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Abstract. A class of perturbation problems is considered, in which the Rayleigh-
Schrδdinger perturbation series for the ground state eigenvalue and eigenvector are
presumed to diverge. This class includes the (:φ2m'.g(x))2, {m = 2, 3) quantum field theory
models and the quantum mechanical anharmonic oscillator. It is shown that, using matrix
elements and vectors which occur in the series coefficients, one may construct convergent
approximants to the eigenvalue and eigenvector. Results of a calculation of the ground
state energy of the x4 anharmonic oscillator are given.

I. Introduction

We consider a class of perturbation problems in which the Rayleigh-
Schrδdinger perturbation series for the ground state eigenvalue and
eigenvector of a perturbed operator Ho + λ V are presumed to diverge.
This class, which is defined in Section II, includes the (:φ2m:g(x))2,
(m = 2, 3) relativistic quantum field theory models in two-dimensional
space-time and the quantum mechanical anharmonic oscillator. In these
examples the R — S series are known to diverge [1, 2].

We show that, using matrix elements and vectors which occur in the
series coefficients, one may construct convergent approximants to the
eigenvalue and eigenvector. Previously, Loeffel et a\. [3,2] have shown
that the diagonal Pade approximants to the R — S series for the eigen-
values of the x 4 anharmonic oscillator converge and give upper and
lower bounds for the eigenvalue E(λ\ and Simon [4] has shown that the
series for the ground state energy of (:</>4:#M)2 *s Borel summable to
E(λ). These results depend on the analytic and asymptotic properties
of E(λ) for complex λ and do not directly give any information about the
eigenvector. Also, the method of Borel summability involves an analytic
continuation and hence does not enable one to construct rigorously
convergent approximants to E(λ). The scheme described in Section III
involves solving an approximate eigenvalue problem and gives a mono-
tonically decreasing sequence of upper bounds for E(λ) when λ is real
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and positive. One may, of course, construct such approximants to the
ground state eigenvalue and eigenvector of an operator H by simply
choosing an arbitrary sequence of vectors which spans the Hubert space
and minimizing the form <tp|//tp>/||t/;||2 in the subspace spanned by the
first n vectors. We show in Section IV that it is sufficient to choose
instead a sequence of vectors which occur in the R — S series for the
eigenvector and which may not necessarily span the entire Hubert space.

In Section V we give the results of a calculation of the ground state
energy of the x 4 anharmonic oscillator.

II. Definition of the Class of Problems Considered

The class of problems considered here is defined by the properties
(A - F\ listed below, of the perturbed Hamiltonian Ho + λV (λ > 0).

In the (:φ2m:g(x))2 model Ho = $a+(k)a(k) (k2+ m2

0)
1/2dk is the

Hamiltonian of a relativistic scalar quantum field in two-dimensional
space-time and V — §:φ2m(x):g(x) dx, (m = 2, 3) is a space cut-off poly-
nomial interaction, where g(x) is a smooth function equal to 1 for small
|x| and 0 for large |x|. A large amount of information about this model
has been derived by Glimm and Jaffe [5] and others. All the properties
listed below may be found in [6]. 2

In the anharmonic oscillator Ho = 1/2 — j - γ + x2 — 11 and
v dx2 ,

V = (x4 — 3/4) or (x6 — 15/8). The properties listed below are derived in
Simon's article [2]:

A) Ho is a self-adjoint operator in a Hubert space J> with ground
state eigenvalue (non-degenerate isolated least eigenvalue) 0 and eigen-
vector Ω. V is a symmetric operator and (Ω\VΩ} = 0. H0 + λV is self-
adjoint with domain @ι(H0)n@(V) and has a ground state eigenvalue
E(λ) with eigenvector Ψλ:

ΣΊr\ ίi = 0
(1)

{Ho + λV-E(λ))Ψλ = 0.

E(λ) is a continuous function of λ. The eigenvectors are assumed to be
normalized so that ||Ω|| = 1, Ψλ = Ω + Ψ{ and <Ω|Ψj> = 0.

Let P1 be the orthogonal projection onto Jrl = JίQΩ. If A is an
operator in */, let A1 be the operator in J>L defined by A1 = P1AP1.
Since 0 is an isolated eigenvalue of Ho, HQ is a strictly positive self-adjoint
operator and therefore has a square root (a self-adjoint operator with a
domain containing @(HQ)) and a bounded inverse and inverse square
root (both with domain JL\ We will denote these operators by /z1/2, h~x

and h~ί/2 respectively.

B) (HQ + λV)λ is a self-adjoint operator in J1 (this follows because
Ho + λV - Pλ(H0 + λV) P1 is a bounded operator in J [7]).
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C) A self-adjoint operator JV, the "number operator" may be defined
in «/. N has eigenvalues 0,1,. . . (not necessarily non-degenerate) and its

M

eigenvectors ψn are called "π-particle vectors". A finite sum £ ψn is
o

called a "finite-particle vector". In the case of the anharmonic oscillator,
N = H0 and the n-particle vectors are the harmonic oscillator eigenstates.
2f(V) contains all finite-particle vectors.

D) For any finite-particle vector χey1 there is a constant d such that:

\\(h-ί/2λVh-χ/2)nχ\\<(dn)2n, n = l , 2 , . . . .

This may be derived from the bilinear form estimates
F2<const((iV + l) 3) 2, iV 2 <const i ϊ 2 (which imply (/2~1 / 2F/Γ1 / 2)2

< const (JV2)2) and the fact that V connects only vectors whose particle
numbers differ by no more than six.

E) Ho -f λV is essentially self-adjoint on the domain of finite-particle
vectors in @(H0). As in (B) it follows that (Ho + λV)1 is essentially self-
adjoint on the domain 3) of finite-particle vectors in Θ(H0)nJL. The
set of vectors h112 3) is dense in J>L.

F) Let Ωλ = Ψλ/\\ ψλ\\. Then (Ω\Ωλ) > 0. For the anharmonic oscillator
this is a consequence of the fact that the ground state wave-functions Ω
and Ωλ have no nodes and hence are strictly positive functions. In the
"g-space" representation of the ('φ2m:g(x))2 models Ω= 1 and Ωλ is a
strictly positive function (almost everywhere).

III. Construction of Approximants to Eigenvalues and Eigenvectors

Applying P 1 and <β | to (1) we get a nonlinear system of two equations

0 = λVΩ + ((Ho + λV)1 - E(λ)) Ψ{

(The first equation is a vector equation in JL\ F Ω e / 1 because
(Ω\VΩ) = 0.)

Eliminating Ψj- from these equations we get:

E(λ)\\Ω\\2 = f(E(λlλ) (2)

where:

0 + λV)1- -E)-1 λVΩ}.

By (B) and Theorem I below, f(E, λ) exists in an interval — oo < E
< G(λ) with G(λ) > E(λ). Since f(E, λ) is clearly a negative, monotonically
decreasing function of E, the eigenvalue E(λ) must be the unique solution
of (2) in this interval.
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Theorem I. The lower bound G(λ) of (Ho + λV)1 is greater than E{λ).

Proof. Suppose that the lower bound of (H0 + λV)λ were equal to
E(λ). Let {φn} be a sequence of vectors in 2) such that:

(3)

We may take these vectors to be normalized so that φn = cnΩλ + ψn

with cn>0, cl + \\Wn\
2 = 1 and <Ωλ\ψn} = 0.

Then:

<Φn\(H0 + λv)φny/\\φj2 = E(λ) cl + (Ψn\(H0 + λV)Ψny

where m is the "isolation distance" of the eigenvalue E(λ). To satisfy (3)
we must have | | φ j ——> 0 which implies φπ——>Ωλ and

But since <Ω|ί2Λ> > 0 this is a contradiction.

Theorem II. Lei A(E,λ) = h~1/2(λV - E)λh~ί/2. Then there is a
C{λ) > E(λ) such that ifE< C(λ) then:

(i) A + 1 is a strictly positive operator, and
(ii) A is essentially self-adjoint on any dense domain of finite-particle

vectors in JL.

Proof Since G(λ) > E(λ) and E(λ) is continuous we may find an ε > 0 so

small that G \- ) > (-^—) E(λ) and a C(λ) > E(λ) such that:
1 - e / \ l - ε

λ

l-ε) \ί-ε

Thus if E < C(λ) we have the bilinear form relation on 3) (x) 3i\

l - β / \ l - ε

or

which is equivalent to the relation 1 +A>ε on (h1/2@®hll2@). Using
property (D) and Definition I below we see that any finite-particle vector
is a Stieltjes vector for A. Thus, by (i) and Theorem III below, A is essen-
tially self-adjoint on any dense domain of finite-particle vectors in J1.

Definition I. χ is called a Stieltjes vector for an operator B if

χε f] ®(£")and:

Σ ll*π*IΓ1 / 2 l i=°o.
n = 0
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Theorem III. Let B be a symmetric semi-bounded operator in a Hilbert
space Jf. IfB has a set ofStieltjes vectors 9* which is dense in 3f, then B is
essentially self-adjoint

Proof. See [8, 9].
From (C) and (E) it is not hard to see that the operators /z1/2,

(1 + A) hί/2 and hί/2(l + A) h1/2 are defined on all vectors in 0 , so we may
write

(lH0 + λVy-E)χ = hll2(l + A)h1/2χ, χe®.

By (E), £f = h1/2 3> is a dense set of finite-particle vectors. By (D), Defini-
tion I and Theorem III, if E < C(λ) then A is essentially self-adjoint on Sf.
Hence, if E < C(λ) then (l+A)Sf is dense in JL and by (E) ([Ho + λV\L

— E) Q) is dense in JL. This allows us to write:

and
f(E9λ)=-<h-ll2λVΩ\(l+A)-1h-ll2λVΩy.

We approximate f(E, λ) by the Method of Moments which is briefly
described in the next paragraph.

Let B be a self-adjoint operator bounded below by M and let
00

φs p | 2){Bn). Let tfn be the space spanned by the vectors {Bkφ\fc = O,...,
« = o

n — 1}, let En be the orthogonal projection onto j ^ n , and let Bn = EnBEn.
Clearly Bn is also bounded below by M. The Method of Moments
approximant to (B — μ ) " 1 is defined as the inverse of Bn — μ considered
as an n x n matrix operator in 3Ίfn. If Pn(μ) = det(μ/ — Bn) is the charac-
teristic polynomial of Bn (so that Pn(Bn) = 0) then:

1 1 Pn(Bn)-Pn(μ)

Bn-μ Pn(μ) Bn-μ

Note that this is a polynomial of degree n — 1 in Bn and that:

Φ
1 A 1

Bn-μ ΎI Pn(μ)Φ)=-

is a rational function with numerator Qn(μ) of degree n— 1.
A study of the properties of the polynomials Pn, Qn [10, Chapter I]

shows that if μ<M then (φ\(Bn — μ)~1φy is positive and increases
monotonically as n—>oo. In addition it can be shown [9] that if μ<M
and φ is a Stieltjes vector for B then (£n — μ)~1φ—-—>(B — μ)~ίφ.
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Since Λ> — 1 + ε if E< C(λ\ we may take B = Λ, μ = — 1 and
φ = h-1/2λVΩeJ±. If we define fn(E, λ) = - (φ\(l + An)~x φ} it follows
that, for E < C(λ\ fn(E, λ) is negative and decreases monotonically to
f{E,λ) as n—*oo. Thus, if En(λ) is the least solution of the equation
E\\Ω\\2 = fn(E, λ) then En(λ) must decrease monotonically to E(λ) as
n—>oo. Furthermore, since h~1/2 is bounded,

and if !FW = ί2-/2~ 1 / 2 [l Λ-An{En{λ\λ)Y1h'~γi2λVΩ then it is not hard
to show that (Ψn\lH0 + λV-En(λ)-] Ψn} =0 so that OPB|(iϊo + λF) Ψn)/
\\Ψn\\2 = En(λ)——>E(λ). By an argument similar to that used in the

proof of Theorem I it follows that Ψn—7—> ¥ ί

A .

IV. Relationship to the Rayleigh-Schrodinger Series
n - l

By definition the polynomial (l+An)~1 = £ CkA
k

n satisfies the

equations:

Since ζφ\A*φ} = (φ\Aaφ} for α = 0, ...,2n —1 this is equivalent to the
system:

If one solves for the coefficients {Ck} in terms of determinants by Cramer's
rule one may derive the explicit formula:

Φ
 1

o (φ\φy

(Φ\ψy (φ\(A-

<Aφ\φy (Aφ\{A
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From this and Eq. (2) one finds that En(λ) is the least zero in E of Δn(E, λ\
a polynomial in E and λ:

-E\\Ω\\2 <φ\φ}

<φ\φ>
Δn(E,λ) =

The following formal considerations show that our approximate to
E(λ) and Ψλ require roughly the same information that is needed to
calculate the corresponding R — S series coefficients.

We introduce the notation:

so that, for example:

h-ί/2A2φ=E2\3)-E\12)-E\21) +

Note that the expression for (φ\Anφ} contains all matrix elements
[(*!...αk] such that a1-\ hαk = π + l and that the expression for
h~1J2Anφ contains all vectors \ocί...ock) such that aί-\ \-<xk = n-\-l.
Thus any matrix element will eventually occur in the coefficients of the
polynomial An(E9λ) for some n. Since the approximate eigenvectors Ψn

are of the form Ψn = Ω + h~ 1/2Rn_1(A) φ where Rn_ί(A) is a polynomial
of degree n — 1 in A we see that any vector |α ± . . . αk) will eventually occur
in Ψn for some n.

The coefficients of the R — S series for the eigenvalue and eigenvector:

Ψλ = Ω + λ\l} + λ2\2} + λ3\3}

= β | l ) + | l l ) + { [ l ] | 2 ) - | l

may be generated by the recursive scheme [11]
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where we have used the relations HoΩ = 0, (Ω\VΩ} = εί =0 and
<n|ί2> = 0. Since |n> is built up by successive applications of the operators
h'1 and h~xV to |1> it is not hard to see that any vector |α t . . .α f c) will
eventually occur in one of the vector coefficients \ri). Since
εn = (n — 11VΩ} it follows that any matrix element [oq... α J will even-
tually occur in the expression for some εn.

This also shows, incidentally, that the eigenvector Ψλ may be approxi-
mated arbitrarily well in norm by finite linear combinations of the vectors
|α ± . . . αfc) which occur in the R — S vector coefficients.

V. Calculation of the Ground State Energy of the Anharmonic Oscillator

We have calculated En(λ) for the anharmonic oscillator H0 + λV
d2

= 1/2 -
dx2 + x2 - 1 + A(x4 - 3/4) for λ = 0.05 and λ = 0.5.

In order to compare our results with the [n, ή] Pade approximant
calculations [2, 3] we have computed the quantity Eβ

n = 2En(λ) + 1 + 3 A/2
which converges to the ground state Eβ of the Hamiltonian

, dx*+X+IJX)

when β = 2λ. Since Eβ and [π, π] both involve the interaction V to order
2n + 1, we have compared these quantities in Table 1. Note that the [n, ή]
Pade gives a lower bound for Eβ while Eβ gives an upper bound. The
apparent rate of convergence is about the same in both methods.

Table 1. Comparison ofE% with the \n, ή\ Pade Λpproximants to the R — S series

N

2
3
4
5
6
7
8
9
10
11

iff = 0.1

El

1.065 305
1.065 287

203 600
172 105

1.065 285 688 647
1.065 285
1.065 285
1.065 285
1.065 285
1.065 285
1.065 285
1.065 285

532 721
513 009
510 126
509 651
509 565
509 548
509 544

[M]

1.065 217 852 490
1.065 280 680 051
1.065 285 049 128
1.065 285 455 329
1.065 285 502 030
1.065 285 508 357
1.065 285 509 335
1.065 285 509 503
1.065 285 509 535
1.065 285 509 541

β=l

1.428 681 532 418
1.408 347 896 118
1.400 101 384 802
1.396 365 475 043
1.394 537 935 828
1.393 590 998 055
1.393 077 586 429
1.392 788 729 636
1.392 621 095 433
1.392 521 200 261

[M]

1.348 289 096 707
1.373 799 864 956
1.383 756 497 228
1.388 075 603 389
1.390 103 754 651
1.391 116 612 108
1.391648 018 148
1.391 938 365 335
1.392 102 495 074
1.392 198 009 942
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