytically for incompressible stars with an n = 0 polytropic index to find

ϑ
(n=0)
LE (ξ ) = 1 − ξ 2

6

(

1 + λBL

2π

)

, ξ
(n=0)
1 = 2

√
3π√

2π + λBL
. (45)

Substituting this solution in Eq. (26), one can show that B̄0,ℓ does not acquire any anisotropy corrections. Namely, the
three-hair relations for anisotropic incompressible stars are the same as the isotropic ones. In order to see the anisotropy
dependence with n ̸= 0, one can further study the perturbed three-hair relations around n = 0. Doing so, one arrives at
Eq. (27) even for anisotropic stars, which means that the anisotropy correction enters at O(n2). Such analytic calculations
mathematically explain why the S̄3–M̄2 relation for anisotropic Newtonian polytropes is similar to that for isotropic stars.

3.5. Non-barotropic equations of state

Can non-barotropic equations of state affect the degree of universality of the I–Love–Q relations [231]? So far, we have
focused on barotropic equations of state, i.e. those in which the stellar pressure is given purely in terms of the stellar density.
This choice is suitable to model cold (T ≲ 109 K) and compact (relativistic) stars. However, the equation of state for hot
(T ≳ 1011 K) proto-neutron stars is known to be non-barotropic. In particular, roughly 200–500 ms after the bounce during
gravitational collapse, a proto-neutron star enters a ‘‘quasi-stationary’’ phase, in which the stellar evolution can be modeled
as a sequence of equilibrium configurations [232–235]. During this phase, the stellar radius contracts from 30–40 km to
10–15 km. Initially, proto-neutron stars have large entropy gradients that become smoothed out by neutrino emission [232].
During the quasi-stationary phase, dynamical and secular instabilities are suppressed due to the high temperature and slow
rotation relative to the mass-shedding limit [231]. Non-perturbative equations of state for quark matter may also be non-
barotropic in the low temperature regime, as suggested by Canfora et al. [236] based on lattice calculations [237,238].

The first study of the universal relations in proto-neutron stars was that of Martinon et al. [231]. This reference extended
the Hartle–Thorne formalism and constructed slowly-rotating or tidally-deformed proto-neutron star solutions in the quasi-
stationary phase with non-barotropic equations of state. Such equations of state require pressure to be determined not only
from the density, but also from the entropy and the lepton fraction, which need to be determined by solving transport equa-
tions [239].Martinon et al. [231] usedGM3NQnon-barotropic profiles,which are a sequence of radial profiles of energy, pres-
sure, lepton fraction and entropy [232–234]. Such profiles are based on a non-barotropic equation of state derived using the
mean-field approachwith finite temperature, and are constructed by solving relativistic equations for neutrino transport and
nucleon–meson coupling under a spherically symmetric background spacetimewith a neutron-star baryonicmass of 1.6M⊙.

Martinon et al. [231] found that the I–Love–Q relations at the initial stage of the quasi-stationary phase of proto-neutron
stars deviate from those for barotropic neutron stars by 20% at most. However, just 2 s after the bounce, the deviations
reduce to only ∼2%, showing how fast the universal relations approach the barotropic result during the quasi-stationary
phase, which lasts about 1 min. The authors also showed that the amount of deviation in these relations relative to the
barotropic case is correlated to the magnitude of the radial gradient in the stellar entropy. Since Martinon et al. [231] only
studied a specific equation of state, it is currently unclear how the I–Love–Q relations for proto-neutron stars depend on
different choices of non-barotropic equations of state.

3.6. Dynamical tides

The final extension that we review in this section is the effect of dynamical tides on the I–Love relation. Until now,
we have assumed that the external tidal field and the tidally-induced quadrupole moment are stationary, and hence, the
tidal deformability is also time-independent. In a compact binary system, however, this assumption is valid only when the
timescale of the stellar tidal deformation is much smaller than the orbital timescale, and thus, it becomes less and less valid
as the binary inspirals.

The first study to consider the universal relations in dynamical scenarios was that of Maselli et al. [240]. The authors
applied the so-called post-Newtonian (PN) Affine approach [241,242] to compute the time-dependent tidal field and the
induced quadrupole moment. As the name suggests, such an approach combines the PN and affine descriptions of a binary
system. The former derives an approximate metric for a two-body system and the orbital evolution of such a system,
assuming that the orbital velocity is much smaller than the speed of light. The latter treats the neutron stars as deformable
ellipsoids, whose configuration is determined from the balance between self-gravity, pressure and the tidal field of the
companion. The deformed neutron star is characterized by the three principal axes of the ellipsoid and two angles that
define the orientation of the principal frame. These five dynamical variables are determined by solving a set of evolution
equations together with the PN equations of motion. One can then derive the stellar tidal deformability in terms of the
orbital frequency forb of the binary, with the zero frequency limit corresponding to the stationary case. One can also derive
dynamical corrections to the moment of inertia using the PN Affine approach.



Maselli et al. [240] found that the I–Love relation in a dynamical situation deviates more and more from the stationary
result as the orbital frequency increases. For example, the relation at forb = 875 Hz differs from that at forb = 0 Hz by
∼20%. However, for a given fixed forb, the relation remains equation-of-state insensitive to ≲2%, with the equation-of-state
variation increasing as forb increases. Maselli et al. [240] derived a frequency-independent fit that can capture the relation
for any forb to better than ∼5%.

4. Connection to other universal relations

In this section, we review other approximately universal relations, different from the I–Love–Q and no-hair like ones,
for neutron stars and quark stars. Section 4.1 begins by defining various tidal deformability parameters for a single star
perturbed by some external environment, and then describing their inter-relations. Section 4.2 refines this discussion by
focusing on perturbations produced by a companion star in a binary system, and discussing the inter-relations among the
deformabilities of the primary and the secondary star. Section 4.3 explains the connection between the I–Love–Q relations
and the universal relations among stellar oscillation frequencies. Section 4.4 concludes by reviewing the relation between
the I–Love–Q trio and compactness, showing that the equation-of-state variation when using the compactness explicitly is
much larger than that of the I–Love–Q relations. Finally, Section 4.5 reviews the Darwin–Radau relation (a relation between
a different dimensionless version of I and Q ) and compares it to the I–Q relation derived from the Newtonian 3-hair analysis
in Section 2.3.1.

4.1. Multipole Love relations

At the endof Section 2.1.2 and in Section 2.2we introduced the concept of tidal deformability by defining it as the response
of a star (of a certain multipole order) to an external tidal perturbation. Back then, we concentrated on the ℓ = 2, electric-
type tidal deformability λ2, which is simply the (linear) quadrupolar response of a star to an even-parity perturbation.
But of course, a small, external perturbation generically induces a linear response that can only be exactly recovered by
summing up an infinite number of multipoles of both even (electric) and odd (magnetic) parity. In this section, we review
the approximately equation-of-state independent inter-relations among the ℓth electric-type (λℓ) and magnetic-type (σℓ)
tidal deformabilities, as well as among the ℓth shape Love number (hℓ).

These λℓ and σℓ deformabilities are mathematically defined by [27]

ML = λℓ GL, SL = σℓ HL. (46)

The quantities ML and SL are tidally-induced mass and current multipole moments, i.e. the multipolar perturbations to the
star’s gravitational field or metric tensor. The quantities GL and HL are the gravito-electric and gravito-magnetic relativistic
tidal moments, i.e. the electric and magnetic parts of the external perturbation. Physically, one can think of λℓ and σℓ as
parameters that quantify the linear response of the ℓth multipole moment due to an external perturbation characterized by
the ℓth tidal moment.

Similarly, hℓ is mathematically defined via [27,243]

δRℓ

R
= hℓ

Uℓ(R)

C
, (47)

where Uℓ(R) is the ℓth multipole coefficient of the external disturbing potential (in a Legendre decomposition at the stellar
surface), while δRℓ/R is the ℓth fractional deformation of the stellar surface. One can thus think of hℓ as a coefficient that
quantifies the linear response of the shape of the stellar surface due to the perturbation of an external potential. The shape
Love number hℓ reduces to the first apsidal constant in the Newtonian limit.

4.1.1. No rotation

Now that the tidal deformabilities have been mathematically defined and physically interpreted, let us present the
simplest version of the multipole Love relations, working only in the Newtonian limit of General Relativity and neglecting
any internal motions of the fluid for non-rotating neutron stars and quark stars. We begin by presenting and reviewing the
electric multipole Love relations (or just multipole Love relations for short), i.e. approximately equation-of-state independent
relations between the λℓ parameters of different ℓ number (for example, the relations between λ2 and λ3). We then continue
by discussing the relations between any given λℓ (with ℓ fixed) and either I or Q , by combining the electric multipole
Love relations with the I–Love–Q relations. We conclude by commenting on the relations among the magnetic-type tidal
deformability σℓ and the shape Love number hℓ, and we discuss how the fluid internal motion affects the universal relations.

In order to understand the multipole Love relations, we must first discuss how to calculate λℓ. The metric tensor of a star
that has been disturbed by even-parity perturbations takes the form [244–246]

ds2 = ds20 − Yℓm(θ, φ)
[

eν(r)H0,ℓ(r)dt
2 + 2H1,ℓ(r)dtdr + eλ(r)H2,ℓ(r)dr

2 + r2Kℓ(r)(dθ
2 + sin2 θ dφ2)

]

, (48)

where ds20 is the background spacetime of Eq. (4) with ν(r, θ ) → ν(r), λ(r, θ ) → λ(r), K (r, θ ) → 1 and ω(r, θ ) → 0, while
H0,ℓ, H1,ℓ, H2,ℓ and Kℓ are perturbation functions. After perturbing the pressure and density in a similar way and substituting



Fig. 12. (Top) Universal λ̄3–λ̄2 (left) and λ̄4–λ̄2 (right) relations for neutron stars (red) and quark stars (green) with various realistic equations of state. We

also present the relations with the n = 1 (blue) and n = 0 (black) polytropes and their Newtonian limit (dashed and dotted–dashed). Solid curves show the

fit for each of the neutron star and quark star sequence. Top axes show the neutron star mass for the APR equation of state. (Bottom) Fractional difference

from the fit. Observe that the relations are universal to O(10%).
Source: This figure is taken and edited from Yagi [247].

all of this into the linearized Einstein equations and the stress–energy conservation equations, one finds that H1,ℓ = 0 and

H0,ℓ = H2,ℓ ≡ Hℓ. Eliminating further Kℓ from the remaining equations, one finds amaster equation for Hℓ [246]:

d2Hℓ

dr2
+
{

2

r
+ eλ

[

1 − e−λ

r
+ 4πr(p − ρ)

]}

dHℓ

dr

+
{

eλ
[

−ℓ(ℓ+ 1)

r2
+ 4π (ρ + p)

dρ

dp
+ 4π (5ρ + 9p)

]

−
(

dν

dr

)2
}

Hℓ = 0, (49)

with the pressure p and density ρ taking their background values here. This equation can be solved numerically in the

stellar interior by imposing regularity at the center, namely Hℓ ∝ rℓ as r → 0, while in the stellar exterior the solution is

Hext
ℓ = aPℓ P̂ℓ2(x) + a

Q
ℓ Q̂ℓ2(x), where x ≡ r/M − 1 and P̂ℓ2 and Q̂ℓ2 are the normalized associated Legendre functions of the

first and second kind respectively. The ratio between the integration constants aPℓ and a
Q
ℓ is determined by matching the

interior and exterior solutions of yℓ ≡ (r/Hℓ)(dHℓ/dr) at the surface. This quantity is related to the dimensionless, ℓth-order,

electric-type, tidal deformabilities λ̄ℓ ≡ λℓ/M
2ℓ+1 via [27]

λ̄ℓ = 1

(2ℓ− 1)!!
a
Q
ℓ

aPℓ
= − 1

(2ℓ− 1)!!
P̂ ′
ℓ2(xc) − C yℓ(R)P̂ℓ2(xc)

Q̂ ′
ℓ2(xc) − C yℓ(R)Q̂ℓ2(xc)

, (50)

where we have defined xc ≡ C−1 − 1 and we recall that C is the stellar compactness. Observe that λ̄ℓ depends both on the

exterior solution (P̂ℓ2, Q̂ℓ2) and on the interior solution (yℓ) at the surface.

The top panels of Fig. 12 show the multipole Love relations between λ̄3 and λ̄2 (left) and between λ̄4 and λ̄2 (right) for

various equations of state appropriate to neutron stars (red) and quark stars (green). The figure also shows the relations

computed with an n = 1 (blue) and n = 0 (black) polytropic equation of state. Observe that the relations are approximately

equation-of-state independent, with the neutron star ones resembling the n = 1 polytropic relation and the quark star ones

resembling the n = 0 relations, especially in the Newtonian limit. This behavior is expected given that quark star equations

of state reduce to an n = 0 polytropic one in the low pressure regime. The figure also includes fits to all the data, with the

same form as in Eq. (15) but with different coefficients given in Yagi [247]. The bottom panels show the fractional difference

between the numerical data and the fit. Observe that the relation is equation-of-state insensitive to O(10%) (O(1%)) for the

neutron star (quark star) sequence.

Let us now attempt to understand these relations better through an analytical Newtonian study. In this limit, Eq. (49)

reduces to [247]

d2HN
ℓ

dr2
+ 2

r

dHN
ℓ

dr
−
(

ℓ(ℓ+ 1)

r2
− 4πρ

dρ

dp

)

HN
ℓ = 0, (51)



where the superscript N is to remind us that we are working in the Newtonian limit. Solving this equation in the exterior

region, one finds that P̂ℓ2 and Q̂ℓ2 reduce to (r/M)ℓ and (r/M)−(ℓ+1) respectively. Thus, Eq. (50) reduces to

λ̄Nℓ = 1

(2ℓ− 1)!!
ℓ− yℓ

ℓ+ 1 − yℓ

1

C2ℓ+1
, (52)

where we recall that yℓ is defined above Eq. (50). In particular, for an n = 1 polytrope, the solution to Eq. (51) is given in

terms of Bessel functions H
N,(n=1)
ℓ ∝ √

R/r Jℓ+1/2(πr/R) [27,158]. For such polytropes, λ̄ℓ in the Newtonian limit is given
by [247]

λ̄
N,(n=1)
2 = 15 − π2

3π2

1

C5
, λ̄

N,(n=1)
3 = 21 − 2π2

9π2

1

C7
, λ̄

N,(n=1)
4 = −945 − 105π2 + π4

105π2(π2 − 15)

1

C9
. (53)

On the other hand, for an n = 0 polytrope, λ̄ℓ in the Newtonian limit is given by [27]

λ̄
N,(n=0)
ℓ = 3

2(ℓ− 1)(2ℓ− 1)!!
1

C2ℓ+1
. (54)

Combining these expressions, one can derive the multipole Love relations in the Newtonian limit as a function of the
polytropic index n:

λ̄N3 = C
(n)

λ̄3λ̄2

(

λ̄N2
)7/5

, λ̄N4 = C
(n)

λ̄4λ̄2

(

λ̄N2
)9/5

, (55)

where C
(n)

λ̄3λ̄2
and C

(n)

λ̄4λ̄2
are constants that depend on n.

These Newtonian multipole Love relations are shown in the top panels of Fig. 12. Observe that the numerical data agree
with the analytic Newtonian relations in the large λ̄2 region, as expected. By taking the ratio between the n = 0 and n = 1
relations, one finds [247]

C
(n=0)

λ̄3λ̄2

C
(n=1)

λ̄3λ̄2

= 22/533/5(15 − π2)7/5

10π4/5(21 − 2π2)
≈ 0.799, (56)

C
(n=0)

λ̄4λ̄2

C
(n=1)

λ̄4λ̄2

= 24/5(15 − π2)14/5

39/5π8/5(π4 − 105π2 + 945)
≈ 0.616. (57)

This shows that the λ̄3–λ̄2 and the λ̄4–λ̄2 relations differ by 20% and 40% respectively when computed with an n = 0 and
an n = 1 polytrope. Clearly, the multipole Love relations are not as equation-of-state insensitive as the I–Love–Q relations,
whose equation-of-state variation in the Newtonian limit is only 0.2–0.8% [see Section 2.2.1]. Note that the equation-of-state
variation inferred from Eqs. (56) and (57) cannot be directly compared to that in the bottom panels of Fig. 12, as the former
corresponds to the variation between the neutron star and quark star sequences, while the latter shows the variationwithin

each sequence.
The multipole Love relations can be combined with the I–Love–Q relations to obtain new, equation-of-state insensitive

relations. For example, one can eliminate λ̄2 from these relations to find approximately universal relations between λ̄ℓ≥3

and Ī or Q̄ , as first studied by Pani et al. [248]. This study revealed that the equation-of-state variation in the λ̄3–Ī and
the λ̄4–Ī relations is at most O(10%), which is much larger than the variation in the original I–Love relation. Clearly, the
equation-of-state variation of the λ̄ℓ≥3–Ī relation is dominated by that in the multipole Love relations.

One can repeat the above analyses to derive relations between λ̄ℓ and the dimensionless, magnetic-type tidal deforma-
bilities σ̄ℓ ≡ σℓ/M

2ℓ+1. Yagi [247] derived these relations by solving the master differential equation for odd-parity
perturbations, given for example in Damour and Nagar [27]. In particular, Yagi [247] studied the relation between σ̄2 and λ̄2
and found that the equation-of-state variation is similar to that in the λ̄3–λ̄2 relation. However, Pani et al. [248] pointed out
later that the master equation in Damour and Nagar [27] does not agree with that in Binnington and Poisson [28], and the
former may contain an error. Pani et al. [248] showed that the σ̄2–λ̄2 relation with σ̄2 derived from Damour and Nagar [27]
deviates from that with σ̄2 derived from Binnington and Poisson [28] in the relativistic regime, with the lattermore universal
(an equation-of-state variation of 3% at most). Pani et al. [248] also studied the relation between σ̄3 and λ̄3 and between σ̄4
and λ̄4. In both cases, the equation-of-state variation is 0.7% at most, and hence, the amount of universality in these cases is
comparable to that in the I–Love–Q relations. The relations between σ̄ℓ and Ī , on the other hand, have an equation-of-state
variation of 5–20% [248].

The above studies were carried out under a strict hydrostatic equilibrium condition, which requires the tidal fields to be
stationary. Perhaps, a more realistic situation is to consider an irrotational state, which takes into account internal motions
of the fluid that arise from a time-dependent tidal environment due to the conservation of relativistic circulation within the
fluid [249,250]. Landry and Poisson [251] showed that the irrotational state does not affect λℓ, but σℓ can become negative.
Delsate [252] studied how the relations between σ̄ℓ and Ī are affected by taking such internal fluid motions into account,
finding that the universality actually improves in the more realistic irrotational case. The author found that the maximum
equation-of-state variation is reduced by a factor of two in the irrotational case relative to the hydrostatic equilibrium case.
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Table 4

Induced multipole moments at zeroth order (second column) and first order

(third column) in spin, sourced by an external, axisymmetric tidal pertur-

bation (first column). Corresponding non-vanishing tidal deformabilities are

shown in brackets.

Source O(χ0) O(χ )

Gℓ Mℓ

(

λ
(+)
ℓℓ

)

Sℓ−1

(

σ
(−)
ℓ−1ℓ

)

Sℓ+1

(

σ
(−)
ℓ+1ℓ

)

Hℓ Sℓ

(

σ
(+)
ℓℓ

)

Mℓ−1

(

λ
(−)
ℓ−1ℓ

)

Mℓ+1

(

λ
(−)
ℓ+1ℓ

)

Finally, one can also derive similar universal relations among dimensionless, shape tidal deformabilities η̄ℓ of different

ℓ order. The latter are related to the ℓth shape Love number hℓ in Eq. (47) via η̄ℓ ≡ {2/[(2ℓ − 1)!!]}(hℓ/C2ℓ+1). Since the η̄ℓ
quantities are electric-type tidal deformabilities, they are related to λ̄ℓ via [243,247]

η̄ℓ =
{[

2λ̄ℓ Q̂ℓ2(xc) + 2

(2ℓ− 1)!! P̂ℓ2(xc)
]

[1 + (α2 − 2)C] +
[

2λ̄ℓ Q̂
′
ℓ,2(xc) + 2

(2ℓ− 1)!! P̂
′
ℓ,2(xc)

]

α1

}

1

Cℓ+1
, (58)

with

α1 ≡ 2C

(ℓ− 1)(ℓ+ 2)
, α2 ≡ 1

(ℓ− 1)(ℓ+ 2)

[

ℓ(ℓ+ 1) + 4C2

1 − 2C
− 2(1 − 2C)

]

. (59)

In the Newtonian limit, Eq. (58) simplifies to

η̄Nℓ = 2λ̄Nℓ + 2

(2ℓ− 1)!!
1

C2ℓ+1
. (60)

Yagi [247] found that the relation between η̄3 and η̄2 is equation-of-state insensitive to 7–8% for both neutron star and quark

star sequences, which is similar to the degree of universality of the electric multipole Love relations.

4.1.2. Slow rotation

Let us now review the universal relations among tidal deformabilities for slowly-rotating neutron stars. To calculate

the deformabilities in this case, one needs to consider tidal perturbations about slowly-rotating neutron star background

solutions. Pani et al. [248] derived the spin corrections to the tidal deformabilities to linear order in spin for axisymmetric

tidal perturbations following [31] (see also Landry and Poisson [32] for related work). The requirement of axisymmetry is

satisfied when the tidal perturbation is additionally stationary. At zeroth order in spin, the ℓth electric-type (magnetic-type)

tidal field only generates an ℓth electric-type (magnetic-type) deformation to the stellar moments. At linear order in spin,

the ℓth electric-type (magnetic-type) tidal field sources an ℓ±1magnetic-type (electric-type) deformation to themoments.

Due to this mixing of parities, one needs to introduce new types of tidal deformabilities:

λ
(+)

ℓℓ′ ≡ ∂Mℓ

∂Gℓ′
, λ

(−)

ℓℓ′ ≡ ∂Mℓ

∂Hℓ′
, (61)

σ
(+)

ℓℓ′ ≡ ∂Sℓ

∂Hℓ′
, σ

(−)

ℓℓ′ ≡ ∂Sℓ

∂Gℓ′
. (62)

Table 4 summarizes the induced multipole moments at zeroth and first order in spin for a given external tidal moment,

together with the corresponding tidal deformabilities. At zeroth order in spin, the only non-vanishing tidal deformabilities

are λ
(+)
ℓℓ and σ

(+)
ℓℓ , which reduce to the λℓ and σℓ deformabilities of Eq. (46). At linear order in spin, the only non-vanishing

tidal deformabilities with axisymmetric perturbations are λ
(−)
ℓ±1ℓ and σ

(−)
ℓ±1ℓ. Furthermore, equatorial symmetry forces the

electric-type (magnetic-type) induced moments to have even (odd) values of ℓ in Eqs. (61) and (62). For example, when

ℓ, ℓ′ ≤ 4 with equatorially symmetric perturbations, the only non-vanishing deformabilities are λ
(−)
23 , λ

(−)
43 , σ

(−)
32 and σ

(−)
34 . In

this example, λ
(−)
23 is the linear response of the induced mass quadrupole moment due to the external tidal current octupole

moment, and similarly for the other deformabilities.

Let us now estimate the impact of the spin-corrected tidal deformabilities on the induced multipole moments relative

to the non-rotating contribution. The most relevant spin-corrected tidal deformability to gravitational wave observations is

λ
(−)
23 as others induce higher order multipole moments [31]. Thus, we will focus on the contribution of λ

(−)
23 to the induced

quadrupolemoment. To give a concrete example, let us assume the tidal field is created by a companion neutron star, whose

mass is the same as the primary one, at a separation b in a binary. The ratio between the linear spin correction to the induced



Fig. 13. (Left) The ratio between λ̄
(−)
23 at linear order in spin and λ̄2 at zeroth order in spin as a function of the neutron star mass for three representative

equations of state. (Right) The absolute ratio between the spin correction to the induced quadrupole moment δM2 and the inducedmoment at zeroth order

in spin M
(0)
2 as a function of the binary separation normalized by the total mass. b = 6m corresponds to the location of the innermost stable circular orbit

of a binary. We assumed an equal mass binary of M = 1.4M⊙ and the spin of the primary neutron star as χ = 0.05. Observe that δM2 is always smaller

thanM
(0)
2 . The top axis shows the corresponding gravitational wave frequency calculated from the Newtonian relation m/b = (πmf )2/3 .

quadrupole moment δM2 and the induced moment for a non-rotating configurationM
(0)
2 is given by [31]

δM2

M
(0)
2

= −9

2

√

5

7

λ̄
(−)
23

λ̄2
χ

(m

b

)3/2

, (63)

wherem = 2M is the total mass of a binary and λ̄
(−)
23 ≡ λ

(−)
23 /(M

6χ ) with λ̄
(−)
23 /λ̄2 shown in the left panel of Fig. 13. The factor

of b−3/2 arises from the ratio of H3 ∝ b−9/2 to G2 ∝ b−3, which sources δM2 and M
(0)
2 respectively. The right panel of Fig. 13

presents Eq. (63) with M = 1.4M⊙ and χ = 0.05 as a function of b/m for three representative equations of state. Observe

that although the ratio λ̄
(−)
23 /λ̄2 easily exceeds unity, as shown in the left panel of Fig. 13, the contribution of this ratio to

corrections to the quadrupole moment δM2/M
(0)
2 is always much less than unity, as shown on the right panel of the figure.

The contribution of λ
(−)
23 to the quadrupole moment becomes important only close to merger, when the spin is relatively

large and the equation of state is rather stiff.

Pani et al. [31] studied the relations between themoment of inertia I and these tidal deformabilities at linear order in spin.

They normalized λ
(−)
23 as given below Eq. (63) and defined λ̄

(−)
43 ≡ λ

(−)
43 /(M

8χ ), σ̄
(−)
32 ≡ σ

(−)
32 /(M

6χ ) and σ̄
(−)
34 ≡ σ

(−)
34 /(M

8χ ).

They found that the equation-of-state variation in these relations is much larger than in the original I–Love relation for a

non-rotating configuration. For example, the variation in the relation between λ̄
(−)
23 and Ī can be as large as 50%, and that

between σ̄
(−)
32 and Ī can exceed 100%. This study suggests that the universality is completely lost when considering rotating

stars and the relatively higher ℓ order deformabilities, relative to the λ̄2 case for non-rotating stars.

4.2. Binary love relations

We have so far focused on approximately universal relations satisfied among stellar quantities that characterize a single

neutron star or quark star. Let us now consider approximately universal relations between tidal deformability parameters

that characterize both components of a binary system. Consider then a binary system in which star 1 is perturbed by the

external field of star 2 (leading to a linear, quadrupolar, even-parity response parametrized by λ2,1) and star 2 is perturbed

by the external field of star 1 (leading to a linear, quadrupolar, even-parity response parametrized by λ2,2). In particular,

consider the symmetric and antisymmetric combinations of these deformabilities,

λ̄2,s ≡ λ̄2,1 + λ̄2,2

2
, λ̄2,a ≡ λ̄2,1 − λ̄2,2

2
, (64)

and study whether there exist binary Love relations, i.e. approximately equation-of-state independent relations between

λℓ,s and λℓ,a. The top left panel of Fig. 14 shows this relation when ℓ = 2 calculated with various equations of state at a

fixed mass ratios q ≡ m1/m2 with m1 ≤ m2. We only show data with m1 ≥ 1M⊙ (a q-dependent fit to this data was also

constructed in Yagi and Yunes [247,253], which is also shown in Fig. 14). The bottom left panel shows the absolute fractional

difference between the numerical data and the fit. Observe that the universality worsens as one increases q (and approaches

the equal-mass limit) and as one approaches the relativistic limit (small λ̄2,s limit). The equation-of-state variation can be as



Fig. 14. The λ̄2,s–λ̄2,a relation for binaries with mass ratio q = 0.5, 0.75 and 0.9 (top left) and the λ̄
(0)
2 –λ̄

(k)
2 relations (top right) for neutron stars with four

realistic equations of state. The solid lines represent fits to the numerical data, while the dashed lines are analytic relations in the Newtonian limit. (Bottom)

Absolute fractional difference between the numerical data and the fits.
Source: This figure is taken and edited from Yagi [247].

large as 50%, but if one restricts attention to neutron star masses smaller than 1.8M⊙, the approximate universality is better
than 20%.

In order to better understand the approximate universality of the binary Love λ̄2,s–λ̄2,a relation, let us carry out analytic

calculations in the Newtonian limit [253]. Using the fact that a Newtonian polytrope satisfies the relations mA ∝ C
(3−n)/2

A

and λ̄2,A ∝ C−5
A with mA and CA the mass and compactness of the Ath body, one finds that λ̄2,s ∝ 1 + q10/(3−n) and

λ̄2,a ∝ 1 − q10/(3−n), which then imply [253]

λ̄2,a = Fn(q)λ̄2,s, Fn(q) ≡ 1 − q10/(3−n)

1 + q10/(3−n)
. (65)

This Newtonian relation is also shown in the top panel of Fig. 14, which agrees with the numerical data in the large λ̄2,s
region (in the Newtonian limit). The above relation reduces to λ̄2,a = λ̄2,s in the small mass ratio limit (q → 0), while it
reduces to λ̄2,a = 0 in the equal-mass limit (q → 1). The absolute fractional difference of the relation from that with an
averaged polytropic index n̄ near q = 1 is given by

⏐

⏐

⏐

⏐

Fn − Fn̄

Fn̄

⏐

⏐

⏐

⏐

= n − n̄

3 − n̄
+ O

[

(1 − q)2
]

≲ 0.13. (66)

This analytic calculation explains mathematically why the universality deteriorates as one increases q.
Another parameterization of tidal deformabilities that is useful in gravitational wave observations of neutron-star

binaries is [254,255]

Λ̄ = 16

13

[

(1 + 7η − 31η2)λ̄2,s −
√

1 − 4η(1 + 9η − 11η2)λ̄2,a

]

, (67)

δΛ̄ =
√

1 − 4η

(

1 − 13272

1319
η + 8944

1319
η2
)

λ̄2,s −
(

1 − 15910

1319
η + 32850

1319
η2 + 3380

1319
η3
)

λ̄2,a, (68)

where η is the symmetric mass ratio defined by

η ≡ m1m2

(m1 + m2)2
= q

(1 + q)2
. (69)

Yagi and Yunes [253] found that the relation between Λ̄ and δΛ̄ also depends on q and has a similar equation-of-state
variation as that of the λ̄2,s–λ̄2,a relation.

Yet, another useful parameterization is to Taylor expand λ̄2,A(mA) about a fiducial massm0 [247]:

λ̄2,A(mA) ≡
∑

k=0

λ̄
(k)
2

k!

(

1 − mA

m0

)k

, λ̄
(k)
2 ≡ (−1)kmk

0

dkλ̄2,A

d(mA)k

⏐

⏐

⏐

⏐

mA=m0

, (70)

which is similar to the parameterization proposed inMessenger andRead [113], Damour et al. [256], Del Pozzo et al. [257] and

Agathos et al. [258]. The top right panel of Fig. 14 shows the relation between λ̄
(k)
2 and λ̄

(0)
2 for various values of k and equations



of state. The single parameter along each curve is m0. A fit to the numerical data, shown in the figure, was constructed in
Yagi [247], and the absolute fractional difference between this fit and the numerical data is shown in the bottom right panel
of Fig. 14. Observe that the relation with k = 1 is equation-of-state insensitive to ∼30%, while the variation increases as one

increases k. The top right panel also shows the Newtonian relation, λ̄
(k)
2 = λ̄

(0)
2 Γ [k + 10/(3 − n)]/Γ [10/(3 − n)] with Γ (x)

the Gamma function. Observe that the numerical data approaches the Newtonian relations as one increases λ̄
(0)
2 .

4.3. I–Love–Q and oscillation frequencies

Let us proceed by reviewing the connection between the I–Love–Q relations and the universal relations among the
f-mode oscillation frequencies. The latter are relations associated with the real and imaginary frequencies of the modes
of an oscillating star, i.e. the central frequency and the damping time of an oscillation mode. These frequencies and
certain combinations of the stellar mass and radius satisfy approximately universal relations that were discovered in the
1990s [64,67,68,93,259]. Lau et al. [73] (see also Chirenti et al. [85]) found that the amount of universality in these relations
improves if one uses themoment of inertia instead of the radius for non-rotating configurations. This is because

√
I/M serves

as an effective radius that measures the average size of a star weighted by its mass distribution, and is more relevant to the
stellar dynamics than the geometric radius. Doneva and Kokkotas [260] extended the relation to rapidly-rotating neutron
stars and to higher-mode oscillation frequencies. Together with the I–Love relation, one can easily see that a universal
relation exists between the f-mode oscillation frequency and the tidal deformability.

Chan et al. [261] studied the relation between the ℓth central oscillation frequency ω̄ℓ (normalized by the stellar mass)
and the ℓ′th electric-type tidal deformability λ̄ℓ′ . Interestingly, they found that the equation-of-state variation becomes
smallest when ℓ = ℓ′ (smaller than 1%), while the variation increases when ℓ ̸= ℓ′. To better understand this behavior,
the authors carried out an analytic calculation in the Newtonian limit. They considered a generalized Tolman model, whose
density profile is given by ρ(r) = ρc(1 − δ r2/R2), where ρc is the central density of the star, while 0 ≤ δ ≤ 1 corresponds
to an effective polytropic index near the center (δ = 0 corresponds exactly to an incompressible star profile, while δ = 1
reduces to the original Tolmanmodel). Using such a profile, one can perturbatively solve the Tolman–Oppenheimer–Volkoff
equation about δ = 0 to find the pressure profile. One can then calculate the f-mode oscillation frequency, given by [262]

ωℓ = 2ℓ(ℓ− 1)(2ℓ− 1)

2ℓ+ 1

∫ R

0
p(r) r2ℓ−2 dr

∫ R

0
ρ(r) r2ℓ dr

, (71)

which depends on ρc . Using the relations

M = 4πρc

∫ R

0

(

1 − δ
r2

R2

)

r2dr = 4π

3
ρcR

3

(

1 − 3

5
δ

)

, (72)

I = 8π

3
ρc

∫ R

0

(

1 − δ
r2

R2

)

r4dr = 8π

15
ρcR

5

(

1 − 5

7
δ

)

, (73)

one can eliminate the radius R and find ρc(M, I). Substituting this in Eq. (71), one finds

ω̄2
ℓ ≡ (Mωℓ)

2 ∝ Ī−
3
2

[

1 + 12(2 − ℓ)

35(2ℓ+ 3)
δ + O

(

δ2
)

]

(74)

near δ = 0. On the other hand, following the calculation in Section 4.1.1, one finds that the tidal deformability is given by

λ̄ℓ′ ∝ Ī
2ℓ′+1

2

[

1 + 4(2ℓ′ + 1)(ℓ′ − 1)(ℓ′ − 2)

35(ℓ′ − 1)(2ℓ′ + 3)
δ + O

(

δ2
)

]

. (75)

Eliminating Ī from Eqs. (74) and (75), one arrives at

ω̄2
ℓ ∝ λ̄

− 3
2ℓ′+1

ℓ′

[

1 − 12(ℓ− ℓ′)

5(2ℓ+ 3)(2ℓ′ + 3)
δ + O

(

δ2
)

]

. (76)

This shows that when ℓ ̸= ℓ′, the equation-of-state variation is of O(δ), while it is of O(δ2) when ℓ = ℓ′. In other words,
the relation becomes stationary (the linear dependence vanishes) around δ = 0 in the latter case, suppressing the variation.
Similarly, observe that by setting ℓ′ = 2 in Eq. (75), the I–Love relation in the Newtonian limit depends on δ at quadratic
order, which explains mathematically why the universality holds so strongly in this relation [261]. In particular, this also
shows mathematically why the I–Love relation is more equation-of-state insensitive than the 3-hair ones, since the latter
depends linearly in the deviation from incompressible stars [see Eq. (27)].

4.4. I–Love–Q and compactness

Approximate universal relations between each of the I–Love–Q trio and the stellar compactness were found before the
discovery of the I–Love–Q relations [62,65,70,77,78,90,240,263]. One might then naively think that the existence of the
universal I–Love–Q relations is trivial. For example, one can combine the I–C and the C–Love relations to obtain the I–Love



Fig. 15. (Top) I–C (left) and C–Love (right) relations for slowly-rotating neutron stars and quark stars with masses larger than 1M⊙ and the meaning of

symbols being same as in Fig. 3. We also show the fit in Eqs. (77) and (78) as solid curves, constructed without including quark stars. The dashed curve in

the C–Love plane represents the fit created in Maselli et al. [240] among 3 different equations of state with masses 1.2M⊙ < M < 2M⊙ . Dotted–dashed

curves are analytic expressions for quark stars derived within the post-Minkowskian approximation [169]. (Bottom) Fractional difference from the fit.

Observe that such a fractional difference, in particular for quark stars (triangles), is much larger than that of the I–Love relation in Fig. 3, whose maximum

equation-of-state variation of ∼0.5% is shown by horizontal dashed lines.

relation and expect the latter to be as universal as the former two. The aim of this subsection is to show explicitly that the
equation-of-state variation in the relation between the compactness and any of the I–Love–Q trio members is much larger
than the variation in the I–Love–Q relations. We will also here review a mathematical explanation for why this equation-
of-state variation is suppressed in the I–Love relations, while it is not in the I–C and C–Love relations [169].

4.4.1. Numerical analysis
Let us begin by reviewing various I–C relations. Ravenhall and Pethick [62] discovered the first approximate universal

relation between C and ĪC2eλ(R) in the 1990s (where recall that eλ(r) is the (r, r) component of the metric, given in Eq. (4))
for slowly-rotating neutron stars to first-order in slow-rotation. A decade later, Bejger and Haensel [65] and then Lattimer
and Schutz [70] studied the relation between C and ĪC2 = I/(MR2) (motivated by the fact that I ∝ MR2 for Newtonian
polytropes). These studies revealed that the I–C relation of a neutron star sequence is quite different from that of a quark
star or incompressible star sequence. Baubock et al. [78] studied the relation between C and ĪC3/2 using 4 different neutron-
star equations of state and showed that the universality holds to ∼4% at most when C ≳ 0.15. Breu and Rezzolla [90] and
Staykov et al. [263] investigated the relations both between ĪC2 and C and between Ī and C withmany different neutron-star
equations of state, finding that the latter is slightlymore universal than the former. Themaximumequation-of-state variation
in the latter was found to be O(5%) when C ≳ 0.07 [90,263]. Breu and Rezzolla [90] and Staykov et al. [263] also studied the
relations for rapidly-rotating neutron stars and found that they can deviate from the relations for non-rotating stars, with a
variation of O(20%) when χ = 0.6 [90]; this variation is larger than that induced by differences in the equation of state in
the slow rotation limit.

The top left panel of Fig. 15 presents the relation between Ī and C for slowly-rotating neutron stars and quark stars with
the same equations of state used in Fig. 3. As also presented in Ravenhall and Pethick [62], Bejger and Haensel [65] and
Lattimer and Schutz [70], this figure shows that the I–C relation of quark stars (triangles) is quite different from that of
neutron stars (circles), as also found in Staykov et al. [263]. Following Breu and Rezzolla [90] and Staykov et al. [263], we
construct a polynomial fit given by

y =
4
∑

k=1

ak C−k, (77)

where y = Ī and the best fitted coefficients (without using the quark star data) are a1 = 1.317, a2 = −0.05043, a3 = 0.04806
and a4 = −0.002692, which is consistent with that found in Breu and Rezzolla [90] and Staykov et al. [263]. The bottom left
panel of Fig. 15 shows the relative fractional difference of the numerical data and the fit. Observe that themaximum fractional
difference for the neutron star sequence is atmost 9%, which is consistentwith Breu and Rezzolla [90] but slightly larger than
that found in Baubock et al. [78] and Staykov et al. [263] (due to the use of more equations of state in this review). The quark
star sequence deviates from the neutron star one by 27% atmost. These deviations can be understood by studying Newtonian

polytropes, where the dimensionless moment of inertia when n = 0 and n = 1 is given by Ī
(n=0)
N = (2/5)C−2 = 0.4C−2 and

Ī
(n=1)
N = 2(π2 − 6)/(3π2)C−2 ∼ 0.26C−2 respectively [49], leading to a fractional difference between the two coefficients
of ∼53%.



We next move on to the Q–C relation, the approximate universality of which was discussed in Urbanec et al. [77]. As
in the I–C case, the authors found that the Q–C relation of quark stars is quite different from that of neutron stars. We
do not present the Q–C relation here because it is qualitatively similar to the Ī and C relation, shown in the left panel of
Fig. 15. A good fit to such a Q–C relation (using neutron star data only) is given by Eq. (77) with y = Q̄ and the coefficients
a1 = −0.2588, a2 = 0.2274, a3 = 0.0009528 and a4 = −0.0007747. Themaximum fractional difference of the neutron star
data from the fit is 9% at most, while the maximum deviation between the quark star and neutron star sequences is 29%.

Let us finally look at the C–Love relation, which was first studied by Maselli et al. [240]. The authors investigated three
different neutron star (including hybrid star) equations of state with neutron star masses 1.2M⊙ ≤ M ≤ 2M⊙, and found
that the relation is approximately universal to within ∼2%. The top right panel of Fig. 15 shows the C–Love relation with
various equations of state. A fit of the form [240]

C =
2
∑

k=0

ak
(

ln λ̄2
)k
, (78)

with aM0 = 0.371, aM1 = −0.0391 and aM2 = 0.001056 obtained in [240] is also shown in this figure with a dashed curve.

Using the wider set of equations of state considered in this review, the best-fit coefficients change slightly to aYY0 = 0.360,

aYY1 = −0.0355 and aYY2 = 0.000705, which is shown in the figure with a solid curve. The bottom right panel shows the
fractional difference between the data and the second fit. The maximum difference for the neutron star sequence is 6.5%
(which is more than 3 times larger than that inMaselli et al. [240]), while themaximumdeviation in the quark star sequence
relative to the neutron star one is 15%.

We now compare the equation-of-state variation in the I–C , Q–C and C–Love relations with that in the I–Love–Q
relations. The maximum equation-of-state variation in the I–Love relation of Fig. 3 is shown by horizontal dotted–dashed
lines in the bottom panels of Fig. 15. Observe that this variation is more than one order of magnitude smaller than that in
the I–C and C–Love relations. In particular, the I–Love relation of neutron stars is essentially indistinguishable from that of
quark stars. These results show that the degree of universality in the I–Love relation cannot be simply explained by that
in the I–C and C–Love relations. Once one combines the two relations, the equation-of-state variation in one relation must
partially cancel that in the other, leading to a suppressed overall variation in the combined I–Love case.

4.4.2. Analytic investigation
Canweunderstand this suppressionmechanism analytically? Chan et al. [169] showedmathematically that the equation-

of-state variation is suppressed in the I–Love relation relative to that in the I–C and C–Love relations for self-bound stars.
The energy density of such stars does not vanish in the pressureless limit, but rather ρ = ∑

k=0ck pk, where c0 > 0 and
c1 = (dρ/dp)p=0 ≥ 0 is a measure of the stellar compressibility at p = 0. Incompressible stars correspond to the c0 > 0
and ck≥1 = 0 case, while quark stars (modeled with a simple MIT bag model [264–266]) corresponds to the c0 = 4B, c1 = 3
and ck≥2 = 0 case, where B is the bag constant. Chan et al. [169] extended the analysis of incompressible stars in [168]
(see Eq. (16)) to self-bound stars and proved that the cj coefficients first enter at O(C

j) relative to the leading order term in
compactness in the I–C and C–Love relations, while it first enters at higher order in compactness in the I–Love relation. For
example, with a general linear equation of state with ck≥2 = 0, the I–C and C–Love relations do not depend on c0, but their
dependence on c1 is

1

Ī

(

∂ Ī

∂c1

)

C

= −0.05715C + O

(

C2
)

,
1

λ̄2

(

∂λ̄2

∂c1

)

C

= −0.1428C + O

(

C2
)

, (79)

respectively. On the other hand, the dependence of c1 of the I–Love relation is

1
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)

. (80)

Therefore, the c1 dependence on the I–Love relation is suppressed compared to that of the I–C and C–Love relations by a
factor of O(C) and since C < 1/2 for all self-bound stars, the former is more universal than the latter two.

With this argument at hand, we can now better understand why the I–Love relation is more universal than the I–C and
C–Love relations. Chan et al. [169] showed that

Ī (SBS)
(

C (SBS)
)

= Ī (IS)
(

C (IS)
) [

1 + O

(

C (IS)
)]

, λ̄
(SBS)
2

(

C (SBS)
)

= λ̄
(IS)
2

(

C (IS)
) [

1 + O

(

C (IS)
)]

, (81)

where the superscripts (SBS) and (IS) refer to self-bound stars and incompressible stars respectively, i.e. one can adjust the
compactness of an incompressible star C (IS) such that both Ī and λ̄2 match those of a self-bound starwith a given compactness
C (SBS) in the low compactness limit. Since the I–Love relation is obtained by eliminating the compactness, the difference
between C (SBS) and C (IS) is irrelevant in the I–Love relation, and such a relation for self-bound stars agrees with that of
incompressible stars to leading-order in compactness. Thus, the equation-of-state variation of the I–Love relation enters
at O(C) higher than that of the I–C and C–Love relations. Eq. (81) is realized due to (i) the similarity in the response of Ī and
λ̄2 to variations in the stellar compressibility and (ii) the proper normalization of Ī and λ̄2 (see also Section 3.1 for the latter
point) [169].



4.5. Darwin–Radau relation

In this subsection, we will compare the Newtonian I–Q relation obtained from the 3-hair analysis in Section 2.3.1 with
the Darwin–Radau relation. In 1885 and later in 1899, Radau [267] and Darwin [268] found that a certain dimensionless
version of the quadrupole moment and of the moment of inertia, which we shall call J2 and Ĩ , satisfy a quadratic relation
that depends on the stellar eccentricity. This relation was found by making a series of assumptions: (i) Newtonian gravity
(since General Relativity did not exist yet), (ii) slow rotation, (iii) hydrostatic equilibrium of the stellar interior, and (iv) an
equation of state that deviates only mildly from constant density. These assumptions happen to be excellent in planetary
astrophysics, where the Darwin–Radau relation has been used to infer the rotation rate of an extrasolar planet from the
oblateness measurement via transit photometry [269] (assuming a priori knowledge of the planet’s internal structure). For
planets in the Solar System, the rotation rate has been measured and one can check that it is accurately recovered from
the Darwin–Radau relation within a few percent error [269] using the model-dependent moment of inertia of Hubbard and
Marley [270].

Let us then begin by explaining how to derive the Darwin–Radau relation. Our starting point is the moment of inertia
given by Eq. (8). Instead of integrating the dipole moment r2ρ(r) from the core to the stellar surface, we will integrate up to
the mean radius R̄ defined below Eq. (23). Rewriting the resulting expression in terms of the mean density ρ̄, one finds

I = 8π

9

(

ρ̄(R̄) R̄5 − 2

∫ R̄

0

ρ̄(r̄) r̄4 dr̄

)

. (82)

Let us next return to the Clairaut–Radau equation of Eq. (6), which determines the tidal Love number k2 through the solution
for η2 (the logarithmic derivative of the distortion function):

d

dr̄

(

ρ̄ r̄5
√

1 + η2

)

= 5ρ̄ r̄4 ψ(η2), ψ(η2) ≡ 10 + 5η2 − η22

10
√
1 + η2

. (83)

Using the approximation ψ(η2) ≈ 1, which is exact for an n = 0 polytrope, we can solve the above equation to find

∫ R̄

0

ρ̄(r̄) r̄4 dr̄ = ρ̄(R̄) R̄5

5

√

1 + η2(R̄). (84)

Substituting this and ρ̄ = 3M/(4π R̄3) in Eq. (82) one finds,

Ĩ ≡ I

MR̄2
= 2

3

(

1 − 2

5

√

1 + η2(R̄)

)

. (85)

Using further the relation η2(R̄) = 3 [1 − 5J2/(2fe)], with J2 ≡ −Q/
(

MR̄2
)

and fe ≡ 1− a3/a1, where recall that a3 and a1 are
the semi-major and semi-minor axis of the stellar ellipsoid, one arrives at the Darwin–Radau relation [267,268,271]:

J2

fe
= − 3

10
+ 5

2
Ĩ − 15

8
Ĩ2. (86)

Observe how the new dimensionless quadrupole moment J2 depends quadratically on the new dimensionless moment of
inertia Ĩ with an overall constant of proportionality fe that depends on the stellar eccentricity.

Let us now compare the Darwin–Radau relation with the I–Q relation obtained from the 3-hair relation in Section 2.3.1
within the elliptical isodensity approximation. Setting ℓ = 0 in Eq. (22), one finds

Q = −1
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e2
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)1/3

MR̄2, I = 2

3
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(

1 − e2
)1/3

MR̄2. (87)

Using further that the ellipticity e2 ∼ 2fe in the slow-rotation approximation, one finds

J2

fe
= Ĩ. (88)

Observe that the I–Q relation obtained from the 3-hair relations in the Newtonian limit differs from the Darwin–Radau
relation in Eq. (86), with the former being linear in the moment of inertia instead of quadratic.

Interestingly, both the Darwin–Radau and 3-hair I–Q relations can be obtained from a certain limit of the so-called core-

ocean model [272,273]. In this model, one treats a star as an two-fluid ellipsoid: a constant-density core of mean radius A

and a constant-density ocean of mean radius B. The relation between J2/fe and Ĩ in the core-ocean model is given by [271]

J2

fe
= 2

3
+ 5Ĩ − 2r2AB

5
(

1 − r2AB

) + 8 − 20r2AB + 10Ĩ
(

5r3AB − 2
)

12
(

r5AB − 1
)

+ 15Ĩ
(

2 − 5r3AB + 3r5AB
) , (89)

where rAB ≡ A/B is the ratio of the mean radii. One recovers the Darwin–Radau relation (Eq. (86)) in the shallow-ocean limit

rAB → 1, while the 3-hair I–Q relation (Eq. (86)) is recovered in the point-core limit rAB → 0. In particular, in the latter limit,



Fig. 16. The Darwin–Radau relation and the 3-hair I–Q relation in the Newtonian limit. Both relations become exact for an n = 0 polytrope shown by the

black dot. We also show the relation in the core-ocean model with rAB = 0.5 for reference, while the Darwin–Radu and 3-hair I–Q relations are obtained

as a limit rAB → 1 and rAB → 0 respectively.

Ĩ and J2/fe are given by [273] Ĩ = (2/5)(MB/M) = J2/fe, whereM is the total mass of the star andMB is the mass of the ocean.

Thus, although Ĩ and J2/fe in the point-core mode differ from the 3-hair Eq. (87), the relation between these quantities is
identical. Note also that when 0 < rAB < 1, the relation in Eq. (89) lies between the Darwin–Radau and 3-hair I–Q curve.

Fig. 16 compares theDarwin–Radau relation of Eq. (86)with the 3-hair I–Q relation of Eq. (88) and the core-ocean relation
of Eq. (89). Observe that they all agree at a point corresponding to an n = 0 polytrope, since all relations become exact in
this limit. On the other hand, the relations deviate from each other as one moves away from an n = 0 polytrope, as each
curve relies on a different set of approximations.

Let us conclude this subsection by stressing that the Darwin–Radau relation is different from the I–Q relation discussed
in Section 2.2.2. One reason is that the former is only valid for Newtonian (non-compact) stars, while the latter holds for
relativistic (compact) stars, like neutron stars and quark stars. Another reason is the difference in the normalizations of the
moment of inertia and quadrupole moment, which can affect the universality drastically as shown in Section 3.1. Indeed,
the universality seems to be lost for relations between J2/fe and Ĩ when considering neutron stars and quark stars. A more
detailed study on the comparison between the Darwin–Radau and I–Q relations is currently in progress.

5. Why universality holds

After the initial discovery of the I–Love–Q relations, several possible hypotheses for the origin of the universality were
proposed, but none of these survived detailed scrutiny. The first proposal for the origin of the universality was rooted in
the similarity of the different equations of state in the outer layers of neutron stars, which is required to ensure agreement
with experimental constraints at low densities. The idea here was that the moment of inertia and quadrupole moment are
mostly determined by these outer layers, and since the equations of state must all be similar to each other in that region,
then the moment of inertia and the quadrupole moment should be fairly equation-of-state independent. This explanation
was shown to be unsatisfactory in Yagi et al. [274], since the moment of inertia and the quadrupole moment receive their
largest contributions frommatter between 50% and 95% from the center of the star, and at these densities (the slope of) the
equations of state can differ by as much as 30%.

A second proposal for the origin of the universality was based on the idea that the original I–Love–Q papers only
considered ‘‘simple’’ compact stars, e.g. stars that rotate slowly and have no magnetic fields. The implication here was that
if more complicated neutron stars were considered, such as those with quark condensates in their inner cores or stars that
rotate very rapidly, then the universality would be lost. As explained in Section 3, however, the universality was shown to
remain in rapid rotation, in differential rotation and in weakly-magnetized stars, as well as for a very large set of equations
of state that include phase transitions.

A third proposal for the origin of the universality was related to their relativistic or black hole limit. Indeed, the black
hole no-hair theorems guarantee that the exterior gravitational field of isolated, stationary and axisymmetric black holes
depends only on theirmass, spin and charge. All highermultipolemoments of the exterior field are then determined entirely
in terms of these three quantities with exactly zero sensitivity to the interior composition of the black hole or the nature of
the singularity. Neutron stars and quark stars, however, are not nearly as compact as black holes, and in fact, no continuous
stationary sequence exists to map between these two sets of compact objects. Thus, it was not clear at first whether one
could establish a concrete relation between the no-hair theorems of black holes and the approximate no-hair relations of
compact stars.

If none of these explanations hold, then what is the origin of the universality? This is the topic of this section, which will
begin with a study of the relations in the Newtonian limit (Section 5.1) and then in the black hole limit (Section 5.2). The
section concludes with a discussion of the only phenomenological model that seems capable of explaining the universality
in terms of symmetry considerations (Section 5.3).



5.1. The Newtonian limit

Given the complexity of the I–Love–Q relations, perhaps one should first study the Newtonian approximate no-hair
relations of neutron stars to gain some insight. Upon doing so, one quickly discovers that these relations rely heavily on
the elliptical isodensity approximation (see Section 2.3.1), and thus, perhaps this approximation is responsible for the
universality. In view of this, Yagi et al. [274] considered breaking each of the assumptions that go into this approximation
separately to see which one has the largest effect in the universal relations. The first possibility is to break the elliptical
condition (i.e. that the stellar isodensity surfaces are self-similar ellipsoids), for example by requiring that the isodensity
contours take a self-similar spherical shape or a self-similar peanut shape. Yagi et al. [274], however, found that this
only modifies the angular integrals Iℓ,k in Eq. (21), which are equation-of-state independent, thus leaving the universality
unaffected. The second possibility is to break the spherical density profile condition (i.e. that the density as a function of the
isodensity radius for a rotating configuration equals that of a non-rotating configurationwith the same volume), for example
by replacing the Lane–Emden functions ϑLE (valid in spherical symmetry) by some other function. Yagi et al. [274], however,
found that this modification changes the structure of the radial integrals Rℓ only by a small amount, provided the function
that replaces ϑLE is a small deformation from the Lane–Emden function.

The last possibility that remains is to break the self-similar isodensity condition and force the eccentricity to be a function
of the isodensity radius r̃ . Indeed, realistic compact stars are more spherical toward the center than close to the surface, as
discussed in Section 2.3.1. One can model this breakage of self-similarity through the replacement e → e(r̃) = e0f (r̃/a1),
where e0 is the eccentricity at the surface, f (r̃/a1) is an arbitrary function with f (1) = 1 and recall that a1 is the semi-major
axis. The multipole integral in Eqs. (17) and (18) can still be separated into radial and angular integrals [274]
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where the superscript (0) refers to replacing e with e0 in the angular integrals of Eq. (21), and where
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with A = (M, S), nM = ℓ and nS = ℓ − 2. Observe that R
(A)
ℓ reduces to Rℓ in Eq. (21) when f (r̃/a1) = 1. Repeating the

calculation in Section 2.3.1 with Eq. (90), one finds that the three-hair relations still have the form of Eq. (24) or (25) but
with [274]
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Observe again that Eq. (92) reduces to Eq. (26) when f (r̃/a1) = 1.
The degree of universality that is preserved depends sensitively on the functional form of e(r̃) or equivalently f (r̃/a1). Let

us first review the case

e(r̃) = e0

(

r̃

a1

)s

, (94)

where s is a constant. When s > 1, the eccentricity is small near the core, growing rapidly as r̃ ≳ a1/2, while when s < 1 the
eccentricity grows very rapidly right outside the core. The left panel of Fig. 17 shows the coefficient B̄n,ℓ of Eq. (92) for the
ℓ = 1 case and different values of s. Observe how the universality deteriorates greatly with large s, leading to 30% variability
in the relations when s = 3. The model of the eccentricity profile in Eq. (94), however, is not realistic. A much more suitable
model is

e(r̃) = e0

{

1 − δe

[(

r̃

a1

)s

− 1

]}

, (95)

where this time the constants s and δe are determined by fitting the above expression to the eccentricity profile of
numerically constructed neutron stars with a given equation of state; for Newtonian polytropic stars with n ∈ (0, 1),
s ∈ (3, 3.5) and δe ∈ (0, 0.2). The latter implies that the eccentricity profile only changes by ≲20% inside neutron stars,
since δe represents the fractional difference in the eccentricity profile between that at the center and at the surface. The
right panel of Fig. 17 shows the coefficient B̄n,ℓ for two different values of ℓ using the eccentricity expression of Eq. (95).
Observe that this time the fractional difference is much smaller than when the eccentricity was prescribed via Eq. (94). This
is as expected, since the profile of Eq. (95) is fitted to numerically constructed neutron star solution, which we already know
is approximately constant throughout the star.



Fig. 17. (Left) Coefficient B̄n,1 (Eq. (92)) for different values of the exponent s in Eq. (94) as a function of the polytropic index n (top) and fractional difference

between the coefficient and its value at n = 0.65 (bottom). Observe how the universality deteriorateswith large s. (Right) Coefficient B̄n,ℓ for different values

of ℓ for the casewhere the eccentricity is given by Eq. (95) (top), and fractional difference between the coefficient and its value at n = 0.65 (bottom). Observe

that in the ℓ = 1 case the fractional difference is very small, unlike in the left panel of this figure.

5.2. The black hole limit

Another method to study the origin of the universality of the I–Love–Q relations is to consider the relativistic or black
hole limit of the approximate no-hair relations. We define here the black hole limit as the limit in which the compactness

of the star reaches the critical value CBH = 1/2. The compactness is here defined as Ce ≡ M/Re, where Re is the equatorial
radius of the star. For a black hole, this quantity can be defined via Re = rH + a2/rH, where rH is the location of the horizon in
Boyer–Lindquist coordinates and a is the Kerr spin parameter, which thus leads to CBH = 1/2 irrespective of the spin [275].
Alternatively, one can use Thorne’s Hoop Conjecture6 to argue that the equatorial radius of relevancemust be 2M for a black
hole to form, such that CBH = 1/2.

This black hole limit is difficult to consider when studying a stationary sequence of neutron star solutions. In General
Relativity, it is well-known that neutron stars that are modeled as a perfect fluid achieve a maximum compactness that
is below the black hole limit, i.e. CNS < CBH. For example, for an incompressible fluid equation of state, the maximum
compactness of a neutron star is Cincomp = 4/9, at which point the central pressure diverges. For other equations of state, the
maximum compactness is smaller than this number, i.e. any regular and thermodynamically stable perfect fluid star must
have C < 4/9. This is called the Buchdahl limit [278,279].

The natural way to approach the black hole limit is to relax the requirement of stationarity. One can imagine numerically
evolving the collapse of a neutron star into a black hole, starting from an initially unstable configuration, andmonitoring the
I–Love–Q relations or the approximate no-hair relations dynamically. One possible problem is the definition of multipole
moments in a dynamical spacetime. The Geroch–Hansen moments [35,36], for example, are only defined in stationary
spacetimes and typically require resolving the metric near spatial infinity. It is probably for this reason that this line of
study has not yet been pursued.

Anotherway to approach the black hole limit is to relax the requirement that neutron stars be described by a perfect fluid.
This can be achieved by considering anisotropic stars, i.e. stars with a stress–energy tensor that deviates from the perfect
fluid model through the introduction of a diagonal anisotropic tensor that allows for different pressures along different
principal directions of the star’s ellipsoidal shape (see Section 3.4). For realistic equations of state, static stable stars have a
compactness of C ≲ 2/5 even with strongly anisotropic pressure (λBL ≈ −π ). On the other hand, incompressible static stars
in the BL model have C → 1/2 as λBL → −2π .

Yagi and Yunes [280,281] considered anisotropic compact stars with constant density as a toy model to study the
I–Love–Q and no-hair relations in the approach to the black hole limit. Fig. 18 shows some of the results of this study by
considering the S̄1–M̄2 and S̄3–M̄2 relations in the black hole limit for different anisotropic magnitudes. Observe how the
approximate no-hair relations for compact stars approach the exact black hole no-hair relations (marked with a cross) as
the compactness increases (indicated by arrows). In particular, the approach to this limit is sensitive to the magnitude of
the anisotropy parameter. Observe also that the behavior of the approach is different between the λBL ≤ −0.8π and the
λBL > −0.8π case. This is because the sign of M̄2 and S̄3 changes in the former case as one increases the stellar compactness.

One can analytically prove that S1 reaches the black hole value in the limit C → 1/2 for a strongly-anisotropic constant
density star with λBL = −2π [280,281]. In such a case, one can solve analytically the Einstein equations at linear order
in spin both in the interior and exterior regions modulo integration constants. One then matches these solutions at the
surface continuously and smoothly to determine these integration constants. In particular, the current dipole moment is

6 The Hoop Conjecture stipulates that if a body of massM is contained inside a circumference of 4πM , then the object will form a black hole [276,277].



Fig. 18. (Left) S̄1–M̄2 (top) and S̄3–M̄2 (bottom) relations for compact stars with constant density and various anisotropy parameters λBL . The black crosses

represent the black hole values. Arrows show the direction of increasing compactness, with λBL ≤ −0.8π (dashed) and λBL > −0.8π (solid). (Right)

Zooming into the region close to the black hole limit in the left panels. Observe how each sequence approaches the limit in a nontrivial way.
Source: This figure is taken and edited from Yagi and Yunes [280].

directly related to the integration constant in the exterior region, which one finds depends on hypergeometric functions
via [280,281]
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where S̄1 ≡ S1/S1,BH. Expanding this about C = CBH = 1/2, one finds S̄1(C) = 1−10(C−CBH)+56(C−CBH)
2+O

[

(C − CBH)
3
]

.

Thus, S̄1(C → 1/2) = 1, which agrees with the black hole result.
The approximate universality of the no-hair relations is preserved in the presence of anisotropy (see Section 3.4 and

Fig. 11), and given that the black hole limit is a single point in phase space, it is possible that the approach to this critical
point also presents universality. Yagi and Yunes [227,280] studied this possibility for isotropic stars and found that indeed
the slope at which the universality is approached seems to be fairly independent of the equation of state. The left panel of
Fig. 19 shows the approach of the dipole moment to the black hole limit for various equations of state (similar behavior is
observed for higher order multipole moments) [280]. Although the black hole limit cannot be cleanly resolved for isotropic
stars, observe that all equations of state seem to approach the black hole limit with roughly the same slope. One can quantify
this behavior further by defining the slope via

kS̄1 ≡ d ln∆S̄1

d ln τ
, τ ≡ CBH − C

CBH

, ∆S̄1 ≡ S̄1 − S̄1,BH

S̄1,BH
, (97)

in which case one finds that kS̄1 ≈ −3.9 with a 10% equation-of-state variation [280]. The right panel of Fig. 19 presents
kS̄1 as a function of τ for a strongly-anisotropic, constant density star with λBL = −2π , calculated analytically from Eq. (96).
Observe that kS̄1 → 2 as C → CBH, which is different from the isotropic value. Such universal behavior in the approach of
a critical point suggests an analogy with phase transitions and with critical behavior in the collapse of a compact star to a
black hole, although much more work is needed to establish such an analogy rigorously.

5.3. An approximate emergent symmetry

The two sets of analyses described above, in the Newtonian and in the black hole limits, begin to paint a physical, albeit
phenomenological, picture postulated in Yagi et al. [274] for the reason the universality holds. Imagine a phase space spanned
by quantities that characterize stars, e.g. their compactness, their temperature, their differential rotation rate, their equation
of state, etc. In principle, this is a space of very large dimension, but as one considersmore andmore compact stars, a subspace
of much smaller dimension becomes more and more important.7

Let us then imagine the two-dimensional subspace spanned by the compactness and an effective equation of state
polytropic index n, as shown in Fig. 20. Realistic equations of state are obviously not polytropic, but they can be effectively
represented as piecewise polytropes [143]. Regular non-compact stars, such as supergiantswith C ∼ 10−8 and temperatures

7 We do not mean that the phase space of solutions changes dimensionality as the star becomes more compact. Rather, we mean that some physical

variables, such as temperature, affect the structure of compact stars less than the structure of non-compact stars.



Fig. 19. (Left) Fractional difference in S̄1 from the black hole value as a function of the fractional difference in the stellar compactness for isotropic neutron

stars with various equations of state. Observe that slopes of these curves are similar for (CBH − C)/CBH ≲ 0.7. (Right) Scaling exponent of S̄1 defined in

Eq. (97) as a function of the fractional difference in the compactness from the black hole value for a constant density, anisotropic star with λBL = −2π .

Such a scaling exponent is extracted from the analytic expression in Eq. (96). Observe that the exponent approaches 2 (black dashed) as one approaches

the black hole limit (τ → 0).
Source: The right panel of this figure is taken and edited from Yagi and Yunes [281].

Fig. 20. Schematic diagram of the stellar phase space. Compact objects live in one corner of this space, while non-compact stars live in another corner.

As one flows from the latter to the former, degrees of freedom other than the polytropic index and compactness are suppressed. Then, an approximate

self-similarity in isodensity contours emerges, which is responsible for the universality in no-hair relations for compact stars.
Source: This figure is taken from Yagi et al. [274].

of around 104 K, exist in the small compactness region. The interior density of these stars is subnuclear, and thus, the
equation of state can be captured through computer simulations, experimental data and helio-seismological observations,
all indicating an effective polytropic index of n > 1. Neutron stars, on the other hand, exist in the large compactness
C ∈ (0.1, 0.4) and n ∈ (0.5, 1) region, with temperatures much smaller than their Fermi temperature. Isolated neutron stars
typically rotate rigidly due to the absence of external perturbations, i.e. vorticity and differential rotation are unsourced in
the barotropic limit.

As one flows from the non-compact stellar region to the neutron star region, the other dimensions of the space become
less and less important, effectively shrinking as shown in Fig. 20. These other dimensions are related to the microphysics of
the neutron star, which effectively efface away at high compactness, influencing the main characteristics of the neutron star
only mildly. It is because of this effacing that the equation of state of neutron stars can be treated as barotropic andmodeled
through a set of piecewise polytropes.

As this effacement occurs, the radial eccentricity profiles become less and less variable, becoming nearly constant in the
region of the star’s interior that contributes themost to the low-ordermultipolemoments. This occurs because such a nearly
constant eccentricity profile minimizes the energy of the system [172]. Thus, as one considersmore andmore compact stars,
an approximate symmetry, isodensity self-similarity, emerges. The emergence of an approximate symmetry ismost probably
what causes the approximate universal behavior in the approximate no-hair relations for compact stars.



Fig. 21. (Left) The I–Q relation for rotating noncompact stars with Kramer’s (thin solid) and OPAL (thin dashed) opacity law, and M ∈ (2, 10)M⊙ . Within

each opacity family, each curve corresponds to the stellar rotation ofΩs/Ωbk from 0.1 to 0.9 in increments of 0.1 that corresponds to χ ∈ (3, 17.5), where

Ωs andΩbk are spin angular velocities at the surface and for breakup respectively. Thick solid curves are the fit to the relations within each opacity family.

Observe that the relation depends sensitively on the opacity law, while it is less sensitive to spin. (Right) The M̄4–S̄3 relation for non-compact stars with

Kramer’s (thin solid) and OPAL (thin dashed) opacity law. The stellar rotation of Ωs/Ωbk increases from 0.1 to 0.9 in increments of 0.1 from left to right.

Observe that the universality is lost for rapidly-rotating noncompact stars.
Source: This figure is taken from Yagi et al. [274].

Such an approximate symmetry is not present in non-compact stars, as the eccentricity can vary drastically in their inte-
riors. Yagi et al. [274] constructed rotating non-compact stellar solutions with the publicly-available ESTER code [282,283]
and found that the eccentricity varies by 300%–600% within the stars, a variation much larger than 20% found in neutron
stars (see Section 5.1). Fig. 21 presents the I–Q and M̄4–S̄3 relations for such rotating, non-compact stars with two opacity
laws, which effectively corresponds to changing equations of state. Observe that these relations are very sensitive to the
opacity law. For example, within each opacity family, the I–Q relation only varies by a few % from the fit, while the two fits
differ by 40%. Such a finding is consistent with the approximate emergent symmetry argument; the amount of universality
deteriorates as the eccentricity variation increases.

When one pushes beyond the neutron star region of subspace toward the black hole region during gravitational collapse,
the approximate symmetry becomes more and more accurate, leading to exact universal relations. The latter are simply a
manifestation of the black hole no-hair theorems discussed earlier. This extension to the black hole limit, however, is subtle
because black holes are vacuum solutions, and thus there is no meaning in isodensity profiles in their interior. One is here
imagining the process of gravitational collapse, in which matter is present in the black hole interior right after a dynamical
horizon has formed, although this matter will continue to contract toward the singularity.

This physical picture is consistentwith themathematical reasoning recently presented in Chatziioannou et al. [174], Sham
et al. [284] andChan et al. [169] and thatwe reviewed in Sections 2.3.1, 4.3 and 4.4.2. These references showed that the I–Love
and 3-hair relations are perturbatively insensitive with respect to changes in the equation of state about the incompressible
limit (polytropic index n = 0). This mathematical result supports the physical model described above because isodensity
self-similarity becomes exact in the incompressible limit. Some care must be taken, however, since realistic equations of
state cannot be well-modeled in the incompressible limit, as e.g. showed in Read et al. [143].

The physical picture described above is also consistent with recent numerical simulations of proto-neutron stars [231],
as already discussed in Section 3.5. This reference studied the evolution of proto-neutron stars shortly after their birth,
during which there are large thermodynamical gradients and strong neutrino emission. During this highly dynamical phase
lasting roughly one second, Martinon et al. [231] found that the eccentricity profiles are not approximately constant and the
I–Love–Q relations are different from those of cold neutron stars with barotropic equations of state. However, soon after
the entropy gradients relax to a smooth configuration, the eccentricity profiles become nearly constant and the original
I–Love–Q relations are re-established.

6. I–Love–Q in modified gravity and exotic compact objects

Up until now, we have focused on universal relations valid in General Relativity, where the action is given by

S = SEH + Smat, SEH ≡ κ

∫

d4x
√−g R, (98)

with SEH the Einstein–Hilbert action, g and R the metric determinant and the Ricci scalar, κ ≡ (16π )−1, and Smat the action
for the matter fields. In this section we review what is known about the I–Love–Q relations in theories other than General
Relativity and for exotic compact objects within General Relativity (see e.g. [285,286] for recent reviews ofmodified gravity).

Aswe shall see, the I–Love–Q relations inmodified gravity remain approximately equation-of-state insensitive and differ
from their General Relativistic counterpart by an amount proportional to the coupling constants of the modified theory. For
theories that have already been stringently constrained by Solar System, binary pulsar or cosmological observations, such



as certain scalar–tensor theories and quadratic gravity models, the modified gravity I–Love–Q relations will be very close
to their General Relativistic counterpart. For other theories that are only weakly constrained by Solar System experiments,
such as certain parity-violating gravity models, the modified gravity I–Love–Q relations will differ significantly from their
General Relativistic counterpart, even when saturating current constraints. We will also see that the I–Love–Q relations in
exotic compact objects, such as gravastars, are both qualitatively and quantitatively different from those for neutron stars
and quark stars.

6.1. Dynamical Chern–Simons gravity

Dynamical Chern–Simons (dCS) gravity is a theory that introduces parity-violation into the gravitational interaction.
Motivated from heterotic superstring theory [287,288], loop quantum gravity [289–291] and effective field theories of
inflation [292], the dCS action is given by [293–295]

S = SEH + Spont + Sϑ + Smat, Spont ≡ αCS

4

∫

d4x
√−gϑ ∗

RR, Sϑ ≡ −β
2

∫

d4x
√−g

[

∇µϑ∇µϑ + 2V (ϑ)
]

, (99)

where ϑ is a pseudo-scalar field, αCS and β are coupling constants, V (ϑ) is a potential for ϑ and ∗
RR ≡ Rνµρσ

∗
R
µνρσ is

the Pontryagin density, which depends on the dual Riemann tensor ∗
R
µνρσ ≡ (1/2)ϵρσαβRµναβ , defined in terms of the

Levi-Civita tensor ϵρσαβ .
The current most stringent constraints on dCS gravity come from Solar System observations of frame-dragging with

LAGEOS [296] and Gravity Probe B [297,298] and from table top experiments [299]. The simplest way to quantify these
constraints is to assume ϑ is dimensionless, such that αCS and β have units of (length)2 and (length)0 respectively, and we

can define the characteristic length scale ξ
1/4

CS ≡ [α2
CS/(κβ)]1/4. DCS gravity reduces to General Relativity in the ξCS → 0

limit. Current observations then constrain ξ
1/4

CS ≲ 108 km [300,301].
DCS gravity arises from more fundamental theories of gravitation in a truncated low-curvature/low-energy expansion,

and thus, it must be understood as an effective field theory. The dCS action is defined by including up to quadratic order
terms in the curvature, and thus, one must require that the coupling constants be such that these terms lead to small

deformations from General Relativistic predictions in any relevant observation. This means that such an effective action is
not valid in regimes of extreme curvature, where all curvature terms are equally important. To ensure we are within the
regime of validity of the effective field theory description, most studies have worked in the small coupling approximation:
ξCSM

2/R6 ≪ 1 [300,302]. Such a treatment ensures the well-posedness of the initial value problem of the theory [303].
Before proceeding, onemust typically choose a potential for the scalar field. From a heterotic string theory viewpoint, the

fieldϑ is an axion, one of themanymoduli fields in string theory that has a potentialwithmany flat directions. If the potential
is flat, then the field is massless and one can just set V (ϑ) = 0. If the potential is zero, then the field is shift-symmetric, i.e. the
Pontryagin density can be rewritten as a total derivative [295], and hence, Spont becomes shift invariant upon integration by
parts.

Let us now look at the I–Love–Q relations in dCS gravity. The neutron star moment of inertia and quadrupole moment,
first calculated in Yunes et al. [305], Ali-Haimoud and Chen [300] and Yagi et al. [302], are different from the General
Relativistic prediction. On the other hand, the electric-type tidal deformability is the same as in General Relativity due
to parity considerations [306]. The top panels of Fig. 22 present the I–Q and I–Love relations in dCS gravity for a set of
representative equations of state studied in Yagi and Yunes [48,49] and Majumder et al. [304]. The coupling parameter
is fixed to ξCS/M

4 = 103, which is allowed by current bounds. Observe that the dCS relations deviate from the General
Relativistic ones in the relativistic regime (small Q̄ or λ̄2). Such a large deviation allows one to place strong constraints on
the theory with future observations, as we will review in Section 7.4. The bottom panels show the amount of equation-of-
state universality in both dCS and General Relativity. Observe that the degree of universality is comparable between the two
theories. However, whether the relations remain universal depends on how one fixes the dimensionless coupling parameter.
For example, if one fixes ξCSM

2/R6 instead of ξCS/M
4, the amount of equation-of-state variation increases significantly [304].

6.2. Einstein-Dilaton Gauss–Bonnet gravity

Einstein-Dilaton Gauss–Bonnet (EDGB) gravity is a theory that introduces quadratic-curvature modifications to the
Einstein–Hilbert action. Motivated from heterotic superstring theory [287,288], the EDGB action we consider here is given
by [293–295]

S = SEH + SEDGB + Sφ + Smat, (100)

SEDGB ≡ αEDGBκ

∫

d4x
√−ge−γEDGBφR2

EDGB, Sφ ≡ −κ
2

∫

d4x
√−g∇µφ∇µφ, (101)

where φ is a scalar field (the dilaton), αEDGB and γEDGB are coupling constants, V (φ) is a potential for φ and R
2
EDGB =

RµνρσR
µνρσ − 4RµνR

µν + R
2 is the Gauss–Bonnet density, which depends on the Riemann tensor, the Ricci tensor and

the Ricci scalar. Notice that we have not included here a potential for the scalar field, following the same reasoning as in dCS
gravity.



Fig. 22. (Top) The I–Q (left) and I–Love (right) relations in dCS gravity with a coupling constant fixed to ξCS/M
4 = 103 for various equations of state. We

also show a fit to the dCS data, together with the fit to the General Relativistic data given in Section 2.2.2. The relations in dCS are different from those in

General Relativity, but they remain approximately universal within each theory. For reference, we show the neutron star mass in General Relativity with

an APR equation of state on the top axis. (Bottom) Absolute fractional difference from the fit. Black dashed curves correspond to the General Relativistic

case. Observe that the degree of universality in dCS is comparable to that in General Relativity.
Source: These figures are taken from Majumder et al. [304].

Fig. 23. Current constraints on the characteristic length scale of EDGB gravity with γEDGB = 1 coming from the observation of the neutron star/white dwarf

binary J1738+0333 [310] (black solid) as a function of the unknown neutron star radius. The Tolman VII equation of state was assumed here, which can

be used to effectively model realistic equations of state [43,157]. Constraints from the black hole LMXB A0620-00 [307] (red dashed) and the Cyg X1 black

hole [308,309] (blue dotted–dashed) are also shown. The green cross corresponds to the bound derived from the existence of neutron star J1614-2230 [126]

obtained in Pani et al. [309] assuming the APR equation of state.

Current stringent constraints on EDGB gravity come from observations of the rate of change of the orbital period in a low-
mass X-ray binary (LMXB) system [307] and the existence of stellar-mass black holes [308]. An equation-of-state dependent
constraint using the maximum mass of neutron stars was also derived in Pani et al. [309]. The simplest way to quantify
this constraint is to set γEDGB = 1 and to assume φ is dimensionless, such that αEDGB has units of (length)2, and thus, the
characteristic length scale is given by |αEDGB|1/2. EDGB gravity reduces to General Relativity in the αEDGB → 0 limit. Current
constraints on |αEDGB|1/2 are summarized in Fig. 23, where observe that they are all |αEDGB|1/2 ≲ (2.5 − 5.5) km.

As in the dCS gravity case, EDGB gravity also arises from more fundamental theories through a truncated low-
curvature/low-energy expansion, and thus, it should also be understood as an effective field theory. Working in the small
coupling approximation α2

EDGBM
2/R6 ≪ 1, one then seeks small deformations from General Relativistic solutions, and thus,

one expands the exponential in SEDGB via exp(−γEDGBφ) ∼ 1−γEDGBφ. The first term in this expansion does not contribute to
the field equations because the Gauss–Bonnet density is a topological invariant. The second term, however, does contribute
and the modifications to the field equations are proportional to γEDGB αEDGB. Since there is no way to decouple this product,
one typically sets γEDGB = 1 and allows αEDGB to control the magnitude of the deformation. The field equations of EDGB
gravity are manifestly second order even if the theory is taken to be exact, though the well-posedness and initial value
problem of the theory remain mostly unexplored.



Fig. 24. (Top) The I–Q relation in EDGB gravity with a couple of fixed EDGB coupling constants. For reference, the top axis shows the neutron star mass in

General Relativity using the APR equation of state. The αEDGB = 0 line corresponds to the I–Q relation in General Relativity. (Bottom) Absolute fractional

difference between the EDGB I–Q relations with an FPS equation of state and a DI-II equation of state for different fixed αEDGB . Observe that the EDGB I–Q

relation is still approximately universal, although the degree of universality is worse than in General Relativity.
Source: This figure is adapted and modified from the data presented in Kleihaus et al. [275,311].

Let us now look at the I–Love–Q relations in EDGB gravity. The neutron star moment of inertia and quadrupole moment

were calculated in Kleihaus et al. [275,311], while the electric-type tidal deformability has not yet been calculated. The top

panel of Fig. 24 shows the I–Q relation in EDGB gravity for two equations of state [275,311]: FPS [312] (derived using the

variational method, also adopted to derive e.g. AP4 discussed in Section 2.1) and DI-II [313] [a polytropic-like equation of

state with n ≈ 0.75]. The I–Q relation is shown for three different values of EDGB coupling constants: αEDGB = 0 (General

Relativistic limit), αEDGB = M2
⊙ ≈ 2.16 km2 and αEDGB = 2M2

⊙ ≈ 4.32 km2. Observe that the EDGB relation is quite similar to

that in General Relativity because EDGB gravity has been stringently constrained by current observations; for larger values

of αEDGB, the EDGB I–Q relation would differ much more from the General Relativistic relation. The bottom panel shows

the degree of universality of the I–Q relation in EDGB gravity and in General Relativity. As in the dCS case, observe that the

relation is still equation-of-state insensitive, although the variation is larger than that in General Relativity.

6.3. Scalar–tensor theories

Scalar–tensor (ST) gravity is a class of theories where the gravitational interaction mediated by both a massless graviton

and a fundamental scalar field. Motivated from high-energy modifications of Einstein’s theory [314] and certain inflation

models [315,316], the ST action in the Jordan frame is given by [317,318]

S = SδEH + SΦ + Smat, SδEH ≡ κ

∫

d4x
√−g F (Φ)R, SΦ ≡ −κ

∫

d4x
√−g Z(Φ)

[

∇µΦ∇µΦ + V (Φ)
]

, (102)

where recall that κ = (16π )−1, Φ is the scalar field, F (Φ) and Z(Φ) are coupling functions, and V (Φ) is a potential for the

scalar field. ST gravity is a class ofmetric theories, where the scalar field couples tomatter only indirectly, through themetric

tensor.

The field equations derived from the action in Eq. (102) are quite involved, but one can always perform the following

transformation into the Einstein frame

gE
µν = F (Φ) gµν, A(ΦE) = F−1/2(Φ), V E(ΦE) = V (Φ)

F 2(Φ)
, ΦE =

∫

dΦ√
4π

√

3

4

F ′(Φ)2

F (Φ)2
+ 1

2

Z(Φ)

F (Φ)
, (103)

to recast the action in Einstein-like form

S = SEδEH + SEΦ + SEmat, SEδEH ≡ κ

∫

d4x
√

−gE R
E, SΦ ≡ −

∫

d4x
√

−gE

[

1

2
∇E
µΦE∇µ

EΦE + κV E(ΦE)

]

, (104)

where SEmat is the matter action, which now couples to the combination A2(ΦE)gµν . As one would expect, the field equations

derived from the Einstein frame action are significantly simpler. When computing physical observables, however, one must

always map all calculations back to Jordan frame quantities.



The choice of [F (Φ), Z(Φ), V (Φ)] in the Jordan frame define the particular ST theory under consideration, and here, we
will first focus on the (massless) Damour/Espósito-Farese (DEF) model, defined via

F (Φ) = Φ, Z(Φ) = ω(Φ)

Φ
, ω(Φ) := −3

2
− 1

8κβ lnΦ
, V (Φ) = 0,

A(ΦE) = e
β
2
Φ2
E , V E(ΦE) = 0. (105)

This model is controlled by two quantities: the coupling constant β and the asymptotic value of the scalar field at spatial
infinityΦ∞

0 . The latter is related to the former and to the Brans–Dicke coupling parameter via

Φ∞
0 = e

− 4π
β

1
3+2ωBD , Φ∞

E,0 = 2
√
π

|β|√3 + 2ωBD

, (106)

and thus, it is constrained by Solar System experiments via ωBD > 4 × 104 [319]. Upon cosmological evolution, Nördtvedt
and Damour [320,321] showed that when β > 0, General Relativity is an attractor andΦ evolves toward zero exponentially,
automatically satisfying Solar System constraints. On the other hand, when β < 0, Sampson et al. [322] were the first to
show thatΦ evolves away from zero polynomially, maximally violating Solar System constraints today.

In spite of this problem with Solar System constraints, ST theories with β < 0 have received special attention due to
the non-linear process of scalarization [323,324]. This phenomenon is analogous to ferromagnetism: below a certain critical
binding energy stellar solutions are as in General Relativity, but above this critical energy, new solutions appear that possess
a non-trivial scalar field and are energetically favorable [323,324]. When considering neutron stars in isolation, the process
is called spontaneous scalarization and the critical energy is a function of the central density only. When considering neutron
stars in binary systems, the process is called induced or dynamical scalarization (depending onwhether the companion star is
spontaneously scalarized or not) and the critical energy is the binary’s binding energy [325–328]. Such scalarized solutions
are constrained by binary pulsar observations [286,310,329,330], since the activation of a non-trivial scalar field unavoidably
leads to scalar dipole radiation, which is not observed in binary pulsars. These observations require that β ≳ −4.5, where
the approximate sign is because the precise value at which neutron stars scalarize depends on its equation of state (although
the dependence is very mild [226,331]).

Let us now look at the I–Love–Q relations in the DEF model of ST gravity. The first analysis of the I–Q relation for
rapidly rotating neutron stars in DEF ST gravity was carried out by Doneva et al. [318], while the study of the I–Love–Q
relations was completed in Pani and Berti [317] for slowly-rotating neutron stars. The top panels of Fig. 25 show the I–Q and
I–Love relations in DEF ST gravity, for three representative equations of state, as well as the relation in General Relativity
for comparison. The figure fixes the coupling constants to β = −4.5 and Φ∞

E,0 = 10−3, which saturates binary pulsar
constraints. Observe that the ST relations are quite similar to the General Relativistic ones because of the strength of the
binary pulsar constraints. The bottom panels show the degree of universality of the I–Love–Q relation in ST gravity and in
General Relativity.8 Observe that the relations are still equation-of-state insensitive, with variations comparable to those in
General Relativity.

Very recently, Doneva and Yazadjiev [332] studied the I–Q relation inmassive DEF theory, inwhich V E(ΦE) = m2
s

(

ΦE
)2
/2

with ms is the mass of the scalar field. Spontaneous scalarization in such a theory was first studied in [333,334] for
non-rotating neutron stars, and was later extended to slowly-rotating [335] and rapidly-rotating [332] neutron stars. The
advantage of considering a massive theory is that if the scalar field mass is sufficiently large, non-GR modifications are
screened and one is likely to evade Solar System and binary pulsar bounds on β for the massless theory. Ramazanoglu and
Pretorius [334] found that neutron stars (and not white dwarves) can scalarize and evade these observational bounds at the
same time when −10−3 ≲ β ≲ −3 and 10−16 eV ≪ ms ≲ 10−9 eV. Doneva and Yazadjiev [332] found that the universality
in the I–Q relation is worse than that in GR, though the former remains equation-of-state universal within a few percent for
a fixed fsM (where we recall fs is the stellar spin frequency). They also found that such a relation deviates from that in GR by
20% at most for β = −6 andΦ∞

E,0 = 0.

6.4. f (R) gravity

This modified theory replaces the Ricci scalar R in the Einstein–Hilbert action by an arbitrary function of R:

S = Sf (R) + Smat, Sf (R) ≡ κ

∫

d4x
√−g f (R). (107)

The arbitrary function f (R) needs to satisfy d2f /dR2 ≥ 0 and df /dR ≥ 0 to avoid tachyonic instabilities and ghost modes.
Such a theory is motivated mainly from cosmology, as it can explain inflation or the accelerating expansion of the Universe
without introducing an inflaton or dark energy (see e.g. Sotiriou and Faraoni [336] and De Felice and Tsujikawa [337] for
reviews on f (R) gravity).

8 The fit in General Relativity was constructed with the data only for the three equations of state shown in the figure, which is slightly different from

that presented in Section 2.2.2, which used a larger number of equations of state.



Fig. 25. (Top) The I–Q (left) and I–Love (right) relations in ST gravity with β = −4.5 and Φ∞
E,0 = 10−3 . For reference, the top axis shows the neutron star

mass in General Relativity using the APR equation of state. (Bottom) The absolute fractional difference between the relations with different equations of

state with respect to the fit. Observe that the ST I–Love–Q relations are still approximately universal to roughly the same degree as in General Relativity.

Observe also that the ST relations are very close to the General Relativistic I–Love–Q relation because of the choice of ST coupling parameters.
Source: These figures are adapted from the data presented in Pani and Berti [317].

f (R) gravity is equivalent to Brans–Dicke theory with ωBD = 0 and a non-vanishing scalar field potential. To see this
explicitly, one starts with an action with an auxiliary field ψ given by

S = κ

∫

d4x
√−g

[

f (ψ) + f ′(ψ)(R − ψ)
]

+ Smat. (108)

Varying this action with respect to ψ , one finds f ′′(ψ)(R − ψ) = 0. Thus, ψ = R provided f ′′(ψ) ̸= 0 and one recovers
Eq. (107) if one integrates outψ from Eq. (108).We thus say that Eq. (108) is dynamically equivalent to Eq. (107). Introducing
further a new fieldΦ = f ′(ψ), one can rewrite Eq. (108) in Brans–Dicke form in Jordan frame with ωBD = 0 and a potential:

S = κ

∫

d4x
√−g [Φ R − V (Φ)] + Smat, (109)

where V (Φ) ≡ ψ(Φ) f ′ [ψ(Φ)] − f [ψ(Φ)]. Notice that the observation of the Shapiro time delay with signals sent by the
Cassini spacecraft [319] places the boundωBD > 4×104 on Brans–Dicke theorywithout a potential; therefore, such a bound
does not rule out the above f (R) gravity model with ωBD = 0. Thanks to this formulation, one can construct neutron star
solutions in the same way as in scalar–tensor theories (see e.g. Yazadjiev et al. [338]).

Universal relations in f (R) gravity have been studied in Doneva et al. [339] (I–Q relation) and Staykov et al. [340] (relation
between the f-mode frequency and the moment of inertia) with f (R) = R + aR2, where a is not to be confused with the
Kerr spin parameter, but rather it is a coupling constant with unit of length squared. Such a function was first introduced
by Starobinsky [341] to explain inflation and can also explain the accelerated expansion of the Universe, while remaining
consistent with cosmic microwave background observations. With this choice of the f (R) function, the potential becomes
(Φ − 1)2/(4a), and the theory reduces to a massive scalar–tensor theory. The current strongest bound on a is obtained from
table-top experiments, which require a ≲ 10−10 m2 [342]. Solar system bounds further require a ≲ 5 × 1011 m2 from the
Gravity Probe B experiment [342] and a ≲ 6 × 1017 m2 from the observation of the perihelion precession of Mercury [343].
All of these constraints, however, can be avoided if one invokes a chameleon mechanism [344,345] that forces f (R) gravity
to reduce rapidly to General Relativity in regions with relatively high density.

Fig. 26 presents the I–Q relation in f (R) gravity for rotating neutron stars with various equations of state, χ = 0.1 and 0.6
and ā ≡ a/M2

⊙ = 0 (General Relativistic case) and 104 [339] without imposing the slow-rotation approximation, as well as

the absolute fractional difference from the AP4 equation of state. Notice that ā = 104 is completely ruled out by laboratory
experiments since these require ā ≤ 5×10−17, while it satisfies Solar System bounds. Observe first that the relations depend
more sensitively onχ than on ā, i.e. the sequence of squares and circles in the figure cluster separately. Observe also that for a
fixedχ the relations remain approximately equation-of-state universal to roughlyO(1%), i.e. each cluster of squares or circles
lies approximately on the same curve, irrespective of the equation of state symbolized by different colors. Finally, observe
that the General Relativistic relations differ from the f (R) relations the most for large Q̄ (small mass) stars, i.e. the filled
symbols are farthest from the unfilled symbols for large Q̄ . This is because black hole solutions in f (R) gravity are the same
as in General Relativity; thus, the universal relations in the two theories approach the same point in the I–Q plane, forcing
deviations to become smaller as one increases the compactness (or decreases Q̄ ). The closeness of theGeneral Relativistic and



Fig. 26. (Top) I–Q relations in f (R) gravity with four representative equations of state, two dimensionless spins χ and two coupling constants ā. The top

axis shows the neutron starmasses with the APR equation of state in General Relativity. (Bottom) Fractional difference from the relationswith AP4. Observe

that the universality becomes better than General Relativity.
Source: These figures are adapted from the data presented in Doneva et al. [339].

f (R) I–Q sequences ismerely an artifact of the size of ā chosen and the stringent constraints on this theory from observations

and experiments; obviously, the relation in f (R) becomes essentially indistinguishable from that in General Relativity if one

saturates the bound obtained from laboratory experiments (ā ≤ 5 × 10−17).

6.5. Eddington-Inspired Born–Infeld gravity

Eddington-Inspired Born–Infeld (EiBI) gravity modifies the coupling between gravity and matter in a nonlinear way. The

starting point is an alternative action to SEH proposed by Eddington [346], who suggested that the fundamental field should

be the connection Γ α
βγ instead of the metric gµν . Eddington’s action is given by

S = 2κκEdd

∫

d4x
√

−|R̄|, (110)

where the determinant |R̄| of the (symmetric) Ricci tensor R̄µν is constructed solely from the connection (in contrast to Rµν ,

which is constructed from the metric) and κEdd is the coupling parameter of Eddington’s theory with dimensions of length

squared. One can show that SEdd is exactly equivalent to SEH by calculating the field equations, which are exactly equivalent

to the Einstein equations. Bañados and Ferreira [347] extended Eddington’s theory by introducing gµν and matter fields in

the action in a manner similar to what is done in Born–Infeld nonlinear electrodynamics [348] to eliminate the divergence

of the electron self-energy. The resulting theory, EiBI gravity, is then defined in the Palatini formalism by [286,347]

S = 2κ

κEiBI

∫

d4x

(

√

−|gµν + κEiBIR̄µν | − √−g

)

+ Smat, (111)

where we set the cosmological constant to zero, κEiBI is the coupling parameter of EiBI theory with dimensions of length

squared and the matter action only depends on gµν and the matter fields. Unlike Eddington’s theory, EiBI gravity is not

equivalent to General Relativity and the former reduces to the latter only in the limit κEiBI → 0. This can be seen more

explicitly by expanding Eq. (111) about κEiBI = 0:

S = κ

∫

d4x
√−g R̄

[

1 + κEiBI

4R̄

(

R̄
2 − 2R̄µν R̄

µν
)

+ O

(

κ2
EiBIR̄

2
)

]

+ Smat. (112)

Clearly, as one takes the κEiBI → 0 limit of the above equation, one recovers General Relativity in the Palatini formulation,

which is equivalent to Einstein’s theory in themetric formulation. Themetric formulation found by Deser and Gibbons [349]

contains ghosts unless one introduces additional terms to eliminate them. Vollick [350–352] considered a theory similar to

EiBI gravity, but thematter fieldswere introduced in a differentway. EiBI gravity avoids singularities in early cosmology [347]

and in the non-relativistic gravitational collapse of non-interacting particles [353,354].

Although EiBI gravity, as defined in Eq. (111), looks quite different from General Relativity, one can show that such a

theory is equivalent to Einstein’s theory with amodifiedmatter sector [355]. Although Eq. (112) contains a higher-curvature



correction, the Palatini formalism ensures that the field equations do not contain higher derivatives of the metric. Varying
Eq. (111) with respect to the metric and connection, one finds

√−qqµν = √−g (gµν − 8πκEiBIT
µν) , Γ α

βγ = 1

2
qασ

(

∂γ qσβ + ∂βqσγ − ∂σ qβγ
)

, (113)

where Tµν is the matter stress–energy tensor and qµν is an auxiliary metric, defined by qµν = gµν + κEiBIR̄µν , that is
compatible with the connection. Notice that in vacuum (Tµν = 0), qµν = gµν and R̄µν = Rµν = 0, which shows that EiBI
gravity is equivalent to General Relativity in the absence of matter. Combining the above field equations, one can rewrite
them such that they resemble Einstein equations:

R̄
µ
ν − 1

2
δµν R̄ = 8π T̃µν, T̃µν ≡ τ Tµν −

(

1 − τ

8πκEiBI
+ τ

2
T

)

δµν, (114)

where R
µ
ν = Rνρq

µρ , Tµν = Tµρgνρ and τ ≡ 1/
√|δµν − 8πκEiBITµν |. Observe that the above modified Einstein

equations have a nonlinear matter coupling on the right-hand side, whereas the Einstein tensor is linearly proportional
to the matter stress–energy tensor in General Relativity. In the case of perfect fluid matter [see Eq. (2)], one finds that
τ = [(1 + 8πκEiBIρ)(1 − 8πκEiBIp)]−1/2 and T̃µν can be rewritten as [355]

T̃µν =
(

ρ̃ + p̃
)

ũµũν + p̃ δµν, (115)

with

ρ̃ ≡ τρ − τ − 1

8πκEiBI
− (3p − ρ)τ

2
, p̃ ≡ τp + τ − 1

8πκEiBI
− (3p − ρ)τ

2
, (116)

and ũµ satisfying ũµũνqµν = −1 and ũµũν = uµuν . The last equation does not necessarily imply that ũµ is equivalent to uµ

since the indices of the former (latter) are raised and lowered with qµν (gµν). One then sees that EiBI gravity is nothing but
General Relativity but with a different equation-of-state description for matter [355].

Let us comment on constraints on the theory and possible pathologies. The most stringent (although approximate
and equation-of-state dependent) constraint on EiBI gravity comes from the existence of neutron stars, which requires
ζEiBI ≡ 8πκEiBIρc ≲ 0.1 [356], where ρc (≳ 1014 g/cm3) is the central energy density of a neutron star. Such a constraint
on κEiBI is seven and nine orders of magnitude stronger than the bound from solar observations [357] and big bang
nucleosynthesis [356] respectively. Constraints from Solar System experiments have not been derived since PN solutions do
not fit into the standard parametrized PN framework [358]. EiBI gravity may suffer from curvature singularities if the energy
density is discontinuous at the surface of stars, as is the case e.g. for stars constructed with certain polytropes [359] or with
equations of state with phase transition layers in their interior [360]; such singularities may be avoided by back-reaction of
gravity onto the matter sector [361].

Universal I–Love–Q relations (and relations involving f-mode frequencies) of slowly-rotating and tidally-deformed
neutron stars were considered in Sham et al. [362]9. Thanks to the apparent equation-of-state formulation of Delsate and
Steinhoff [355], one can calculate the I–Love–Q trio in the same way as in General Relativity. The top panels of Fig. 27 show
the I–Q and I–Love relations for various equations of state with ζEiBI = 0 (the General Relativistic limit), ζEiBI = 0.1 and
ζEiBI = −0.1, while the bottom panels show the fractional difference from the relation with the AP4 equation of state.
Observe first that the relations remain universal for ζEiBI ̸= 0 with respect to variation of the equation of state. Observe
also that the universal relations with ζEiBI ̸= 0 are very similar to those obtained in the General Relativistic limit. This is
not surprising, given that (i) EiBI gravity has already been stringently constrained by neutron star observations and (ii) EiBI
gravity is identical to General Relativity with a modified equation of state [355]. Observe, nonetheless, that the degree of
universality improves (deteriorates) for positive (negative) ζEiBI relative to the General Relativistic case.

6.6. Gravastars

Let us now shift gears and review the I–Love–Q relations in exotic compact objects, focusing on gravitational vacuum
condensate stars or gravastars [363–365]. Such compact objects are constructed by matching an exterior black hole
spacetime to a de Sitter interior spacetime at a would-be horizon through a ‘‘matter’’ shell with equation of state p = −ρ.
The motivation behind such a construction is that quantum effects, such as the trace anomaly of the stress–energy tensor in
a curved spacetime, backreacts onto the spacetime near the horizon, replacing the latter with a quantum phase boundary
layer.

Such exotic compact objects are known to be stable both thermodynamically [363] and dynamically [366–368] in
their non-rotating configuration, to linear order in the metric perturbation and with reasonable equations of state in the
boundary layer. On the other hand, very compact, horizonless objectswith a light ringmay be nonlinearly unstable [369,370].
Moreover, such ultracompact objects with large spin are known to suffer from an ergoregion instability [371–373] (see Brito
et al. [374] for a recent review), as considered for example by Cardoso et al. [375] for slowly rotating gravastars and Chirenti

9 Other universal relations studied in EiBI gravity include those between the radius of a 0.5M⊙ neutron star and the neutron skin thickness of 208Pb [82].



Fig. 27. (Top) I–Q (left) and I–Love (right) relations in EiBI gravity with four representative equations of state and three coupling constants ζEiBI . The top

axis shows the neutron starmasses with the APR equation of state in General Relativity. (Bottom) Fractional difference from the relationswith AP4. Observe

that the universality becomes better (worse) than the General Relativistic one for positive (negative) ζEiBI .
Source: These figures are adapted from the data presented in Sham et al. [362].

and Rezzolla [376] for rapidly rotating gravastars. These studies showed that one can construct rotating gravastars without

an ergoregion, and hence, these objects do not suffer from the ergoregion instability.

Gravastarmodels have been compared against astrophysical data of black hole candidates in Broderick andNarayan [377]

and Chirenti and Rezzolla [378] (see also the related work by Giudice et al. [379]). The former showed that XTE J1118+480

and Sgr A∗ are inconsistent with a gravastar model in the non-General Relativistic theories studied in Chapline et al. [380]

unless modifications fromGeneral Relativity are sub-Planckian. The latter showed that the final remnant of the source of the

recently-detected gravitational wave event GW150914 [17] is not consistent with a rotating gravastar if the latter had the

same mass and spin inferred by assuming that the remnant is a Kerr black hole [17,381]. The GW150914 event, however,

describes the full late inspiral and merger of a compact binary, thus placing stringent constraints on the dynamics of the

compact objects that coalesced. Thus,whether gravastars need to be taken seriously as a source of GW150914 is questionable

at best, given that such exotic objects do not have a sound theoretical underpinning to describe the dynamics of a merger

event in the first place [382].

Because of the lack of matter in their interior, one cannot study the equation-of-state dependence of the I–Love–Q

relations in gravastars in the samemanner as when studying neutron stars. The only possible equation-of-state dependence

arises from the matter in the thin shell that connects the interior to the exterior vacuum regions. Gravastars with vanishing

energy density in the thin shell, however, can have compactnesses as large as those of black holes, greatly exceeding

the isotropic, perfect fluid limit of 4/9 for a non-rotating configuration [278]. In this sense, such gravastars resemble the

anisotropic compact stars of Section 5.2, and thus, they can also be used to study how the I–Love–Q relations approach the

black hole limit.

The I–Love–Q relations have been studied for slowly-rotating/tidally-deformed gravastars with an infinitesimally thin

shell through an extension of the Hartle–Thorne formalism in Pani [383] and in Uchikata et al. [384], based on non-rotating

configurations constructed by Mazur and Mottola [363,364] and Visser and Wiltshire [366]. The exterior solutions are

formally the same as the Hartle–Thorne ones, and hence, the only differences appear in the interior solutions and the

matching conditions at the boundary layer, with the latter determined through the Israel junction conditions.

Pani [383] studied the I–Love–Q relations analytically for gravastars by setting the energy density of the thin shell to zero.

Such a condition forces ν and λ in Eq. (4) to be continuous at the shell and L2/M2 = 1/(2C3), where L is the de Sitter horizon

radius in the interior. At zeroth order in spin, the interior solutions are given by eν = e−λ = 1 − 2Cr2/R2, while at linear

order in spin, the interior solution for ω is simply ω = Ω and the dimensionless moment of inertia is given by Ī = 1/C2.

Observe that when one expands Ī for a slowly-rotating gravastar about C = CBH = 1/2, one finds that Ī = 4 + O(C − 1/2),

and hence, Ī agrees with that of a black hole in the C → CBH limit. At second order in spin, the interior solutions are

given by a combination of polynomial and hyperbolic arctangent functions. The dimensionless quadrupole moment is then

given by

Q̄ = 1 − 4C5

5∆Q̄

[

2
√
C
(

16C2 − 6C − 9
)

− 9
√
2
(

4C2 − 1
)

tanh−1
(√

2C
)]

, (117)



with

∆Q̄ ≡ 2
√
C

[

C
(

9 − 12C + 9C2 + 8C3
)

− 3
(

3 − 7C + 6C2
)

tanh−1

(

C

1 − C

)]

− 3
√
2 tanh−1

(√
2C
)

[

C
(

3 − 6C − 5C2 + 6C3
)

− 3
(

1 − 3C + 4C3
)

tanh−1

(

C

1 − C

)]

. (118)

In the C → 1/2 limit, Q̄ → 1 + (8/45)[ln(1 − 2C)]−1, and hence, Q̄ approaches the black hole value like an inverse
logarithm. On the other hand, in the C → 0 limit, Q̄ → −3, which suggests that Newtonian, slowly-rotating gravastars
are prolate due to the negative sign. This resembles slowly-rotating, strongly-anisotropic incompressible Newtonian
stars [280,281,385], which are also prolate in the Newtonian limit. Regarding tidal perturbations, the interior solutions are
given by hypergeometric functions and the dimensionless tidal deformability is given by10

λ̄2 = 16

15

∆
(n)

λ̄

∆
(d)

λ̄

, (119)

with

∆
(n)

λ̄
≡ − 2C

(

120C4 − 536C3 + 130C2 + 156C − 45
)

+ 6
√
2C
(

16C5 + 152C4 − 204C3 − 2C2 + 62C − 15
)

tanh−1
√
2C

− 9
(

4C3 + 6C2 − 6C − 5
)

(1 − 2C)3
(

tanh−1
√
2C
)2

, (120)

∆
(d)

λ̄
≡ 2C(10C − 3)

[(

−36C3 + 150C2 + 6C − 45
)

log(1 − 2C) + 2C
(

32C4 + 32C3 + 96C2 − 39C − 45
)]

+ 9(1 − 2C)2
[

2C
(

−16C3 − 46C2 + 3C + 15
)

+ 3
(

8C4 + 8C3 − 18C2 − 4C + 5
)

log(1 − 2C)
]

×
(

tanh−1
√
2C
)2

+ 6
√
2C
[

2C
(

64C6 + 64C4 − 460C3 + 120C2 + 141C − 45
)

+3
(

16C5 + 152C4 − 204C3 − 2C2 + 62C − 15
)

log(1 − 2C)
]

tanh−1
√
2C . (121)

In the C → 1/2 limit, λ̄2 → (32/15)[23 − 6 ln 2 + 9 ln(1 − 2C)]−1 [386], and thus, λ̄2 reaches the black hole value in the
black hole limit. The tidal deformability λ̄2 for gravastars is always negative, which again resembles the case of strongly-
anisotropic, incompressible stars [280,281,385].

With these analytic expressions at hand, one can calculate the interrelations between Ī , Q̄ and λ̄2, which are shown in
Fig. 28, where we take the absolute values of Q̄ and λ̄2 as they can be negative. Observe that the I–Love–Q relations for
thin-shell gravastars are quite different from those for isotropic neutron stars, but qualitatively similar to the relations for
strongly-anisotropic, incompressible stars (see Section 5.2). Quantitatively, however, the relations for gravastars approach
the black hole limit in a different manner. For example, as explained in the previous paragraph, Q̄ approaches this limit as
an inverse logarithm for gravastars but as a polynomial for strongly-anisotropic stars [280,281].

Uchikata et al. [384], on the other hand, studied the equation-of-state variation of the I–Love–Q relations numerically by
considering a polytropic equation of state for the shell, based on slowly-rotating gravastars constructed in [387]. The authors
found that, just as for neutron stars and gravastars with vanishing energy density, the I–Love–Q relations for polytropic
gravastars approach the black hole limit as one increases the compactness, but how they approach this limit is sensitive
to the equation of state. In fact, the relations for gravastars are not only sensitive to the polytropic index n, but also to the
overall magnitude K in Eq. (3), while the I–Love–Q relations for neutron stars and quark stars are only sensitive to n. The
thin-shell gravastar model reviewed in this subsection is the simplest one used to describe gravastars; it may be interesting
to study the I–Love–Q relations for other gravastar models, such as those with a finite-thickness boundary layer [367,376],
with the interior region supported by dark energy instead of a cosmological constant (phantom gravastars or dark energy
stars) [388,389].

7. Applications

Universal relations have various useful applications in astrophysics. For example, if one can measure any member of
the I–Love–Q trio, one automatically obtains the remaining two quantities without having to know the correct equation of
state in nature a priori. The moment of inertia, for example, is expected to be measured to ≲10% accuracy from the spin–
orbit coupling effect in the rate of periastron advance of the double binary pulsar J0737-3039, using e.g. SKA [70,95,390].
Combining such a measurement with the I–Love–Q relations, one can obtain the tidal deformability and the quadrupole
moment of the primary pulsar in J0737-3039, which would not be easily measured in any other way. On the other hand,
the tidal Love number is expected to be measured from future gravitational wave observations of neutron star mergers
[254–258,391–397]. Again, by combining this measurement with the I–Love–Q relations, one can obtain the moment of

10 This corrects the expressions in the original version of Pani [383] and now agrees with the results in Uchikata et al. [384] and Cardoso et al. [386].



inertia and the quadrupole moment of neutron stars in a binary system, which would also be difficult to measure from
gravitational wave observations. The remainder of this section reviews different applications of the universal relations to
nuclear physics with gravitational wave observations (Section 7.1) and X-ray observations (Section 7.2), to gravitational
wave astrophysics (Section 7.3), to experimental relativity (Section 7.4) and to cosmology (Section 7.5).

7.1. Nuclear physics through gravitational wave observations

Recently, Adv. LIGO detected gravitational waves from black hole binaries [17,18], and it is likely that it will detect
gravitationalwaves fromneutron star binaries in near future. Such observationswill be very useful in probing nuclear physics
as the waveform depends on the internal structure of neutron stars through their tidal interactions [254–258,391–399].

Let us begin by reviewing the structure of the gravitational waves produced by inspiraling neutron star binaries in
the Fourier domain. The response of an interferometer to an impinging gravitational wave is simply the contraction of
the metric perturbation very far from the source onto a detector response tensor. In the Fourier domain, this response
can be schematically written as h̃(f ) = A(f ) exp[iΨ (f )], where A(f ) is a slowly-varying Fourier amplitude and Ψ (f ) is a
rapidly-varying Fourier phase. In practice, the metric perturbation is decomposed in spherical harmonics, each of which
contributes to the response with a structure similar to that presented above, but for quasi-circular inspiraling neutron stars
typically a single harmonic dominates [400]. The Fourier phase Ψ (f ) is more important than the Fourier amplitude A(f )
in interferometric gravitational wave observations due to the number of cycles that are typically in the sensitive band of
the detector; this is especially so for parameter estimation purposes, when a set of models is compared to the signal via a
matched filtering analysis [401].

One can decompose the Fourier phase into a point-particle part Ψpp(f ) and a tidal part Ψtidal(f ): Ψ = Ψpp + Ψtidal. When
the binary separation is large and the orbital velocities are small relative to the speed of light, the PN framework11 is a good
approximation to model the orbital and gravitational wave dynamics. In this framework, the Fourier phase becomes a series
in x ≡ (πmf )2/3, wherem ≡ m1+m2 is the totalmass; we recognize x as effectively the relative orbital velocity of the binary.
The point-particle contribution to the phase Ψpp for non-spinning, quasi-circular binaries is known up to 3.5PN order [402].

The tidal contribution Ψtidal can be decomposed via Ψtidal = ∑

ℓ=2

(

Ψλ̄ℓ + Ψσ̄ℓ

)

, where Ψλ̄ℓ and Ψσ̄ℓ are terms that depend

on λ̄ℓ and σ̄ℓ respectively (recall that λ̄ℓ (σ̄ℓ) is the ℓth-order multipole, dimensionless electric-type (magnetic-type) tidal
deformability). Both of these contributions can be calculated in the PN approximation [247]12 :

Ψλ̄ℓ = −
2
∑

A=1

[

5

16

(2ℓ− 1)!!(4ℓ+ 3)(ℓ+ 1)
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16
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]

+ O

(

x2ℓ−1/2
)

, (122)

Ψσ̄2 =
2
∑

A=1

5

224
σ̄2,A

X5
A

η
(XA − XB)x

7/2 + O(x9/2), (123)

where XA ≡ mA/m. TheΨλ̄2 contribution was first derived by Flanagan and Hinderer [391], while higher PN terms inΨλ̄2 can
be found in Vines et al. [403] and Damour et al. [256]. Given that the leading PN order, Newtonian term inΨpp is proportional

to x−5/2, the contributions of λ̄ℓ and σ̄ℓ enter first at 2ℓ+ 1 and 3ℓ PN order respectively.
In order to determinewhich terms are important in future gravitational wave observations, one can calculate the number

of gravitational wave cycles. The useful number of gravitational wave cycles, weighted by the noise spectral density Sn,
was introduced by Damour et al. [404]. Sampson et al. [322] improved on these by introducing the effective number of
gravitational wave cycles, defined by

Neff ≡ 1

2π

(

∫ fmax

fmin

|h̃(f )|2

Sn(f )
df

)−1/2

min
∆t,∆φ

⎡

⎣

(

∫ fmax

fmin

|h̃(f )|2∆Φ2

Sn(f )
df

)1/2
⎤

⎦ . (124)

Here, |h̃(f )| ∝ f −7/6 is the waveform amplitude in the Fourier domain while ∆Φ ≡ ∆Ψ + 2π f∆t − ∆φ, with ∆t and ∆φ
an arbitrary time and phase shift. One can calculate Neff for λ̄ℓ and σ̄ℓ by setting ∆Ψ = Ψλ̄ℓ and ∆Ψ = Ψσ̄ℓ respectively.
The lower limit of integration fmin is associated with the minimum frequency at which the detector has a non-negligible
sensitivity, while fmax is the minimum between the frequency at contact and the innermost stable circular orbit of a point
particle in a Schwarzschild spacetime with its mass equivalent to the total mass of a binary (roughly the frequency at which
the PN approximation breaks down). The advantage of usingNeff is that it is related to the Bayes factor (BF) between amodel
with∆Ψ ̸= 0 and one with∆Ψ = 0 [322]:

ln BF ≈ min
θ i

[

2π2

(

∫ fmax

fmin

|h̃(f )|2

Sn(f )
df

)

N
2
eff

]

:= min
θ i

(

ln BF(u)
)

, (125)

11 A perturbative solution to the field equations as an expansion in weak-field and slow-velocities. A term is said to be ofNth PN order if it is proportional

to (v/c)2N relative to its leading-order, controlling factor. See Blanchet [400] for a review of PN theory.
12 We neglect terms that represent nonlinear interactions between different tidal deformabilities, as these are much more difficult to extract with a

gravitational wave observation. We also neglect terms associated with dynamical tides characterized by the f-mode oscillation frequency of a neutron

star [391,398].



Fig. 28. I–Love (left) and I–Q (right) relations for thin-shell gravastars with vanishing shell energy density [383]. For reference, we also show the relations

for isotropic neutron stars and anisotropic constant density stars [280,281], with the mass of the former for an APR equation of state shown in the top

axes. The black cross and dotted horizontal line show Ī and Q̄ for a black hole. The arrows show the direction of increasing compactness. Observe that the

gravastar relations are quite different from those of isotropic neutron stars, but the way the former approach the black hole limit is qualitatively similar to

the anisotropic compact star case.

Fig. 29. Noise spectral density for Adv. LIGO with zero-detuned configuration [405] (red solid) and ET with the ‘‘D’’ configuration [406–408] (blue dashed).
Source: This figure is taken and edited from Yagi [247].

where θ i are the waveform parameters, while BF(u) is the upper bound on the BF without minimizing. For equal priors
between two competing models, the BF corresponds to the odds that the data favors one model over the other. For example,
a BF of 10 means that one model is 10 times more likely to be correct than the other given the data. Since BF(u) is the upper
bound of the BF, if it exceeds a threshold BF, the corresponding phase (∆Ψ ) may ormay not be important. On the other hand,
if BF(u) is below this threshold, then the model with the corresponding phase is disfavored, suggesting that such a term is
not important in data analysis.

Let us now estimate the importance of the tidal contributions to the Fourier phase through BF(u), assuming a future
observation of a binary neutron star inspiral with Adv. LIGO at a high-power/zero-detuned configuration in design
sensitivity [409,410], and with an upgrade to the Einstein Telescope (ET) in the ‘‘D’’ configuration [406–408]; the noise
spectral densities of these detectors are shown in Fig. 29. Fig. 30 presents the upper bound of the Bayes factorwith∆Ψ = Ψλ̄ℓ
for an equal-mass neutron star binary at 100Mpc with Adv. LIGO (left) and ET (right);Ψσ̄2 = 0 for such equal-mass systems.
In this figure, we use the Shen (SLy) equation of state as a representative member of the stiff (soft) equation-of-state class.
As explained above, a BF analysis instructs us to take into account Ψλ̄ℓ if the corresponding BF(u) is larger than the threshold
BF, which we take here to be 10 (horizontal dashed lines). Observe that Ψλ̄2 is the only term that seems to be relevant for
Adv. LIGO, while both Ψλ̄2 and Ψλ̄3 need to be taken into account for ET observations. Such a finding is consistent with
Yagi [247] who calculated the useful number of gravitational wave cycles [404] and compared it with the inverse of the
signal-to-noise ratio.

The impact of the approximately universalmultipole Love relations (see Section 4.1) inmeasuring λ̄2,s, defined in Eq. (64),
can be explained as follows. Consider a Fisher analysis as an approximate measure of the accuracy a given parameter θ i can



Fig. 30. Upper bound on the Bayes factor (defined via Eq. (125)) between the waveform with λ̄ℓ ̸= 0 and λ̄ℓ = 0 as a function of the neutron star

mass for various ℓ and two representative equations of state. We assume that Adv. LIGO (left) and ET (right) detects gravitational wave signals emitted

from equal-mass, non-spinning neutron star binaries at 100 Mpc. The dashed horizontal line shows BF = 10, which is the threshold BF chosen in this

analysis. The contribution λ̄ℓ to the waveform phase may be important if the upper bound BF is larger than this threshold. Observe that higher-order tidal

deformabilities are not important for Adv. LIGO, while λ̄3 can be important for ET observations of low-mass neutron star binaries.

be measured to. The statistical error on the extraction of parameters θ i is approximately given by∆θ i =
√

(Γ −1)ii with the
Fisher matrix defined by

Γij ≡ (∂ih|∂jh), (A|B) ≡ 2

∫ fmax

fmin

Ã∗(f )B̃(f ) + Ã(f )B̃∗(f )

Sn(f )
df , (126)

where ∗ represents complex conjugation while the partial derivatives are to be taken with respect to the model parameters,
∂i ≡ ∂/∂θ i. Following Eq. (64), let us introduce the symmetric and antisymmetric combination of λ̄3 as λ̄3,s ≡ (λ̄3,1 + λ̄3,2)/2
and λ̄3,a ≡ (λ̄3,1 − λ̄3,2)/2. One can neglect λ̄4 since Fig. 30 shows that it is irrelevant for Adv. LIGO observations. Since an
equal-mass binary gives λ̄2,a = 0 = λ̄3,a, one can choose the parameter set to be

θ i = (lnM, ln η, tc, φc, lnDL, λ̄2,s, λ̄3,s), (127)

where M ≡ mη3/5 is the chirp mass, tc and φc are the time and phase of coalescence, and DL is the luminosity distance to
the source. We neglect neutron star spins for simplicity, as they are expected to be small just before coalescence [256,411]
(though see Section 7.3 on how universal relations may help one to measure neutron star spins). One can further impose
Gaussian priors13 [401,412,413] that enforce λ̄2,s ≤ 104 and λ̄3,s ≤ 5 × 104. Fig. 31 shows the fractional statistical error on
the measurement of λ̄2,s as a function of the neutron star mass for an equal-mass, non-spinning neutron star binary with
two different equations of state using Adv. LIGO (left) and ET (right). The blue curves correspond to the case without using
the universal λ̄3–λ̄2 relation (which is equivalent to the relation between λ̄3,s and λ̄2,s for an equal-mass binary), while the
red curves show the result using this relation. The universal relation allows one to eliminate λ̄3,s from the parameter set,
which breaks the partial parameter degeneracy between λ̄3,s and λ̄2,s and improves the measurement accuracy of the latter
by a factor of 3.

Although including λ̄3,s andusing theuniversal relations allows for amore accurate extraction of λ̄2,s, removing the former
from the parameter list does not significantly bias the extraction of other parameters for Adv. LIGO observations (although
this is not quite true for ET). To see this, one can compare the statistical error on λ̄2,s without including λ̄3,s in the search
parameter set to the systematic error due to not including λ̄3,s. The former is essentially given by the red curves in Fig. 31
as the universal relations allow one to remove λ̄3,s from the search parameter set. Following Cutler and Vallisneri [414], one
can calculate the latter from a Fisher analysis through

∆sysλ̄2,s =
(

Γ −1
)λ̄2,sj

(

[hi − htemp]
⏐

⏐

⏐

⏐

∂htemp
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)

=
(

Γ −1
)λ̄2,sj

i
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⏐

⏐

⏐
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)

+ O

(

δΨ 2
)

, (128)

where hi and htemp are the injectedwaveform and the templatewaveform respectively and the FishermatrixΓij is defined via
the template waveform. The only difference between these two waveforms is whether one includes Ψλ̄3 or not. The Fourier

transforms of such waveforms are related by h̃i = h̃temp exp (iδΨ ), where

δΨ = −125

12
λ̄3,s

m5
1 + m5

2

m5
x9/2. (129)

13 Such priors were not considered in Yagi [247].



Fig. 31. Fractional measurement accuracy of λ̄2,s with Adv. LIGO (left) and ET (right) as a function of the neutron star mass, assuming that these

interferometers detect gravitational wave signals from equal-mass, non-spinning neutron star binaries at 100 Mpc. The results are presented for the SLy

(solid) and Shen (dotted–dashed) equations of state with (red) and without (blue) using the multipole Love relation. Observe that such a relation reduces

the errors by a maximum factor of 3. λ̄2,s is measurable if the curves are below the horizontal dashed unity lines. The magenta curves show the systematic

errors due to not including λ̄3,s in the search parameter set, which may dominate the error budget for ET observations of low-mass binaries. Green curves

show the fractional systematic errors due to the equation-of-state variation in themultipole Love relation, which aremuch smaller than fractional statistical

errors.

The magenta curves in Fig. 31 present these systematic errors. Observe first that these errors are much smaller than the
statistical errors (red curves) for Adv. LIGO, suggesting that neglecting λ̄3,s does not significantly bias the extraction of other
physical parameters with second-generation detectors. On the other hand, observe that such systematics may dominate
statistical errors for ET observations of low-mass neutron star binaries. In this case, including λ̄3,s in the parameter set is
crucial in decreasing the impact of systematics. This finding is consistent with the Bayes factor analysis in Fig. 30.

The small equation-of-state variation in the universal relations also produces systematic errors on λ̄2,s when one uses
such relations, though they are much smaller than statistical errors, as we now explain in this paragraph. One can estimate
such systematics by replacing λ̄3,s with λ̄3,s − λ̄3,s(λ̄2,s) in Eq. (129).14 Green curves in Fig. 31 present such systematic errors.
Observe that systematic errors due to the equation-of-state variation in the λ̄3–λ̄2 relation are much smaller than statistical
errors. Moreover, the former are much smaller than the 5% equation-of-state variation in the relation. This is because λ̄2,s
enters first at 5PN order while λ̄3,s enters first at 7PN order. These findings lead to an important conclusion: the measurability

of binary parameters using universal relations is not necessarily limited by the amount of the equation-of-state variation in the

universal relations. The difference in the PN order at which these terms enter suppresses the correlation between λ̄2,s and
λ̄3,s, which reduces the systematic error.

Let us now focus on gravitational waves emitted by unequal-mass neutron star binaries with Adv. LIGO and see how the
universal binary Love relations (Section 4.2) improve the measurability of λ̄2,s. In such a case, one needs to include both λ̄2,s
and λ̄2,a into the parameter set, while one can neglect λ̄3 and λ̄4 as shown in Fig. 30. The left panel of Fig. 32 presents the
fractionalmeasurement accuracy of λ̄2,s as a function of the smaller neutron starmass in a binary, assumingAdv. LIGOdetects
a gravitational wave signal from a binary with a mass ratio of q = 0.9, a signal-to-noise ratio of 30 and the AP4 equation
of state. The red dashed curve shows results without using the universal λ̄2,s–λ̄2,a relation, while the red solid curve shows
those obtained using the relation. Observe that the universal relation improves the measurement accuracy of λ̄2,s by an
order of magnitude. This is because the relation eliminates λ̄2,a from the parameter set, which breaks the partial parameter
degeneracy between λ̄2,s and λ̄2,a. Combining the measured λ̄2,s and the λ̄2,s–λ̄2,a relation, one can then automatically infer
the value of λ̄2,a. Combining further λ̄2,s and λ̄2,a, one can infer the individual tidal deformabilities, λ̄2,1 and λ̄2,2; the accuracy
of inferring the former is shown by the green solid curve in the left panel of Fig. 32.

How can one use such a measurement of the individual tidal deformabilities to probe nuclear physics? This can be done
by combining the inferred values of λ̄2,1 andm1, as the relation between these quantities depends strongly on the equation
of state. To show how this can be done, let us classify the λ̄2,1–m1 relation with respect to three classes of equations of state:
stiff, intermediate and soft. The regions inside the dashed curves in the right panel of Fig. 32 show the λ̄2,1–m1 relation
within each class. Now, if one selects a representative equation of state and estimates the measurement accuracy of λ̄2,1 for
different injected massesm1, one can superimpose in these regions the extracted λ̄2,1 and its error (the solid lines and error
bars in the right panel of Fig. 32). Thus, if the error bars are small enough, one may be able to separate the different classes
of equations of state. Observe that Adv. LIGO should easily be able to distinguish the stiff class from the other two classes,

14 In [247], Yagi compared statistical errors directly against the equation-of-state variation in the multipole Love relation and called the latter the

systematic error. Here, we estimate systematic errors on λ̄2,s more accurately using a Fisher analysis.



Fig. 32. (Left) Fractional measurement accuracy of λ̄2,s with (red solid) and without (red dashed) using the binary Love relation, and λ̄2,1 (green solid) as

a function of m1 using Adv. LIGO. We assume that Adv. LIGO detects gravitational wave signals from non-spinning neutron star binaries with a mass ratio

q = 0.9, an signal-to-noise ratio of 30, where the correct equation of state is AP4. Observe that the binary Love relation reduces the measurement error

by approximately an order of magnitude. (Right) The relation between λ̄2,1 and m1 for three different classes of the equations of state, namely soft (red

dashed region), intermediate (green dashed region) and stiff (blue dashed region). Within each class, we picked a fiducial equation of state and show 2-σ

error bars with the same condition as in the left panel (except for the equations of state). Observe that one can distinguish the stiff class easily, while one

needs low-mass neutron star observations to distinguish the soft and intermediate classes.
Source: This figure is taken and edited from Yagi and Yunes [112,253].

while it may further be able to distinguish the soft and intermediate classes if the neutron star masses are relatively small
(m1 ≲ 1.3M⊙).

The inclusion of λ̄2,a in the search parameter set is important for binaries with small q, as we explain next. The red curves
in Fig. 33 show the statistical error on the measurement of λ̄2,s for a q = 0.9 binary (left) and q = 0.75 binary (right)
without taking λ̄2,a into account. On the other hand, one can calculate the systematic error on the measurement of λ̄2,s due
to neglecting λ̄2,a using Eq. (128) with

δΨ = − 9

16

1 + 9η − 11η2

η
δm λ̄2,a x

5/2. (130)

Here, δm ≡ (m2 − m1)/(m1 + m2) is the dimensionless mass difference and we only consider the leading tidal effect in the

phase for simplicity. Using i htemp =
(

∂ h̃temp/∂λ̄2,s

)

(

∂Ψ /∂λ̄2,s
)−1

, one can show that the Fisher matrix factor cancels out

and the fractional systematic error on λ̄2,s reduces to [253]

∆sysλ̄2,s

λ̄2,s
= δΨ

λ̄2,s

(

∂Ψ

∂λ̄2,s

)−1

. (131)

Notice that the partial derivative in the above equation in principle depends on frequency, but this cancelswith the frequency
dependence of δΨ . The magenta curves in Fig. 33 show the systematic error in the extraction of λ̄2,s due to neglecting λ̄2,a.
Observe that this error becomesmore important as one decreases q, since λ̄2,a enters the phasemultiplied by δm. In the small
q regime, the λ̄2,s–λ̄2,a relation is crucial in reducing the systematic error such that it is below the statistical error. Notice also
that statistical errors scale inversely with the signal-to-noise ratio, while systematic error is independent of the latter (see
Eq. (131)). Thus, even when q = 0.9, the systematic error may dominate the error budget for 3rd generation gravitational
wave interferometers, such as ET.

Although the equation-of-state variation in the λ̄2,s–λ̄2,a relation can reach 50%, we now show that the systematic error
on λ̄2,s due to this equation-of-state sensitivity is always smaller than 4%, which is much smaller than the statistical error on
the extraction of this parameter. The left panel of Fig. 34 shows the maximum fractional difference in the relation relative to
a fit that uses eleven equations of state (AP3, AP4, SLy, WFF1, WFF2, ENG, MPA1, MS1, MS1b, LS220, and Shen) as a function
of the component neutron star masses. One can calculate systematic error on the extracted λ̄2,s due to the equation-of-state
variation in the λ̄2,s–λ̄2,a relation using Eq. (131) and simply replacing λ̄2,a with λ̄2,a − λ̄2,a

(

λ̄2,s
)

in Eq. (130). The right

panel of Fig. 34 shows the maximum fractional systematic error on λ̄2,s as a function of the neutron star masses in a binary.
Observe that this error is at most ∼4%, which is much smaller than the maximum fractional equation-of-state variation in
the universal relation in the left panel of Fig. 34. This is because the systematic error is suppressed by δm in Eq. (130) for
nearly equal-mass systems. The equation-of-state variation becomes maximal when the two masses are large, while δm
becomes larger for smaller mass ratio systems. This is why the systematic error is maximum when m2 is large while m1 is
intermediate. Fig. 33 also shows the systematic error on the extracted λ̄2,s due to equation-of-state variation (green curves).
Observe that this error is always much smaller than the statistical error and the systematic error due to neglecting λ̄2,a in
the search parameter set.



Fig. 33. Fractional statistical (red) and systematic errors on λ̄2,s as a function ofm1 with q = 0.9 (left) and 0.75 (right). The systematic errors are due to not

including λ̄a (magenta) and the equation-of-state variation in the λ̄2,s–λ̄2,a relation (green). These results are obtained assuming an Adv. LIGO observation

with signal-to-noise ratio of 30. Observe that if one does not take λ̄2,a into account, the systematic errors may dominate the statistical errors for small q.

Observe also that the systematic errors due to the equation-of-state variation is always smaller than other errors.
Source: This figure is taken and edited from Yagi and Yunes [253].

Fig. 34. (Left) Maximum absolute fractional difference between the numerically obtained λ̄2,s–λ̄2,a relation and the fit explained in Section 4.2 as a function

of neutron star masses with m1 ≤ m2 . (Right) The maximum fractional systematic error on λ̄2,s using the λ̄2,s–λ̄2,a relation due to its equation-of-state

variation. Observe that such systematic errors are much smaller than the equation-of-state variation in the left panel.
Source: This figure is taken from Yagi and Yunes [253].

7.2. Nuclear physics through X-ray observations

Anotherway to probe nuclear physics is tomeasure the neutron starmass and radius independently fromelectromagnetic

observations [415], as the relation between these two quantities depends strongly on the equation of state. However, most

observations of the radius of neutron stars suffer from potential systematic errors [415]. A possible exception is the use of

energy-dependent models for the interpretation of spectra emitted by hot spots on the surface of rotating neutron stars, a

target for the NICER, LOFT and AXTAR missions. Lo et al. [416] and Miller and Lamb [417] showed that one does not find

significantly biased results with good fits if the spot shape, spot temperature distribution, beaming pattern, or the spectrum

is modeled incorrectly.

The hot-spot models encode information about the neutron star mass and radius through the stellar shape and the

neutron star spacetime on which photons propagate. The waveform, however, depends on other stellar quantities, such

as the stellar ellipticity, the moment of inertia and the quadrupole moment [101]. One needs to take these quantities into



account to achieve the desired 5%–10% measurement accuracy on the mass and radius [71,102]. As in the gravitational
wave case discussed in Section 7.1, universal relations can be used to eliminate some of the parameters from the model,
thus analytically breaking degeneracies between the mass, radius and other parameters and improving the measurement
accuracy of the former two. For example, the I–Q relation can be used to eliminate the quadrupole moment, while the I–C
relation in Fig. 15 can beused to eliminate themoment of inertia from the parameter set. One can further use the approximate
universal relation between the stellar ellipticity and compactness [71,78] to eliminate the former.

One can estimate themeasurement accuracy of the neutron star radius as follows. After using all of the universal relations
described above, the only parameters left in the hot-spot model are the stellar mass, the radius, and a certain combination
(sin θ0 sin θs) of the observer’s inclination angle θ0 and the colatitude angle of the hot spot θs, assuming that the spot size is
negligibly small [101]. These three quantities can be extracted from three independent observables, such as the amplitudes
of the bolometric flux oscillation C1, its second harmonic C2 and the spectral color oscillation; the latter corresponds to the
ratio between the number of photons with energies above and below the temperature of blackbody emission. Moreover, the
ratio of the first two observables does not depend on the stellar mass. Thus, one can convert the measurement accuracy of
the amplitude of the second harmonic to that of the radius to find [101]

∆R

R
∼ 0.055

(

C1

0.3

)−1(
f

600 Hz

)−1(
R

10 km

)−1(
sin θ0

0.5

)−1(
sin θs

0.5

)−1(
S

106

)−1

. (132)

Here, S is the total number of source counts, which is assumed to be larger than the number of background counts. This
estimate shows that one needs to observe moderately fast spinning neutron star with roughly 106 source counts to achieve
a 5%measurement accuracy for the radius. Such ameasurement accuracy, of course, would be impossible without use of the
universal relations.

7.3. Gravitational wave astrophysics

We now review how one can apply the universal Q–Love relation to improve the measurement accuracy of neutron star
spins with gravitational wave observations [48,49]. The effect of spins on gravitational waves emitted by compact binaries
enters first at relative 1.5PN order [400], and it is characterized by the symmetric and antisymmetric combination of the
spin angular momentum vectors S⃗A of the binary components: χ⃗s ≡ (χ⃗1 + χ⃗2)/2 and χ⃗a ≡ (χ⃗1 − χ⃗2)/2, with χ⃗A ≡ S⃗A/m

2
A.

On the other hand, the effect of the quadrupole moments of the compact bodies enters first at 2PN order [418,419], and
it is characterized by the combinations Q̄s ≡ (Q̄1 + Q̄2)/2 and Q̄a ≡ (Q̄1 − Q̄2)/2. Without knowledge of the universal
relations, the quadrupole moments must be taken as independent search parameters in the waveform models due to
their unknown equation-of-state dependence. Degeneracies between the spins and the quadrupole moments, however,
greatly deteriorate the measurement accuracy of both sets of quantities. One can break these degeneracies analytically
by using the approximately universal Q–Love relation. That is, one can prescribe the quadrupole moments through the
tidal deformabilities without a priori knowledge of the correct equation of state, thus eliminating the quadrupole moments
from the search parameter set. This procedure is similar to applying the multipole Love and binary Love relations to break
degeneracies between tidal parameters, as explained in Section 7.1.

Let us then carry out a Fisher analysis to see how the spin measurement improves when one uses the Q–Love relation in
gravitational wave data analysis. Following Yagi and Yunes [48,49], we focus on spin-aligned and nearly-equalmass binaries,
and do not consider Q̄a and λ̄a as these parameters contribute negligibly to the waveform for such systems. If one does not
use the Q–Love relation, a possible search parameter set is

θ i = (lnM, δm, χs, χa, tc, φc, lnDL, λ̄2,s, Q̄s), (133)

where χs (χa) is the magnitude of χ⃗s (χ⃗a).
15 If one uses the Q–Love relation, one removes Q̄s from the above expression and

replaces Q̄s with Q̄s(λ̄2,s) in thewaveform.Wewill here use the samewaveformmodel as that used in Yagi and Yunes [48,49],
with the same Gaussian priors [401,412,413] that physically enforce δm ≤ 1/3, χs ≤ 0.1 and χa ≤ 0.1; these priors are
crucial in the analysis, especially for determining poorly constrained parameters, such as χa.

Fig. 35 shows the fractionalmeasurement accuracy of χs as a function of the injected χs with (red solid) andwithout (blue
dashed) using the Q–Love relation. Observe that the relation improves the measurement accuracy of χs when χs ≳ 0.04.
The relation only affects the results for larger spins as the contribution of the quadrupole moment becomes important only
in that case. When χs = 0.1, the improvement is roughly a factor of two. On the other hand, the measurement accuracy of
χa is unaffected by the relation because χa is poorly measured and its measurement accuracy is always dominated by the
prior [48,49].

We end this subsection by discussing systematic errors on χs. Such errors can be estimated by changing λ̄2,s to χs in
Eq. (128) and δΨ is given by

δΨ = −75

64

δQ̄s

η

(
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1χ

2
1 + m2

2χ
2
2

)

m2
x−1/2. (134)

15 Yagi and Yunes [48,49] used a different parameterization for the spins when one does not apply the Q–Love relation.



Fig. 35. Fractionalmeasurement accuracy (statistical error) ofχs as a function of the injectedχs with (red solid) andwithout (blue dashed) using theQ–Love

universal relation. We assume that Adv. LIGO with the zero-detuned configuration detects gravitational wave signals emitted from neutron star binaries

with masses (1.39, 1.41)M⊙ and equal spins at 100 Mpc. Observe that the universal relation improves the measurement accuracy of χs when χs ≳ 0.04.

We also present the fractional systematic error on χs due to not including Q̄s in the search parameter set (magenta dotted) and due to the equation-of-state

variation in the Q–Love relation (green dotted–dashed). Observe that the former can dominate the error budget for large χs , while the latter is negligible

compared to statistical errors. These results are insensitive to the equation of state, except for the systematic error due to not including Q̄s , whichwe present

with two representative equations of state.

Here either δQ̄s = Q̄s or δQ̄s = Q̄s − Q̄s(λ̄2,s), depending on whether we wish to estimate the systematic errors due to
not including Q̄s into the search parameter set, or the errors due to the equation-of-state variation in the Q–Love relation.
These systematic errors are shown by the magenta dotted and green dotted–dashed curves in Fig. 35. Observe first that the
systematic error due to not including Q̄s is larger than the statistical error for large χs. In fact, this occurs roughly at the
same value (χs ≈ 0.04) at which the Q–Love relation begins to have an effect in reducing the statistical error. Observe also
that the systematic error due to the equation-of-state variation is orders of magnitude smaller than statistical errors. The
equation-of-state variation in the Q–Love relation with the stellar mass of 1.4M⊙ is ∼0.5% at most. The systematic error
on χs is much smaller than this equation-of-state variation, as χs and Q̄ enter first at different PN orders (1.5PN and 2PN
respectively), which suppresses the amount of correlation between the two. The effect of χs at 1.5PN order is of O(χs), while
that at 2PN order is of O(χ2

s ). Thus, the correlation becomes stronger as one increases χs, which makes the systematic error

larger, as shown in Fig. 35. These results show that taking Q̄s into account is important and using the Q–Love relation is
crucial in bringing the measurement error of χs down to the red curve in Fig. 35 for large χs (χs ≳ 0.04).

7.4. Experimental relativity

We next review applications of the universal I–Love–Q relations aimed at probing extreme gravity [285,286,420,421],
i.e. a regime where the gravitational interaction is both strong and highly dynamical. General Relativity has already been
constrained rather strongly from Solar System experiments in the weak-field and weakly-dynamical regime [422,423],
and from binary pulsar observations in the strong-field but weakly-dynamical regime [286,329,424] (see Psaltis [425] for
other tests of General Relativity with neutron star observations). Electromagnetic observations of black holes also allow
one to probe the strong-field but weakly-dynamical regime [307,426–433] (see e.g. [421,434–436] for recent reviews),
though such observations typically suffer from large systematics due to uncertainties in the astrophysical modeling. The
recent GW150914 [17] and GW151226 [18] detections offered the first test of General Relativity in the extreme gravity
regime [382,437,438]. Fig. 36 illustrates schematically the regions in the curvature and gravitational potential phase space
that each experiment or observation probes [382,425,439]. Probing gravity in the extreme gravity regime is important since
certain theories (such as dCS gravity described in Section 6.1) give rise to relatively large deviations from General Relativity
only in this regime; in such theories, weak-field experiments can only place very weak constraints.

One of the problems with using neutron star observations to test General Relativity in the strong- or extreme-gravity
regime is possible degeneracies between uncertainties in nuclear physics and modified gravity effects. For example, the
relation between the neutron star mass and radius depends not only on the underlying gravitational theory, but also on
the unknown equation of state. In principle, one could use independent measurements of these quantities to test General
Relativity, but in practice this is quite difficult unless the equation of state has been constrained sufficiently strongly a priori.

Universal relations are useful precisely because they project out any uncertainties in nuclear physics, thus allowing us
to focus on testing General Relativity. Imagine that one makes two independent observations that allow us to determine
independently two members of the I–Love–Q relations. Given a single member, the relations themselves allow us to infer
the other two. Two members of the trio, therefore, provide redundancy and allow us to verify whether the relation follows
its General Relativistic form, or whether there are statistically significant anomalies.



Fig. 36. A phase diagram showing the corresponding strength of the gravitational potential and (the square root of) the curvature of systems probed for

tests of General Relativity with Solar System experiments (green circles), binary pulsar observations (magenta triangles), a black hole-LMXB observation

(orange square) and gravitational wave observations (red lines). For reference, we also show the region that can be probed with future pulsar time arrays

(shaded blue region). Observe that certain binary pulsar observations allow one to probe regions that have a stronger curvature than the GW150914 and

GW151226 black hole binaries. Observe also that the gravitational wave sources are shown by lines instead of points, which indicate that such sources are

highly dynamical, leading to extreme field tests of gravity.
Source: This figure is taken and edited from Yunes et al. [382].

How can one measure two members of the I–Love–Q trio independently? As already explained at the beginning of
this section, the moment of inertia is expected to be measured with future radio binary pulsar observations, while the
tidal deformability might be measured with future gravitational wave observations. The I–Love relation then provides an
equation-of-state independent and model independent test of General Relativity, where any equation-of-state variation in
the universal relations acts as a systematic error. Because of the latter, the power of such an I–Love test will be eventually
fundamentally limited by this inherent equation-of-state variation, rather than statistical error. The quadrupolemoment, on
the other hand, ismuchmore difficult tomeasure;wewill probably have towait for third- or fourth-generation gravitational
wave detectors, such as the Einstein Telescope [49], or carry out detailed studies of quasi-periodic oscillation of accretion
disks around neutron stars [57,440] (although the latter suffers from large systematic errors due to modeling uncertainties).

Fig. 37 shows the expected error regions in the I–Love plane from future radio and gravitational wave observations. The

blue region is constructed without using the λ̄
(1)
2 –λ̄

(0)
2 relation, while the red region does use this relation. The red region

is smaller than the blue one because the universal binary Love relation breaks degeneracies between the tidal parameters,
which improves theirmeasurement accuracy (see Section 7.1). The figure also shows two I–Love relations in dCS gravitywith
the coupling parameters ξCS/M

4 = 1.78× 104 ζCS = 0.11 (blue solid) and ξCS/M
4 = 1.46× 104 (ζCS = 0.09) (red solid) that

are marginally consistent with the blue and red regions. Notice that the dimensionless coupling constant ζCS ≡ ξCS M
2/R6

is smaller than unity and hence the small coupling approximation remains valid, where we assumed M = 1.338M⊙ (the
mass of the primary pulsar in J0737-3039 [441]) with the Shen equation of state. The binary Love relation allows for slightly
stronger constraints, although clearly the strength of the test is essentially dominated by the error in the measurement of
the moment of inertia. These projected constraints on ξCS from the I–Love relation are six orders of magnitude stronger [49]
than current constraints with Solar System [300] and table-top [301] experiments. This is because dCS gravity is only weakly
constrained with current experiments, and relatively large deviations may appear in the extreme gravity regime.

The power of these equation-of-state independent and model independent tests depends on how much the universal
relations in modified gravity differ from those in General Relativity. This, in turn, depends on how strongly the modified
theories have been constrained by existing experiments and observations. For example, with the notable exception of dCS
gravity, the I–Love–Q relations in all the theories considered in Section 6 are very similar to the General Relativity ones. This
is precisely because these theories have already been tightly constrained and one typically chooses values for the coupling
constants that are within experimentally and observationally allowed bounds.

7.5. Cosmology

Let us now review how universal relations allow us to carry out cosmological studies with gravitational waves. Just like
Type Ia supernovae can be used as standard candles to probe the cosmological evolution of the universe, one can in principle
use neutron star (or black hole) binaries as standard sirens [442–451]. The idea here is that the independent extraction of
the luminosity distance and the redshift would suffice to infer the underlying cosmological parameters, such as the Hubble
constant and the energy density of dark matter and dark energy [452–458].

Accurately extracting both the luminosity distance and the redshift with gravitational waves alone, however, is currently
extremely challenging. In principle, gravitational wave observations alone allow us to measure the luminosity distance



Fig. 37. The I–Love relation in General Relativity (black solid) and dCS gravity with a fixed dCS coupling constant of ξCS/M
4 = 1.78 × 104 (blue solid)

and ξCS/M
4 = 1.46 × 104 (red solid). For reference, the top axis shows the neutron star mass using the Shen equation of state. The shaded areas show the

expected error regions from the future measurements of Ī with radio double binary pulsar observations (black dotted) and λ̄
(0)
2 with m0 = 1.338M⊙ using

gravitational wave observations of neutron star binaries with (1.2, 1.4)M⊙ and a signal-to-noise ratio of 30, assuming that the measurement is consistent

with General Relativity. The blue dotted–dashed (red dashed) vertical lines correspond to measurement accuracy of λ̄
(0)
2 without (with) the universal

λ̄
(1)
2 –λ̄

(0)
2 relation.

Source: This figure was taken and edited from Yagi and Yunes [253].

of the source from the waveform amplitude. In practice, degeneracies with the inclination angle can deteriorate such

measurements. Extracting the redshift is even more challenging due to the degeneracies with the intrinsic mass, since the

waveform depends on the redshifted masses mz,A ≡ (1 + z)mA. One way to infer redshift information is to identify the

binary’s host galaxy and use its electromagnetically-determined redshift, but this is very challenging without a network

of detectors due to poor sky localization. Electromagnetic counterparts to gravitational wave observations, such as a short

gamma-ray burst after a neutron star merger, would greatly help determine the host galaxy to extract the redshift and break

degeneracies between the inclination angle and the luminosity distance [445].

Messenger and Read [113] proposed a novel way of extracting the redshift of a neutron star binary with gravitational

waves alone via tidal effects encoded in the late binary inspiral. Asmentioned in Section 7.1, these tidal effects in the inspiral

phase of a neutron star binary are encoded in the tidal deformability parameter λ̄2,A, which is a function of the intrinsic

mass mA and not the redshifted mass mz,A. This means that if one knows the correct equation of state a priori, one can in

principle extract mA through the measurement of λ̄2,A. Combining this information with the measurement of mz,A, one can

then break the degeneracy between the intrinsic mass and the redshift, allowing the extraction of the redshift without an

electromagnetic counterpart.

This idea was first tested through a Fisher analysis [113] and then with a Bayesian analysis [114], by estimating the

measurement accuracy of z as a function of the injected redshift with the Einstein Telescope. These studies suggest that the

redshift can be measured to 10–100%, depending sensitively on the equation of state chosen. Messenger et al. [459] carried

out a similar analysis but used tidal information in the post-merger phase instead of information from the late inspiral. The

measurement of the luminosity distance and the redshiftwere used to infer cosmological parameters inDel Pozzo et al. [115].

The latter found that themeasurement accuracy of cosmological parameterswould be comparable to that of Planck [460,461]

if the Einstein Telescope detects O(106–107) neutron star merger events.

But assuming we know exactly the equation of state a priori is currently too optimistic. A more realistic situation may be

the casewhere only the leading Taylor-expanded coefficient of the tidal deformability λ̄
(0)
2 in Eq. (70) is known fromAdv. LIGO

observations (e.g. by stacking signals from different neutron star binary sources [257,258]). In such a case, knowledge of λ̄
(1)
2

is crucial if one wants to extract the redshift, because the intrinsic mass of a neutron star enters first at k = 1 in Eq. (70).

Yagi and Yunes [112,253] recently pointed out that one can determine λ̄
(1)
2 from λ̄

(0)
2 thanks to the universal binary Love

relation (up to an error comparable to the equation-of-state variation in the relation). This study performed a Fisher analysis

using the Einstein Telescope, with binary parameters similar to those chosen in Eq. (127), a parameter set that included the

redshifted chirp mass (1+ z)M and the redshift itself (instead of the non-redshifted chirp mass and the tidal parameters λ̄2,s
and λ̄3,s), and the universal relation between λ̄

(0)
2 and λ̄

(1)
2 in Eq. (70) withm0 = 1.4M⊙.

The top panel of Fig. 38 shows the fractional measurement accuracy of z as a function of the signal’s injected z for various

choices of equation of state, assuming an equal-mass, non-spinning neutron star binary with stellar masses of 1.4M⊙. The

solid curves correspond to the case where the equation of state is assumed to be known exactly a priori [113]. The dashed

curves correspond to the case where one knows only λ̄
(0)
2 from Adv. LIGO measurements, and λ̄

(1)
2 is obtained from the



Fig. 38. (Top) Fractionalmeasurement accuracy of the redshift z as a function of the injected redshift for various equations of state assuming that one knows

the true λ̄
(1)
2 a priori (solid), and with λ̄

(1)
2 obtained from the λ̄

(0)
2 –λ̄

(1)
2 universal relation (dashed). In both cases, one assumes that ET detects gravitational

wave signals emitted from (1.4, 1.4)M⊙ , non-spinningneutron star binaries and λ̄
(0)
2 is known a priori frome.g. Adv. LIGOmeasurements. (Bottom) Fractional

difference between∆z/z with the true λ̄
(1)
2 and with that obtained from the universal relation. The difference is at most ∼10%, suggesting that the binary

Love relations can be used in place of requiring absolute knowledge of the equation of state a priori.
Source: This figure is taken from Yagi and Yunes [112].

universal λ̄
(1)
2 –λ̄

(0)
2 relation shown in the right panel of Fig. 14. The difference between the solid and dashed curves is due to

the equation-of-state variability in the λ̄
(1)
2 –λ̄

(0)
2 relation, which introduces a systematic error. The bottom panel of Fig. 38

shows the fractional difference between the solid and dashed curves as a function of redshift for different equations of
state. Observe that the fractional difference is ∼10% at most, which is smaller than the fractional statistical error on z on
the top panel. This suggests that one can still carry out cosmological studies with gravitational wave observations through

measurements of the tidal parameters, even if only λ̄
(0)
2 is known from previous observations and we lack electromagnetic

counterparts.

8. Open questions

This review attempted to summarize the current status of our understanding of the approximate universality present
in neutron stars and quark stars, but by no means has this topic been exhausted. Many open questions remain related
to essentially every topic covered in this review. Perhaps one of the open questions that would have the largest impact
is finding extensions to the universality presented here. For example, universality is clearly destroyed when considering
slowly-rotating, strongly-magnetized neutron stars with magnetic fields in excess of roughly 1012 Gauss [53]. This is simply
because the magnetic field and its topology affect the magnetic-induced quadrupolar deformation, thus adding a new,
unaccounted for contribution to the standard I–Q relations. Perhaps, however, itwould be possible to extend the universality
tomagnetized neutron stars by adding newparameters to the universal relations that quantify the strength and the topology
of the magnetic field. This could be investigated perturbatively by assuming the magnetic-induced moment of inertia and
multipole moments are small relative to the rotation-induced ones [214,462]. One can also study how the no-hair like
relations among multipole moments for magnetars are different from the unmagnetized case. Alternatively, one can study
if the universal relations remain equation-of-state insensitive if one fixes a dimensionless combination of the magnetic field
strength (other than B P) or if one changes the normalization of the I–Love–Q and multipole moments. This speculation is
motivated from the study of universality in rapidly rotating stars, which seemed to be lost when one fixed the dimensional
angular velocity of a star [54]; the universality is, however, preserved if one fixes the dimensionless spin parameters [50,55].
The degree to which relations are universal also depends on how one normalizes the stellar quantities [179].

An extension of the universal relations to magnetized neutron stars could then directly lead to an application of
such relations to proto-neutron stars i.e. newly-born stars that rotate differentially and are highly magnetized [463,464].
Extensions of the no-hair relations to differentially rotating stars have already been found within the slow- and small
differential-rotation approximations in the Newtonian limit [175]. On the other hand, the I–Love–Q relations for non-
magnetized proto-neutron stars in a ‘‘quasi-stationary’’ phase were studied using non-barotropic equations of state with
uniform rotation [231]. Thus, if one could extend these relations to magnetized, rapidly- and differentially-rotating stars
in full General Relativity, one could imagine a dynamic investigation of universality during the early stages of neutron star
formation. One could then also apply such universal relations for differentially rotating stars to hypermassive neutron stars
formed after the merger of neutron star binaries [152,183,184].

Another fertile area of research concerns studies of why the universality holds. The only physical explanation of the
no-hair relations that has not yet been refuted invokes the emergence of a self-similar symmetry in isodensity profiles



due to these being the lowest energy states of the system [274] (see also Chatziioannou et al. [174], Sham et al. [284] and
Chan et al. [169] for perturbative, mathematical explanations based on incompressible stars). This explanation is based
on both numerical calculations in full General Relativity [274] and analytic calculations in the Newtonian limit [51]. The
explanation could thus be strengthened by finding a mathematical proof that holds in full General Relativity through the
use of coordinate-independent definitions of multipole moments. Even if this were achieved, however, this explanation
could still not explain why the universality extends to the tidal deformabilities of neutron stars [48,49,112,247,248] or to
the neutron star oscillation modes [64,68,73,85,261]. This explanation also cannot be applied to the universality found in
the neutron star to black hole transition [280]. The latter points to perhaps a new type of universality related to a phase
transition between black hole and neutron star states. Such a possibility has already been studied in de Boer et al. [465]
and Arsiwalla et al. [466] within the context of the anti-de Sitter/conformal field theory correspondence [467,468]. One
could investigate whether such universality is truly present in realistic, asymptotically-flat neutron star collapse through
numerical simulations with different equations of state. To achieve this, however, onewould need to generalize the Geroch–
Hansen multipole moments to dynamical spacetimes.

Ultimately, the value of the universal relations rests on their applicability to different observations. One interesting
application that has not yet been exhaustively studied is experimental relativity. The I–Love relations, through the
measurement of themoment of inertia with binary pulsars and the Love number with gravitational waves, have been shown
to be a promisingmodel independent and equation-of-state independent test of General Relativity [48,49]. For this test to be
effective, however, one must determine whether a large class of modified theories of gravity predict an I–Love relation that
is different from the General Relativity one, with the difference proportional to the coupling parameters of the theory. This
is crucial to then be able to place concrete constraints on suchmodified theories once an I–Love observation has beenmade.
As of the writing of this review paper, dCS gravity is the only example that allows for constraints with the I–Love relations
that are stronger than all other current bounds. More work is needed to determine how the I–Love–Q relation is modified
in other theories, such as in Einstein–Æ ther theory [469–471] and Hořava–Lifshitz (or khronometric) gravity [472–474],
both of which introduce vector fields. The I–Love relation in massive scalar–tensor theories may show large deviations from
GR like in the I–Q relation explained in Section 6.3, as the massive scalar field may allow the evasion of Solar System and
binary pulsar observations. Another application in experimental relativitywould be to devise new tests that use the universal
behavior of the full no-hair relations, instead of just the I–Love universality. This is not difficult in principle, but it seems
difficult to implement in practice due to the weak impact that higher multipole moments have on neutron star observables.
Another avenue for future work includes studying the I–Love–Q and no-hair relations with the gauge-invariant extended
Geroch–Hansen multipole moments that are valid in modified theories of gravity [475,476].

A final, yet important, application of the universal relations concerns gravitational wave astrophysics. One can apply such
relations to break some degeneracies among gravitational waveform parameters, which improve themeasurement accuracy
of the spins and tidal parameters of individual neutron stars in a binary. Previous work [48,49,112,247] used a simple Fisher
analysis [401] to show the impact of such relations on future gravitational wave observations. However, such an analysis is
approximate and only valid for gravitational waves with large signal-to-noise ratios [477]. One could thus carry out a more
detailed, Bayesian analysis using e.g. Markov chain Monte Carlo method [478,479] to predict howmuch of an improvement
in parameter estimation one obtains when using the universal relations to break parameter degeneracies.

The long and treacherous road of the universal relations has given us many surprises. The importance of the elliptical
isodensity approximation and the possible interpretation of neutron star collapse as a phase transition are only the tip of the
iceberg. Only the future will tell what new universal discoveries will be made and how these will be implemented in new
observations to further our understanding of the cosmos.
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